Promocell Antibodies 2021

Total Page:16

File Type:pdf, Size:1020Kb

Promocell Antibodies 2021 PromoCell Antibodies Wide range of primary and secondary antibodies which have been stringently validated for different applications such as Western blotting, immunohistochemistry, flow cytometry, or ELISAs. Our monoclonal and polyclonal antibodies are highly specific and sensitive, and permit reliable detection of biomolecules or proteins. For more information about the products in www.promocell.com (search for key word or code number). Biotop Oy, www.biotop.fi. E-mail [email protected]. Tel 02 - 241 0099. CatNo Name Synonyms PK-AB577-1284 BrdU antibody (mAb) PK-AB577-1305HA Anti-PD-L1 (Atezolizumab) antibody (mAb) MPDL 3280A, MPDL-3280A, MPDL3280A, RG-7446, RG7446, PDL1 PK-AB577-1454 PD-L1 antibody (pAb) PD-L1, CD274, B7-H1, PDCD1L1, PDCD1LG1 PK-AB577-1537 PD-L1 antibody (pAb) CD274, B7H1, PDCD1L1, PDCD1LG1, PDL1 Programmed cell death 1 ligand 1, PD-L1, PDCD1 ligand 1, programmed death ligand 1, B7 PK-AB577-1549 PD-L1 antibody (mAb) homolog 1, B7-H1, CD274 PK-AB577-1824 PD-L1 antibody (mAb) PK-AB577-1996BT PD-1 antibody (pAb, biotinylated) CD279, PDCD1, PD1, hPD-1, hPD-l, SLEB2 PK-AB577-2060A SARS-CoV NP antibody (mAb) PK-AB577-2061A SARS-CoV NP antibody (pAb) PK-AB577-2063A SARS-CoV NP antibody (mAb) PK-AB577-2064A SARS-CoV NP antibody (mAb) PK-AB577-2065A MERS-CoV S1 antibody (mAb) PK-AB577-2066A SARS-CoV NP antibody (mAb) PK-AB577-2067A MERS-CoV S1 antibody (mAb) PK-AB577-2072A ACE2 antibody (pAb) PK-AB577-2092A SARS-CoV NP antibody (mAb) PK-AB577-2093A SARS-CoV NP antibody (mAb) PK-AB577-2103A SARS-CoV S1 antibody (mAb) PK-AB577-2109HA Anti-PD-L1 (Durvalumab) antibody (mAb) MEDI4736, PDL1, PD-L1, PD L1 PK-AB577-2132HA Anti-PD-1 (Camrelizumab) antibody (mAb) PDCD1, PD1, CD279, SLEB2, hPD-1, hPD-l, AiRuiKa™, SHR-1210, HR 301210, INCSHR 1210 PK-AB577-2152HA Anti-PD-L1 (Avelumab) antibody (mAb) MSB-0010718C, MSB0010682, B7-H, B7H1, B7-H1, CD274, PDCD1L1, PDL1, PD-L1, B7 homolog 1, PDCD1 ligand 1, programmed cell death 1 ligand 1, Programmed death ligand 1 PK-AB577-2156HA Anti-PD-1 (Sintilimab) antibody (mAb) IBI-308, PDCD1, PD1, CD279 PK-AB577-2209BT Anti-PD-L1 antibody (mAb, biotinylated) MPDL 3280A, MPDL-3280A, MPDL3280A, RG-7446, RG7446, PD-L1 PK-AB577-3000A SARS-CoV S1 antibody (pAb) PK-AB577-3001 PARP antibody (mAb) PARP1, ADPRT, PPOL, NAD(+) ADP-ribosyltransferase 1 PK-AB577-3001A SARS-CoV S1 antibody (mAb) PK-AB577-3002 PARP antibody (pAb) PARP1, ADPRT, PPOL, NAD(+) ADP-ribosyltransferase 1 PK-AB577-3004 Caspase-3 antibody (mAb) CPP32,CASP3, apopain, procaspase3, CPP32B, SCA-1,CPP-32, Apopain, Yama PK-AB577-3008 FADD antibody (mAb) FAS-associated death domain protein, GIG3, MGC8528, MORT1 PK-AB577-3010 Caspase-7 antibody (mAb) CASP7,CASP-7,ICE-LAP3,CMH-1,MCH3, EC 3.4.22.60 PK-AB577-3012 NFkB p65 antibody (mAb) RELA, NFKB3, MGC131774 PK-AB577-3015 Caspase-3 (active) antibody (pAb) CPP32, CASP3, apopain, procaspase3, CPP32B,SCA-1,CPP-32, Apopain, Yama PK-AB577-3015P Caspase-3 peptide CASP-9, EC 3.4.22.62, ICE-like