Supplementary Table 3

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table 3 Supplemental Table 1 M e13 ∆∆Ct e13 M e15 ∆∆Ct e15 chromogranin A -3,26 (9,6 ↓ ) -6,29 (78 ↓ ) -2,56 (5,9 ↓ ) -6,57 (95 ↓ ) crystallin, beta A2 -0,95 (1,9 ↓ ) -4,57 (24 ↓ ) -1,82 (3,5 ↓ ) -4 (16 ↓ ) cyclin-dependent kinase inhibitor 1A (P21) -1,15 (2,2 ↓ ) -1,41 (2,7 ↓ ) -0,36 (1,3 ↓ ) 0,29 (1,2 ↑ ) cytochrome P450, family 4, subfamily b, polypeptide 1 -0,68 (1,6 ↓ ) 0,16 (1,1 ↑ ) -0,56 (1,5 ↓ ) -0,08 (1,1 ↓ ) myelin transcription factor 1 -1,28 (2,4 ↓ ) -2,62 (6,1 ↓ ) -1,46 (2,8 ↓ ) -3,59 (12 ↓ ) neurogenic differentiation 2 -0,06 (1,0 → ) NA -1,34 (2,5 ↓ ) NA neuronatin 0,14 (1,1 ↑ ) 0,12 (1,1 ↑ ) -0,79 (1,7 ↓ ) -2,02 (4,1 ↓ ) protocadherin 21 -1,62 (3,1 ↓ ) -5,71 (52 ↓ ) -1,77 (3,4 ↓ ) -6,41 (85 ↓ ) regulated endocrine-specific protein 18 -2,1 (4,3 ↓ ) -4,73 (27 ↓ ) -1,55 (2,9 ↓ ) -5,09 (34 ↓ ) retinol binding protein 4, plasma -1,68 (3,2 ↓ ) -1,52 (2,9 ↓ ) -1,53 (2,9 ↓ ) -2,15 (4,4 ↓ ) rhomboid, veinlet-like 4 (Drosophila) -1,14 (2,2 ↓ ) -0,29 (1,2 ↓ ) -1,09 (2,1 ↓ ) -0,58 (1,5 ↓ ) sestrin 2 -0,78 (1,7 ↓ ) -0,84 (1,8 ↓ ) -0,67 (1,6 ↓ ) -0,61 (1,5 ↓ ) synaptotagmin 13 -1,63 (3,1 ↓ ) -2,59 (6,0 ↓ ) -1,77 (3,4 ↓ ) -2,71 (6,5 ↓ ) t-complex protein 11 -0,48 (1,4 ↓ ) -1,35 (2,5 ↓ ) -0,68 (1,6 ↓ ) -2,83 (7,1 ↓ ) -0,62 (1,5 ↓ ) -0,76 (1,7 ↓ ) transmembrane 4 superfamily member 2 -0,29 (1,2 ↓ ) -0,55 (1,5 ↓ ) -0,67 (1,6 ↓ ) -0,38 (1,3 ↓ ) 2510004L01Rik -0,7 (1,6 ↓ ) -1,58 (3,0 ↓ ) -0,07 (1,0 → ) 0,16 (1,1 ↑ ) C81234 -3,12 (8,7 ↓ ) -7,75 (215 ↓ ) -2,29 (4,9 ↓ ) -4,86 (29 ↓ ) Insulin 2 NM -9,89 (948 ↓ ) NM -14,2 (18820 ↓ ) Neurogenin 3 NM NA NM NA NA) Transcript not detectable in mutant mice NM) Not measured Supplemental Table 2 ID symbol genename M P.val MG-3-45m4 1700086L19Rik RIKEN cDNA 1700086L19 gene -2,597672234 9,11E-11 MG-6-2n7 Cck cholecystokinin -2,181071571 9,11E-11 MG-6-76j9 0610007P22Rik RIKEN cDNA 0610007P22 gene -2,022758104 2,95E-10 MG-6-3j21 Chga chromogranin A -3,049898039 1,74E-10 MG-14-45h10 Chgb chromogranin B -3,171936998 4,95E-09 MG-3-89b2 Slc38a5 solute carrier family 38, member 5 -3,810237262 2,22E-09 MG-6-91l19 Grin2c glutamate receptor, ionotropic, NMDA2C (epsilon 3) -0,943006171 5,80E-09 MG-6-2g18 Rps12 ribosomal protein S12 -1,039547514 1,13E-08 MG-6-1o1 NA NA -1,965460837 2,58E-08 MG-3-30i2 MGI:1930008 ghrelin -2,588536245 3,22E-08 MG-6-51m20 A930033C01Rik RIKEN cDNA A930033C01 gene -2,032403818 3,22E-08 MG-14-40o13 Sgne1 secretory granule neuroendocrine protein 1, 7B2 protein -1,265994427 3,22E-08 MG-6-38n22 Resp18 regulated endocrine-specific protein 18 -1,623854162 4,31E-08 MG-6-4c22 Irx1 Iroquois related homeobox 1 (Drosophila) -1,374354363 5,81E-08 MG-8-89p12 Gnas GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus -1,938861256 4,65E-08 MG-15-3a3 Gch1 GTP cyclohydrolase 1 -0,819623893 3,22E-08 MG-3-76n17 Pcsk2 proprotein convertase subtilisin/kexin type 2 -2,218593652 6,80E-08 MG-3-32l24 3100002J23Rik RIKEN cDNA 3100002J23 gene -1,506044006 7,67E-08 MG-6-55a14 Scg3 secretogranin III -1,994873687 7,78E-08 MG-6-64b7 Syt7 synaptotagmin 7 -0,896023886 1,05E-07 MG-6-30c20 Ppp1r1a protein phosphatase 1, regulatory (inhibitor) subunit 1A -0,840664374 1,33E-07 MG-14-119n19 Ttr transthyretin -1,7411219 1,51E-07 MG-8-92o10 Gal galanin -1,415501527 1,51E-07 MG-6-22i12 Pcsk1n proprotein convertase subtilisin/kexin type 1 inhibitor -1,857822293 1,51E-07 MG-6-44o1 2610028H07Rik RIKEN cDNA 2610028H07 gene -1,461482677 2,71E-07 MG-27-266n9 Rph3al rabphilin 3A-like (without C2 domains) -0,895045879 4,19E-07 MG-19-1k5 Upb1 ureidopropionase, beta -1,168741343 4,60E-07 MG-6-60f22 1700012H17Rik RIKEN cDNA 1700012H17 gene -1,860398987 4,80E-07 MG-8-101o4 Rbp4 retinol binding protein 4, plasma -1,633016416 4,60E-07 MG-3-45l10 4930488E11Rik RIKEN cDNA 4930488E11 gene -0,901772919 7,86E-07 MG-3-55c24 4930563I02Rik RIKEN cDNA 4930563I02 gene -0,579856115 8,20E-07 MG-3-71n20 NA NA -0,991824493 9,85E-07 MG-3-220d22 NA NA -1,244579617 1,00E-06 MG-6-16l16 Nap1l5 nucleosome assembly protein 1-like 5 -1,776305547 1,21E-06 MG-8-12f2 Syt13 synaptotagmin 13 -1,647779179 1,32E-06 MG-6-86e19 Gats opposite strand transcription unit to Stag3 -0,775482166 1,48E-06 MG-6-25p16 Scgn secretagogin, EF-hand calcium binding protein -2,033851513 1,49E-06 MG-6-47c24 Ptprn protein tyrosine phosphatase, receptor type, N -1,464098327 2,49E-06 MG-3-14c23 D8Ertd531e DNA segment, Chr 8, ERATO Doi 531, expressed -0,420511988 2,71E-06 MG-6-45p3 Mmd2 monocyte to macrophage differentiation-associated 2 -0,713882518 2,61E-06 MG-12-165c14 Sgk2 serum/glucocorticoid regulated kinase 2 -1,088640065 2,37E-06 MG-12-3e4 Cyp4b1 cytochrome P450, family 4, subfamily b, polypeptide 1 -0,632079708 3,19E-06 MG-3-139o21 Stard10 START domain containing 10 -0,469720532 3,71E-06 MG-6-67o19 Pim2 proviral integration site 2 -1,068470268 3,71E-06 MG-11-1e9 Ttr transthyretin -1,718915732 3,36E-06 MG-12-149k8 NA NA -1,115435297 3,19E-06 MG-6-43b23 1810043H04Rik RIKEN cDNA 1810043H04 gene -1,868917161 6,11E-06 MG-8-11f14 NA NA -0,900338434 6,33E-06 MG-6-43l24 Gm1052 gene model 1052, (NCBI) -1,131925034 6,48E-06 MG-6-15i10 Rps6ka4 ribosomal protein S6 kinase, polypeptide 4 -1,172018158 6,72E-06 MG-26-277d20 Cited1 Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 -0,659101859 6,72E-06 MG-6-27f14 Myt1 myelin transcription factor 1 -1,060223059 7,33E-06 MG-8-46e22 NA NA 0,394069379 7,33E-06 MG-8-117h12 Mt3 metallothionein 3 -0,45874236 7,33E-06 MG-12-24i22 Sesn2 sestrin 2 -0,651466547 7,33E-06 MG-6-41d11 Rap2ip Rap2 interacting protein -0,482696057 1,03E-05 MG-6-3o17 Gdap1l1 ganglioside-induced differentiation-associated protein 1-like 1 -0,551615276 1,06E-05 MG-6-15n12 Csf1r colony stimulating factor 1 receptor 0,481092676 1,14E-05 MG-3-46n16 Dp1l1 deleted in polyposis 1-like 1 -0,603993561 1,25E-05 MG-6-64j8 Syt7 synaptotagmin 7 -0,680687657 1,38E-05 MG-15-252p15 2310015B20Rik RIKEN cDNA 2310015B20 gene -1,178163014 1,43E-05 MG-3-142k19 4921524L21Rik RIKEN cDNA 4921524L21 gene -0,464322532 1,71E-05 MG-34-1e8 BC040758 cDNA sequence BC040758 -0,733027768 1,82E-05 MG-68-152m6 NA NA -0,561136673 1,89E-05 MG-14-36p23 Rsad2 radical S-adenosyl methionine domain containing 2 -0,511668425 2,29E-05 MG-3-113e7 NA NA -0,326862436 2,30E-05 MG-6-55f18 Syt5 synaptotagmin 5 -0,343055604 2,80E-05 MG-3-7g19 Grtp1 GH regulated TBC protein 