apoptotic protease 6, ICE-LAP6, Apoptotic protease Mch-6, PK-AB577-3016 Caspase-9 antibody (pAb) Apoptotic protease-activating factor 3, Apaf-3 PK-AB577-3016P Caspase-9 peptide PK-AB577-3018 Apaf-1 antibody (pAb) APAF1, CED4, DKFZp781B1145, KIAA0413 CASP1, IL1BCE, P45, Interleukin-1 beta convertase, IL-1BC, IL1BC, p45, IL1B-convertase, CASP-1, PK-AB577-3019 Caspase-1 antibody (pAb) ICE PK-AB577-3019P Caspase-1 peptide PK-AB577-3020 Caspase-8 antibody (pAb) CASP8, MGC78473, CASP-8, MACH, procaspase-8, MCH5, ALPS2B, FLICE, CAP4, EC 3.4.22.61 PK-AB577-3020P Caspase-8 peptide PK-AB577-3021 Caspase-11 antibody (pAb) CASP-11, ICEB, ICH-3 PK-AB577-3021P Caspase-11 peptide PK-AB577-3022 DYKDDDDK Tag antibody (mAb) FLAG, DYKDDDDK PK-AB577-3025 Cytochrome c antibody (pAb) CYCS, CYC PK-AB577-3025P Cytochrome c peptide PK-AB577-3026 Cytochrome c antibody (mAb) CYCS, CYC PK-AB577-3027 Caspase-2 (CT) antibody (pAb) CASP-2, NEDD-2,NEDD2, ICH1, ICH-1L/1S, ICH-1L, EC 3.4.22.55 PK-AB577-3027P Caspase-2 peptide PK-AB577-3028 Caspase-4 antibody (pAb) CASP-4, ICH-2 protease, TX protease, ICH2 PK-AB577-3029 Caspase-5 antibody (pAb) CASP-5, ICH-3 protease, TY protease, ICH3 PK-AB577-3029P Caspase-5 peptide PK-AB577-3030 Bad antibody (pAb) BBC6, BCL2L8, Bcl-2-binding component 6, Bcl-2-like 8 protein PK-AB577-3032 Bax antibody (pAb) 581, BAX, 600040, P55269, Bax zeta PK-AB577-3032P Bax peptide PK-AB577-3036 p53 antibody (pAb) TP53, TRP53, P53, LFS1, Tumor suppressor p53, Phosphoprotein p53 PK-AB577-3036M p53 antibody (mAb) TP53, TRP53, P53, LFS1, Tumor suppressor p53, Phosphoprotein p53 PK-AB577-3036P p53 peptide PK-AB577-3038 NFkB p65 antibody (pAb) RELA, NFKB3, MGC131774 PK-AB577-3038P NFkB peptide PK-AB577-3039 FADD antibody (pAb) FAS-associated death domain protein, GIG3, MGC8528, MORT1 PK-AB577-3043 Bok antibody (pAb) Bcl-2-related ovarian killer PK-AB577-3044 PBR antibody (pAb) Peripheral-type benzodiazepine receptor PK-AB577-3046 Lamin B1 antibody (mAb) LMNB1, LMN, LMNB, LMN2, Lamin-B1, ADLD, MGC111419 PK-AB577-3051 Caspase-8 antibody (mAb) PK-AB577-3055 TNF-alpha antibody (mAb) PK-AB577-3063 SSEA-1 antibody (mAb) SSEA-1, Stage-Specific Embryonic Antigen-1 PK-AB577-3065 SSEA-3 antibody (mAb) SSEA-3, Stage-Specific Embryonic Antigen-3 PK-AB577-3070 Fas-1 / Apo-1 antibody (pAb) ALPS1A, APO-1, APT1, CD95, FAS1, FAIM2, FASTM, LFG, NMP35 PK-AB577-3070P Fas1 / Apo1 peptide PK-AB577-3072 CD40 antibody (pAb) CDW40, CDw40, p50, Bp50, MGC9013, TNFRSF5 PK-AB577-3073 Granzyme B antibody (pAb) PK-AB577-3074 SSEA-4 antibody (mAb) SSEA-4, Stage-Specific Embryonic Antigen-4 PK-AB577-3075 Calcineurin A antibody (pAb) PPP3CA, CCN1, CNA1, CALN, CALNA, CALNA1, PPP2B PK-AB577-3079 TRA-1-60 antibody (mAb) PK-AB577-3082 TRA-1-81 antibody (mAb) PK-AB577-3084 Cytochrome p450 antibody (pAb) AHH, AHRR, CYP1A1, CP11, CYP1, P1-450, CYPIA1, P450-C, P450DX, P450-P1 MAPK1, p38, ERK, P42MAPK, ERK2, p40, PRKM1, p41mapk, PRKM2, MAPK2, p42-MAPK, p41, PK-AB577-3085 Erk1/2 / MAPK antibody (pAb) ERK-2, ERT1 PK-AB577-3092 Hsp27 antibody (pAb) HSPB1, CMT2F, DKFZp586P1322, HS.76067, HSP27, HSP28, Hsp25 PK-AB577-3093 Hsp27 antibody (pAb) HSPB1, CMT2F, DKFZp586P1322, HS.76067, HSP27, HSP28, Hsp25 PK-AB577-3094 Hsp60 antibody (pAb) HSPD1, HuCHA60, chaperonin, CPN60, SPG13, HSP65, Hsp60, GROEL, HSP-60, HSP60 PK-AB577-3095 Hsc70 antibody (pAb) HSPA8, LAP1, HSC54, HSC70, HSC71, HSP71, HSP73, HSPA10, MGC131511, MGC29929, NIP71 PK-AB577-3096 Hsp70 antibody (mAb) HSPA4, APG2, APG-2, HSP70RY, HS24/P52, MGC131852, hsp70RY PK-AB577-3097 Hsp70 antibody (pAb) HSPA4, APG2, APG-2, HSP70RY, HS24/P52, MGC131852, hsp70RY HSP90AA1, HSP90A, HSPCAL1, HSPCAL4, HSPN, HSP86, HSPCA, Hsp89, HSP90N, LAP2, HSPC1, PK-AB577-3098 Hsp90 antibody (mAb) FLJ31884 PK-AB577-3100 MAPKAPK-2 antibody (pAb) MAPKAPK2, MK2 PK-AB577-3100P MAPKAPK-2 peptide PK-AB577-3103 C-Peptide antibody (mAb) C-peptide PK-AB577-3105 Phospho-IRS (Ser616) antibody (mAb) IRS, phospho-IRS, Phospho-IRS (Ser616) PK-AB577-3106 Pro-Insulin antibody (mAb) Proinsulin AMPK, 5'-AMP-activated protein kinase, beta-1 subunit, AMP activated protein kinase beta-1 PK-AB577-3108 AMPK-beta antibody (pAb) subunit, AMPK beta-1 chain, AMPKb AMPK, 5'-AMP-activated protein kinase, gamma-1 subunit, AMP activated protein kinase, PK-AB577-3109 AMPK-gamma antibody (pAb) gamma-1 subunit, AMPK gamma-1 chain, AMPKg PK-AB577-3110 AMPK-alpha 1 antibody (pAb) 5'-AMP-activated protein kinase, catalytic alpha-1 chain, AMPK alpha-1 chain PK-AB577-3112 AMPK1 antibody (pAb) 5'-AMP-activated protein kinase catalytic subunit alpha-1, AMPK1 PK-AB577-3113 AMPK-alpha antibody (pAb) Protein kinase AMP-activated alpha-1 catalytic subunit, AMPK alpha-1 chain, Mitogen-activated protein kinase 14, MK14, Mapk14, Mitogen-activated protein kinase PK-AB577-3114 p38 MAP Kinase antibody (pAb) p38alpha, MAP kinase p38alpha, CRK1, Csbp1, Csbp2, CSAID-binding protein, CSBP, MAX-- interacting protein 2, MAP kinase MXI2, SAPK2A PK-AB577-3114P p38 MAP Kinase peptide PK-AB577-3115 PKA antibody (pAb) PRKACA, MGC102831, PKACA, MGC48865 PK-AB577-3115P PKA peptide PK-AB577-3116 Raf1 antibody (pAb) RAF1, cRaf, c-Raf, RAF, CRAF, C-RAF PK-AB577-3116P Raf1 peptide PK-AB577-3118 AMPK2 antibody (pAb) EC 2.7.11.1, AMPK alpha-2 chain, PRKAA2 PK-AB577-3119 HNF4A antibody (pAb) Hepatocyte nuclear factor 4-alpha, HNF-4-alpha, Transcription factor HNF-4, Nuclear receptor subfamily 2 group A membre 1, Transcription factor 14, HNF4A, HNF4, NR2A1, TCF14 PK-AB577-3120 Wee1 antibody (pAb) WEE1hu, Wee1A kinase, DKFZp686I18166, FLJ16446, EC 2.7.10.2 PK-AB577-3120P Wee1 peptide Tyrosine-protein phosphatase non-receptor type 1, Protein-tyrosine phosphatase 1B, PTP-1B, PK-AB577-3122 PTP-1B antibody (mAb) PTP1B PK-AB577-3125 TNF-R1 antibody (pAb) TNF-R1, Tumor Necrosis Factor type I, TNFRSF1A, TNFAR, TNF-R55, TNFR60, p55, CD120a PK-AB577-3125P TNF-R1 peptide PK-AB577-3128 ASK1 / MAPKKK5 antibody (pAb) MAP3K5, MEKK5, ASK-1, MAPKKK5 PK-AB577-3130 DNA-PK antibody (pAb) PRKDC, XRCC7, p460, DNPK1, HYRC, HYRC1, DNAPK, p350 PK-AB577-3133 Stat1 antibody (pAb) Signal transducer and activator of transcription 1 