1 -0,398464809 2,87E-05 MG-12-150n16 Rnf130 ring finger protein 130 -0,377443327 2,87E-05 MG-12-2n20 Gc group specific component -0,46889412 3,43E-05 MG-15-17c19 Npnt nephronectin 0,371848958 4,14E-05 MG-15-145h11 Hes6 hairy and enhancer of split 6 (Drosophila) -0,352625393 4,25E-05 MG-6-42g13 Hap1 huntingtin-associated protein 1 -0,685965399 4,83E-05 MG-6-21a14 Col11a2 procollagen, type XI, alpha 2 -0,625942199 4,83E-05 MG-6-36e16 Rhbdl4 rhomboid, veinlet-like 4 (Drosophila) -0,975649222 5,30E-05 MG-3-27p6 Tcp11 t-complex protein 11 -0,421678155 5,31E-05 MG-60-1p11 Cryba2 crystallin, beta A2 -0,765324482 5,31E-05 MG-3-42i14 1190002A17Rik RIKEN cDNA 1190002A17 gene -0,451110517 5,40E-05 MG-6-2d10 NA NA 0,414986432 5,47E-05 MG-12-168g11 Gip gastric inhibitory polypeptide -1,312329589 5,53E-05 MG-26-237e17 Amd1 S-adenosylmethionine decarboxylase 1 -0,349766465 5,74E-05 MG-8-49l13 E2f2 E2F transcription factor 2 -0,452542475 7,02E-05 MG-6-2b5 2900069M18Rik RIKEN cDNA 2900069M18 gene -0,870303081 7,02E-05 MG-15-214b8 Rcor2 REST corepressor 2 -0,554239732 7,68E-05 MG-6-15i23 0710005I19Rik RIKEN cDNA 0710005I19 gene -0,868107057 7,68E-05 MG-6-86n2 Pja2 praja 2, RING-H2 motif containing -0,45719847 8,14E-05 MG-3-26h10 Arhgap29 Rho GTPase activating protein 29 0,300604431 8,65E-05 MG-3-27f11 Apoe apolipoprotein E 0,502151328 0,000103912 MG-14-3k11 Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) -1,148104358 0,000138527 MG-3-66n5 1700020C11Rik RIKEN cDNA 1700020C11 gene -0,358746716 0,000134592 MG-6-41a22 Camk2b calcium/calmodulin-dependent protein kinase II, beta -0,621281192 0,000136976 MG-16-118p10 Pcdh21 protocadherin 21 -1,0029529 0,000142539 MG-12-140m7 Spink3 serine protease inhibitor, Kazal type 3 -1,532952973 0,000150706 MG-15-137l18 Gpr43 G protein-coupled receptor 43 -0,589637717 0,000152394 MG-15-203l12 Lyar Ly1 antibody reactive clone -0,287838822 0,00016528 MG-8-58m7 Tnrc9 trinucleotide repeat containing 9 -0,613914405 0,000166062 MG-14-25a24 Pax6 paired box gene 6 -0,629060789 0,000164258 MG-6-55p2 Npy neuropeptide Y -0,960674239 0,000190558 MG-3-119i12 4921537D05Rik RIKEN cDNA 4921537D05 gene -0,355405988 0,000206802 MG-8-91g2 Lpl lipoprotein lipase 0,373469209 0,000230182 MG-6-14o9 NA NA 0,305520045 0,000234227 MG-6-60h12 Ctsf cathepsin F -0,316703851 0,000262984 MG-15-260h19 Adam12 a disintegrin and metalloproteinase domain 12 (meltrin alpha) 0,441742857 0,000274327 MG-3-92p18 NA NA -0,314408284 0,000271469 MG-12-35g23 Garnl4 GTPase activating RANGAP domain-like 4 -0,622279379 0,000307486 MG-8-95m18 Tgfbr3 transforming growth factor, beta receptor III -0,742293094 0,000307925 MG-3-89e16 Klc3 kinesin light chain 3 -0,476251367 0,000303096 MG-12-195e16 Pank1 pantothenate kinase 1 -0,335145215 0,000348055 MG-3-150e11 NA NA -0,529968054 0,000347607 MG-3-37n5 Prrg2 proline-rich Gla (G-carboxyglutamic acid) polypeptide 2 -0,296007905 0,000348055 MG-3-10n5 Nudt4 nudix (nucleoside diphosphate linked moiety X)-type motif 4 -0,63464024 0,000367048 MG-3-93m8 Mrpl1 mitochondrial ribosomal protein L1 -0,337241816 0,000363932 MG-16-138j8 Tnfaip8 tumor necrosis factor, alpha-induced protein 8 -0,247868783 0,000358467 MG-3-65h5 1700013G23Rik RIKEN cDNA 1700013G23 gene -0,322473075 0,000362188 MG-6-90a24 Snrpn
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Fkbp10 (NM 010221) Mouse Untagged Clone – MC201811 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MC201811 Fkbp10 (NM_010221) Mouse Untagged Clone Product data: Product Type: Expression Plasmids Product Name: Fkbp10 (NM_010221) Mouse Untagged Clone Tag: Tag Free Symbol: Fkbp10 Synonyms: AI325255; FKBP-10; FKBP-65; Fkbp-rs1; Fkbp1-rs; Fkbp6; FKBP65; Fkbprp Vector: PCMV6-Kan/Neo E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 Fkbp10 (NM_010221) Mouse Untagged Clone – MC201811 Fully Sequenced ORF: >BC029546 sequence for NM_010221 GTCCGCTCTCACTGCCGGCGTCCCTGGTCTGGGCACCATGTTCCTTGTGGGGTCCTCCAGCCACACCCTC CATCGGCTCCGCATACTGCCGTTGCTGTTGCTTCTACAGACCTTGGAGAGGGGACTGGGCCGTGCCAGCC CGGCCGGAGCCCCCTTGGAAGATGTGGTCATCGAGAGATACCACATCCCTCGGGCCTGTCCCCGAGAAGT GCAGATGGGGGATTTTGTGCGTTACCACTACAATGGCACTTTCGAAGACGGGAAAAAGTTTGACTCCAGC TATGACCGTAGCACCCTGGTGGCCATCGTTGTGGGCGTAGGCCGCCTCATCACCGGCATGGACCGGGGTC TCATGGGCATGTGTGTCAACGAGCGCCGCCGCCTCATTGTGCCTCCCCACCTGGGCTACGGCAGCATCGG TGTGGCGGGCCTCATCCCCCCTGATGCCACCCTCTATTTTGACGTGGTCCTGCTGGACGTGTGGAACAAA GCAGACACGGTGCAGTCAACTATCCTCCTGCGCCCTCCCTACTGCCCCCGAATGGTGCAGAACAGTGACT TTGTGCGCTATCACTACAATGGCACTCTGCTGGATGGCACTGCCTTTGACAACAGCTACAGTAGGGGAGG CACTTATGACACCTACATCGGCTCTGGTTGGCTGATCAAAGGCATGGACCAGGGGCTGCTGGGCATGTGC
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Mouse FKBP10 ORF Mammalian Expression Plasmid, N-His Tag
    Mouse FKBP10 ORF mammalian expression plasmid, N-His tag Catalog Number: MG5A1953-NH General Information Plasmid Resuspension protocol Gene : FK506 binding protein 10 1. Centrifuge at 5,000×g for 5 min. Official Symbol : FKBP10 2. Carefully open the tube and add 100 l of sterile water to Synonym : Fkbp6; FKBP65; Fkbprp; FKBP-10; dissolve the DNA. FKBP-65; AI325255; Fkbp-rs1; Fkbp1-rs 3. Close the tube and incubate for 10 minutes at room Source : Mouse temperature. cDNA Size: 1746bp 4. Briefly vortex the tube and then do a quick spin to RefSeq : NM_010221.2 concentrate the liquid at the bottom. Speed is less than Description 5000×g. Lot : Please refer to the label on the tube 5. Store the plasmid at -20 ℃. Vector : pCMV3-SP-N-His Shipping carrier : Each tube contains approximately 10 μg of lyophilized plasmid. The plasmid is ready for: Storage : • Restriction enzyme digestion The lyophilized plasmid can be stored at ambient temperature • PCR amplification for three months. • E. coli transformation Quality control : • DNA sequencing The plasmid is confirmed by full-length sequencing with primers in the sequencing primer list. E.coli strains for transformation (recommended Sequencing primer list : but not limited) pCMV3-F: 5’ CAGGTGTCCACTCCCAGGTCCAAG 3’ Most commercially available competent cells are appropriate for pcDNA3-R : 5’ GGCAACTAGAAGGCACAGTCGAGG 3’ the plasmid, e.g. TOP10, DH5α and TOP10F´. Or Forward T7 : 5’ TAATACGACTCACTATAGGG 3’ ReverseBGH : 5’ TAGAAGGCACAGTCGAGG 3’ pCMV3-F and pcDNA3-R are designed by Sino Biological Inc. Customers can order the primer pair from any oligonucleotide supplier. Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY.