PK-AB577-3133P Stat1 peptide CASP-9, EC 3.4.22.62, ICE-like apoptotic protease 6, ICE-LAP6, Apoptotic protease Mch-6, PK-AB577-3136 Caspase-9 antibody (pAb) Apoptotic protease-activating factor 3, Apaf-3 PK-AB577-3136P Caspase-9 peptide PK-AB577-3138 Caspase-3 antibody (pAb) CPP32, CASP3, apopain, procaspase3, CPP32B, SCA-1, CPP-32, Apopain, Yama PK-AB577-3138P Caspase-3 peptide Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta form, PI3-kinase p110 PK-AB577-3146 PI3K-beta (NT) antibody (pAb)
Recommended publications
  • Nucleoporin 107, 62 and 153 Mediate Kcnq1ot1 Imprinted Domain Regulation in Extraembryonic Endoderm Stem Cells
    ARTICLE DOI: 10.1038/s41467-018-05208-2 OPEN Nucleoporin 107, 62 and 153 mediate Kcnq1ot1 imprinted domain regulation in extraembryonic endoderm stem cells Saqib S. Sachani 1,2,3,4, Lauren S. Landschoot1,2, Liyue Zhang1,2, Carlee R. White1,2, William A. MacDonald3,4, Michael C. Golding 5 & Mellissa R.W. Mann 3,4 1234567890():,; Genomic imprinting is a phenomenon that restricts transcription to predominantly one par- ental allele. How this transcriptional duality is regulated is poorly understood. Here we perform an RNA interference screen for epigenetic factors involved in paternal allelic silen- cing at the Kcnq1ot1 imprinted domain in mouse extraembryonic endoderm stem cells. Multiple factors are identified, including nucleoporin 107 (NUP107). To determine NUP107’s role and specificity in Kcnq1ot1 imprinted domain regulation, we deplete Nup107, as well as Nup62, Nup98/96 and Nup153. Nup107, Nup62 and Nup153, but not Nup98/96 depletion, reduce Kcnq1ot1 noncoding RNA volume, displace the Kcnq1ot1 domain from the nuclear periphery, reactivate a subset of normally silent paternal alleles in the domain, alter histone modifications with concomitant changes in KMT2A, EZH2 and EHMT2 occupancy, as well as reduce cohesin interactions at the Kcnq1ot1 imprinting control region. Our results establish an important role for specific nucleoporins in mediating Kcnq1ot1 imprinted domain regulation. 1 Departments of Obstetrics & Gynaecology, and Biochemistry, Western University, Schulich School of Medicine and Dentistry, London, ON N6A 5W9, Canada. 2 Children’s Health Research Institute, London, ON N6C 2V5, Canada. 3 Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. 4 Magee-Womens Research Institute, Pittsburgh, PA 15213, USA.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,605,041 B2 Greengard Et Al
    USOO9605041B2 (12) United States Patent (10) Patent No.: US 9,605,041 B2 Greengard et al. (45) Date of Patent: Mar. 28, 2017 (54) REGULATORY PROTEINS AND INHIBITORS 5,385,915 A 1/1995 Buxbaum et al. 5,393,755 A 2f1995 NeuStadt et al. 5,521, 184 A 5/1996 Zimmermann (75) Inventors: Paul Greengard, New York, NY (US); 5,543,520 A 8/1996 Zimmermann Wenjie Luo, New York, NY (US); Gen 5,719,283 A 2f1998 Bell et al. He, New York, NY (US); Peng Li, 5,733,914 A 3/1998 Blankley et al. New York, NY (US); Lawrence 5,744,346 A 4/1998 Chrysler et al. Wennogle, New York, NY (US) 5,777, 195 A 7/1998 