    [Show full text]
  • A Key Actor of Collagen Crosslinking in Clear Cell Renal Cell Carcinoma
    www.aging-us.com AGING 2021, Vol. 13, No. 15 Research Paper FK506 binding protein 10: a key actor of collagen crosslinking in clear cell renal cell carcinoma Yubai Zhang1,4, Yue Yin2, Sijia Liu3, Lei Yang1,4, Changhua Sun4, Ruihua An1 1Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China 2Department of Oncology Radiotherapy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China 3Department of Gynecological Radiotherapy, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China 4Department of Urology Surgery, The First Hospital of Harbin, Harbin, China Correspondence to: Ruihua An; email: [email protected], https://orcid.org/0000-0002-7041-2014 Keywords: FKBP10, clear cell renal cell carcinoma, collagen synthesis, prognosis Received: May 27, 2021 Accepted: July 10, 2021 Published: August 13, 2021 Copyright: © 2021 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Clear cell renal cell carcinoma (ccRCC) is the most common type of malignant tumor in the kidney. With numbers of patients whose physical condition or tumor stage not suitable for radical surgery, they only have a narrow choice of using VEGF/mTOR targeted drugs to control their tumors, but ccRCC often shows resistance to these drugs. Therefore, identifying a new therapeutic target is of urgent necessity. In this study, for the first time, we concluded from bioinformatics analyses and in vitro research that FK506 binding protein 10 (FKBP10), together with its molecular partner Lysyl hydroxylase 2 (LH2/PLOD2), participate in the process of type I collagen synthesis in ccRCC via regulating crosslinking of pro-collagen chains.
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • Identification of Tetraspanin-7 As a Target of Autoantibodies in Type 1 Diabetes
    Page 1 of 35 Diabetes Identification of Tetraspanin-7 as a Target of Autoantibodies in Type 1 Diabetes Running title: Tetraspanin-7 in Type 1 diabetes Kerry A. McLaughlin1, Carolyn C. Richardson1,2, Aarthi Ravishankar1, Christina Brigatti3, Daniela Liberati4, Vito Lampasona4, Lorenzo Piemonti3, Diana Morgan5, Richard G. Feltbower5 and Michael R. Christie1,2 1Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King’s College London, London, U.K. 2School of Life Sciences, University of Lincoln, Lincoln, U.K. 3Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy 4Division of Genetics and Cellular Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy 5Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds, Leeds, UK Corresponding author: Dr Michael R Christie, School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, United Kingdom Phone: +44 1522 837434 Email: [email protected] Word count of abstract: 199 Word count of main text: 3,998 Number of figures: 4. One Supplementary Table 1 Diabetes Publish Ahead of Print, published online March 7, 2016 Diabetes Page 2 of 35 ABSTRACT The presence of autoantibodies to multiple islet autoantigens confers high risk for development of Type 1 diabetes. Four major autoantigens are established (insulin, glutamate decarboxylase, IA-2, and zinc transporter-8), but the molecular identity of a fifth, a 38kDa membrane glycoprotein (Glima), is unknown. Glima antibodies have been detectable only by immunoprecipitation from extracts of radiolabeled islet or neuronal cells. We sought to identify Glima to enable efficient assay of these autoantibodies. Mouse brain and lung were shown to express Glima.
    [Show full text]