Fienberg et al. 5,824,683 A 10, 1998 McKittrick et al. 5,849,770 A 12/1998 Head et al. (73) Assignees: INTRA-CELLULAR THERAPIES, 5,885,834 A 3/1999 Epstein INC., New York, NY (US): THE 5,939,419 A 8, 1999 Tulshian et al. ROCKEFELLER UNIVERSITY, 5,962,492 A 10, 1999 Warrellow New York, NY (US) 6,013,621 A 1/2000 Nishi et al. 6,107.301 A 8, 2000 Aldrich et al. 6,133,273 A 10/2000 Gilbert et al. (*) Notice: Subject to any disclaimer, the term of this 6,147,073. A 11/2000 Battistini et al. patent is extended or adjusted under 35 6,235,742 B1 5, 2001 Bell et al. U.S.C. 154(b) by 974 days. 6,235,746 B1 5, 2001 Davis et al.
    [Show full text]
  • Supplementary Table 3
    Supplemental Table 1 M e13 ∆∆Ct e13 M e15 ∆∆Ct e15 chromogranin A -3,26 (9,6 ↓ ) -6,29 (78 ↓ ) -2,56 (5,9 ↓ ) -6,57 (95 ↓ ) crystallin, beta A2 -0,95 (1,9 ↓ ) -4,57 (24 ↓ ) -1,82 (3,5 ↓ ) -4 (16 ↓ ) cyclin-dependent kinase inhibitor 1A (P21) -1,15 (2,2 ↓ ) -1,41 (2,7 ↓ ) -0,36 (1,3 ↓ ) 0,29 (1,2 ↑ ) cytochrome P450, family 4, subfamily b, polypeptide 1 -0,68 (1,6 ↓ ) 0,16 (1,1 ↑ ) -0,56 (1,5 ↓ ) -0,08 (1,1 ↓ ) myelin transcription factor 1 -1,28 (2,4 ↓ ) -2,62 (6,1 ↓ ) -1,46 (2,8 ↓ ) -3,59 (12 ↓ ) neurogenic differentiation 2 -0,06 (1,0 → ) NA -1,34 (2,5 ↓ ) NA neuronatin 0,14 (1,1 ↑ ) 0,12 (1,1 ↑ ) -0,79 (1,7 ↓ ) -2,02 (4,1 ↓ ) protocadherin 21 -1,62 (3,1 ↓ ) -5,71 (52 ↓ ) -1,77 (3,4 ↓ ) -6,41 (85 ↓ ) regulated endocrine-specific protein 18 -2,1 (4,3 ↓ ) -4,73 (27 ↓ ) -1,55 (2,9 ↓ ) -5,09 (34 ↓ ) retinol binding protein 4, plasma -1,68 (3,2 ↓ ) -1,52 (2,9 ↓ ) -1,53 (2,9 ↓ ) -2,15 (4,4 ↓ ) rhomboid, veinlet-like 4 (Drosophila) -1,14 (2,2 ↓ ) -0,29 (1,2 ↓ ) -1,09 (2,1 ↓ ) -0,58 (1,5 ↓ ) sestrin 2 -0,78 (1,7 ↓ ) -0,84 (1,8 ↓ ) -0,67 (1,6 ↓ ) -0,61 (1,5 ↓ ) synaptotagmin 13 -1,63 (3,1 ↓ ) -2,59 (6,0 ↓ ) -1,77 (3,4 ↓ ) -2,71 (6,5 ↓ ) t-complex protein 11 -0,48 (1,4 ↓ ) -1,35 (2,5 ↓ ) -0,68 (1,6 ↓ ) -2,83 (7,1 ↓ ) -0,62 (1,5 ↓ ) -0,76 (1,7 ↓ ) transmembrane 4 superfamily member 2 -0,29 (1,2 ↓ ) -0,55 (1,5 ↓ ) -0,67 (1,6 ↓ ) -0,38 (1,3 ↓ ) 2510004L01Rik -0,7 (1,6 ↓ ) -1,58 (3,0 ↓ ) -0,07 (1,0 → ) 0,16 (1,1 ↑ ) C81234 -3,12 (8,7 ↓ ) -7,75 (215 ↓ ) -2,29 (4,9 ↓ ) -4,86 (29 ↓ ) Insulin 2 NM -9,89 (948 ↓ ) NM -14,2 (18820 ↓ ) Neurogenin 3 NM NA
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Apoptotic Genes As Potential Markers of Metastatic Phenotype in Human Osteosarcoma Cell Lines
    17-31 10/12/07 14:53 Page 17 INTERNATIONAL JOURNAL OF ONCOLOGY 32: 17-31, 2008 17 Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines CINZIA ZUCCHINI1, ANNA ROCCHI2, MARIA CRISTINA MANARA2, PAOLA DE SANCTIS1, CRISTINA CAPANNI3, MICHELE BIANCHINI1, PAOLO CARINCI1, KATIA SCOTLANDI2 and LUISA VALVASSORI1 1Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna; 2Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli; 3IGM-CNR, Unit of Bologna, c/o Istituti Ortopedici Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy Received May 29, 2007; Accepted July 19, 2007 Abstract. Metastasis is the most frequent cause of death among malignant primitive bone tumor, usually developing in children patients with osteosarcoma. We have previously demonstrated and adolescents, with a high tendency to metastasize (2). in independent experiments that the forced expression of Metastases in osteosarcoma patients spread through peripheral L/B/K ALP and CD99 in U-2 OS osteosarcoma cell lines blood very early and colonize primarily the lung, and later markedly reduces the metastatic ability of these cancer cells. other skeleton districts (3). Since disseminated hidden micro- This behavior makes these cell lines a useful model to assess metastases are present in 80-90% of OS patients at the time the intersection of multiple and independent gene expression of diagnosis, the identification of markers of invasiveness signatures concerning the biological problem of dissemination. and metastasis forms a target of paramount importance in With the aim to characterize a common transcriptional profile planning the treatment of osteosarcoma lesions and enhancing reflecting the essential features of metastatic behavior, we the prognosis.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • Investigation of Differentially Expressed Genes in Nasopharyngeal Carcinoma by Integrated Bioinformatics Analysis
    916 ONCOLOGY LETTERS 18: 916-926, 2019 Investigation of differentially expressed genes in nasopharyngeal carcinoma by integrated bioinformatics analysis ZhENNING ZOU1*, SIYUAN GAN1*, ShUGUANG LIU2, RUjIA LI1 and jIAN hUANG1 1Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023; 2Department of Pathology, The Eighth Affiliated hospital of Sun Yat‑sen University, Shenzhen, Guangdong 518033, P.R. China Received October 9, 2018; Accepted April 10, 2019 DOI: 10.3892/ol.2019.10382 Abstract. Nasopharyngeal carcinoma (NPC) is a common topoisomerase 2α and TPX2 microtubule nucleation factor), malignancy of the head and neck. The aim of the present study 8 modules, and 14 TFs were identified. Modules analysis was to conduct an integrated bioinformatics analysis of differ- revealed that cyclin-dependent kinase 1 and exportin 1 were entially expressed genes (DEGs) and to explore the molecular involved in the pathway of Epstein‑Barr virus infection. In mechanisms of NPC. Two profiling datasets, GSE12452 and summary, the hub genes, key modules and TFs identified in GSE34573, were downloaded from the Gene Expression this study may promote our understanding of the pathogenesis Omnibus database and included 44 NPC specimens and of NPC and require further in-depth investigation. 13 normal nasopharyngeal tissues. R software was used to identify the DEGs between NPC and normal nasopharyngeal Introduction tissues. Distributions of DEGs in chromosomes were explored based on the annotation file and the CYTOBAND database Nasopharyngeal carcinoma (NPC) is a common malignancy of DAVID. Gene ontology (GO) and Kyoto Encyclopedia of occurring in the head and neck. It is prevalent in the eastern Genes and Genomes (KEGG) pathway enrichment analysis and southeastern parts of Asia, especially in southern China, were applied.
    [Show full text]
  • (New Ref)-CG-MS
    Send Orders for Reprints to [email protected] 522 Current Genomics, 2018, 19, 522-602 REVIEW ARTICLE Early Life Stress and Epigenetics in Late-onset Alzheimer’s Dementia: A Systematic Review Erwin Lemche* Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK Abstract: Involvement of life stress in Late-Onset Alzheimer’s Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have suc- cessfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper- phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of auto- phagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal stud- ies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in A R T I C L E H I S T O R Y previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epi- Received: July 01, 2017 genomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation Revised: July 27, 2017 mechanisms were published for the compiled loci.
    [Show full text]
  • Functional Study of a Novel Missense Single‐Nucleotide Variant Of
    UCSF UC San Francisco Previously Published Works Title Functional study of a novel missense single-nucleotide variant of NUP107 in two daughters of Mexican origin with premature ovarian insufficiency. Permalink https://escholarship.org/uc/item/24n0416b Journal Molecular genetics & genomic medicine, 6(2) ISSN 2324-9269 Authors Ren, Yu Diao, Feiyang Katari, Sunita et al. Publication Date 2018-03-01 DOI 10.1002/mgg3.345 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 5 September 2017 | Revised: 6 October 2017 | Accepted: 24 October 2017 DOI: 10.1002/mgg3.345 CLINICAL REPORT Functional study of a novel missense single-nucleotide variant of NUP107 in two daughters of Mexican origin with premature ovarian insufficiency Yu Ren1* | Feiyang Diao2* | Sunita Katari3 | Svetlana Yatsenko1,4 | Huaiyang Jiang1 | Michelle A. Wood-Trageser4 | Aleksandar Rajkovic1,4,5 1Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee- Abstract Womens Research Institute, University of Background: Hypergonadotropic hypogonadism (HH) is a genetically heteroge- Pittsburgh, Pittsburgh, PA, USA neous disorder that usually presents with amenorrhea, atrophic ovaries, and low 2State Key Laboratory of Reproductive estrogen. Most cases of HH are idiopathic and nonsyndromic. Nucleoporin 107 Medicine, Center of Clinical Reproductive Medicine, Nanjing Medical (NUP107), a protein involved in transport between cytoplasm and nucleus with University, Nanjing, China putative roles in meiosis/mitosis progression, was recently implicated as a cause 3 Division of Reproductive Endocrinology of HH. We identified a NUP107 genetic variant in a nonconsanguineous family and Infertility, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA with two sisters affected with primary amenorrhea and HH, and generated a 4Department of Pathology, University of mouse model that carried the human variant.
    [Show full text]
  • Supplementary Data Genbank Or OSE Vs RO NIA Accession Gene Name Symbol FC B-Value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B0
    Supplementary Data GenBank or OSE vs RO NIA accession Gene name Symbol FC B-value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B08 9.62 5.59 AU022767 Exportin 4 Xpo4 9.62 6.64 H3073B09 9.59 6.48 BG063925 Metallothionein 2 Mt2 9.23 18.89 H3064B07 9.21 6.10 H3073D08 8.28 6.10 AU021923 Jagged 1 Jag1 7.89 5.93 H3070D08 7.54 4.58 BG085110 Cysteine-rich protein 1 (intestinal) Crip1 6.23 16.40 BG063004 Lectin, galactose binding, soluble 1 Lgals1 5.95 10.36 BG069712 5.92 2.34 BG076976 Transcribed locus, strongly similar to NP_032521.1 lectin, galactose binding, soluble 1 5.64 8.36 BG062930 DNA segment, Chr 11, Wayne State University 99, expressed D11Wsu99e 5.63 8.76 BG086474 Insulin-like growth factor binding protein 5 Igfbp5 5.50 15.95 H3002d11 5.13 20.77 BG064706 Keratin complex 1, acidic, gene 19 Krt1-19 5.06 9.07 H3007A09 5.05 2.46 H3065F02 4.84 5.43 BG081752 4.81 1.25 H3010E09 4.71 11.90 H3064c11 4.43 1.00 BG069711 Transmembrane 4 superfamily member 9 Tm4sf9 4.29 1.23 BG077072 Actin, beta, cytoplasmic Actb 4.29 3.01 BG079788 Hemoglobin alpha, adult chain 1 Hba-a1 4.26 6.63 BG076798 4.23 0.80 BG074344 Mesothelin Msln 4.22 6.97 C78835 Actin, beta, cytoplasmic Actb 4.16 3.02 BG067531 4.15 1.61 BG073468 Hemoglobin alpha, adult chain 1 Hba-a1 4.10 6.23 H3154H07 4.08 5.38 AW550167 3.95 5.66 H3121B01 3.94 5.94 H3124f12 3.94 5.64 BG073608 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.32 BG073617 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.75 BG072574 Hemoglobin alpha, adult chain 1 Hba-a1 3.82 5.93 BG072211 Tumor necrosis factor receptor superfamily,
    [Show full text]
  • Supplementary Material Computational Prediction of SARS
    Supplementary_Material Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets Sheet_1 List of potential stem-loop structures in SARS-CoV-2 genome as predicted by VMir. Rank Name Start Apex Size Score Window Count (Absolute) Direct Orientation 1 MD13 2801 2864 125 243.8 61 2 MD62 11234 11286 101 211.4 49 4 MD136 27666 27721 104 205.6 119 5 MD108 21131 21184 110 204.7 210 9 MD132 26743 26801 119 188.9 252 19 MD56 9797 9858 128 179.1 59 26 MD139 28196 28233 72 170.4 133 28 MD16 2934 2974 76 169.9 71 43 MD103 20002 20042 80 159.3 403 46 MD6 1489 1531 86 156.7 171 51 MD17 2981 3047 131 152.8 38 87 MD4 651 692 75 140.3 46 95 MD7 1810 1872 121 137.4 58 116 MD140 28217 28252 72 133.8 62 122 MD55 9712 9758 96 132.5 49 135 MD70 13171 13219 93 130.2 131 164 MD95 18782 18820 79 124.7 184 173 MD121 24086 24135 99 123.1 45 176 MD96 19046 19086 75 123.1 179 196 MD19 3197 3236 76 120.4 49 200 MD86 17048 17083 73 119.8 428 223 MD75 14534 14600 137 117 51 228 MD50 8824 8870 94 115.8 79 234 MD129 25598 25642 89 115.6 354 Reverse Orientation 6 MR61 19088 19132 88 197.8 271 10 MR72 23563 23636 148 188.8 286 11 MR11 3775 3844 136 185.1 116 12 MR94 29532 29582 94 184.6 271 15 MR43 14973 15028 109 183.9 226 27 MR14 4160 4206 89 170 241 34 MR35 11734 11792 111 164.2 37 52 MR5 1603 1652 89 152.7 118 53 MR57 18089 18132 101 152.7 139 94 MR8 2804 2864 122 137.4 38 107 MR58 18474 18508 72 134.9 237 117 MR16 4506 4540 72 133.8 311 120 MR34 10010 10048 82 132.7 245 133 MR7 2534 2578 90 130.4 75 146 MR79 24766 24808 75 127.9 59 150 MR65 21528 21576 99 127.4 83 180 MR60 19016 19049 70 122.5 72 187 MR51 16450 16482 75 121 363 190 MR80 25687 25734 96 120.6 75 198 MR64 21507 21544 70 120.3 35 206 MR41 14500 14542 84 119.2 94 218 MR84 26840 26894 108 117.6 94 Sheet_2 List of stable stem-loop structures based on MFE.
    [Show full text]