Telomere Variability in the Monocotyledonous Plant Order Asparagales E

Total Page:16

File Type:pdf, Size:1020Kb

Telomere Variability in the Monocotyledonous Plant Order Asparagales E Received 27 February 2003 Accepted 8 May 2003 Published online 28 July 2003 Telomere variability in the monocotyledonous plant order Asparagales E. Sy´korova´ 1,2,4, K. Y. Lim1, Z. Kunicka´ 4, M. W. Chase3, M. D. Bennett3, J. Fajkus2,4 and A. R. Leitch1* 1School of Biological Sciences, Queen Mary University of London, London E1 4NS, UK 2Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK 4Department of Functional Genomics and Proteomics, Faculty of Sciences, Masaryk University, Brno, Czech Republic A group of monocotyledonous plants within the order Asparagales, forming a distinct clade in phylogenetic analyses, was reported previously to lack the ‘typical’ Arabidopsis-type telomere (TTTAGGG)n. This stimulated us to determine what has replaced these sequences. Using slot-blot and fluorescent in situ hybridization (FISH) to species within this clade, our results indicate the following. 1. The typical Arabidopsis-type telomeric sequence has been partly or fully replaced by the human-type telomeric sequence (TTAGGG)n. Species in Allium lack the human-type variant. 2. In most cases the human variant occurs along with a lower abundance of two or more variants of the minisatellite sequences (of seven types evaluated), usually these being the consensus telomeric sequence of Arabidopsis, Bombyx (TTAGG)n and Tetrahymena (TTGGGG)n. FISH shows that the variants can occur mixed together at the telomere. 3. Telomerases generate products with a 6 base pair periodicity and when sequenced they reveal predomi- nantly a reiterated human-type motif. These motifs probably form the ‘true telomere’ but the error rate of motif synthesis is higher compared with ‘typical’ plant telomerases. The data indicate that the Aspara- gales clade is unified by a mutation resulting in a switch from synthesis of Arabidopsis-like telomeres to a low-fidelity synthesis of human-like telomeres. Keywords: plant; human; Tetrahymena; telomere; evolution; TRAP assay 1. INTRODUCTION mediated chromosome elongation system and elongate their chromosomes using recombination. In these organ- Telomere sequences are highly conserved at the ends of isms, the structure of the chromosome ends and their chromosomes across eukaryotes. Indeed, only point dependence on recombination proteins point towards mutations of the general, telomeric, minisatellite, oligonu- unequal recombination (gene conversion) occurring cleotide motif (T A G ) distinguish the telomeres of large m n o between telomeres (Lundblad & Blackburn 1993; McEa- groups of protozoa, algae, higher plants and animals. The chern & Blackburn 1996; Teng & Zakian 1999). Such conservation of telomere motifs results from their syn- alternative lengthening of telomere (ALT) mechanisms thesis by telomerase, a nucleoprotein enzyme complex have also been shown to occur in rare cases of human that adds oligonucleotide units to the telomere by reverse telomerase-negative tumours and in vitro immortalized transcription. This system is considered to be evol- cell-lines (Bryan et al. 1997). In relation to ALT, telomeric utionarily ancient, as shown by homology between cata- loops observed in mammals (see Griffith et al. 1999), lytic (protein) subunits of telomerases in different protozoa (see Murti & Prescott 1999; Munoz-Jordan et organisms, as well as by their similarity to viral reverse al. 2001) and recently in plants (J. D. Griffith, personal transcriptases. communication) could well serve, not only as the protec- The first exceptions noted to this ‘telomerase totality’ tive telomere capping structures, but also as substrates for were Drosophila and other insects. Drosophila species use a rolling circle gene conversion. strategy involving retrotransposition of HeT-A and TART In plants, the absence of Arabidopsis-type telomere sequences to chromosome ends (Biessmann et al. 1990; (TTTAGGG) was first observed in Alliaceae species Casacuberta & Pardue 2003), whereas in Chironomus n (notably Allium) and it was suggested that the chromo- species and Anopheles gambiae, telomeric DNA is formed somes may be terminated by satellite repeats, ribosomal by blocks of satellite repeat sequences that are probably DNA (rDNA) repeats or mobile elements (Fuchs et al. extended by gene conversion (see Biessmann et al. 2002 1995; Pich et al. 1996; Pich & Schubert 1998). The list for review). These sequences are more typical of subtel- of plants ‘lacking’ typical plant telomeres was then omeric regions in organisms with telomeres maintained by extended to include Aloe species (family Asphodelaceae; telomerase. The second group of exceptions were found in Adams et al. 2000) in which the Arabidopsis-type telomeric yeasts, which possess irregular sequences at the telomeres. sequence is apparently replaced by the human-type These yeasts have survived mutations in the telomerase- sequence (TTAGGG)n (Weiss & Scherthan 2002). The lack of Arabidopsis-type telomeric sequence has since been demonstrated in 16 other species from 12 families of * Author for correspondence ([email protected]). Asparagales (Adams et al. 2001). In phylogenetic analyses Proc. R. Soc. Lond. B (2003) 270, 1893–1904 1893 2003 The Royal Society DOI 10.1098/rspb.2003.2446 1894 E. Sy´korova´ and others Telomere variability in Asparagales telomere telomerase ants of the minisatellite repeat as found as the consensus analysis assay sequence in vertebrates (including humans) (TTAGGG)n, Agapanthaceae T +6 Tetrahymena (TTGGGG)n, Oxytricha (TTTTGGGG)n, + Amaryllidaceae T 6 Bombyx (TTAGG)n, Chlamydomonas (TTTTAGGG)n and Ascaris (TTAGGC) . These sequence motifs were Alliaceae T – n chosen for their sequence similarity to the Arabidopsis telo- meric sequence, and we presumed that the simplest hypo- + Agavaceae T 6 thetical event resulting in telomeric change to a different minisatellite repeat would be a mutation in the template Hyacinthaceae T +6 replacement of Aphyllanthaceae T region of telomerase. Arabidopsis- We demonstrate that in most species investigated by Themidaceae type telomere slot-blot hybridization the telomere consensus motif of sequence Asparagaceae T +6 Arabidopsis is replaced by that typical of humans or by a Ruscaceae T +6 mixture of the Arabidopsis-, human- and Tetrahymena-type Laxmanniaceae T motifs. To answer the question as to whether the human Asphodelaceae T +6 motif, detected in situ on chromosome ends of many Aspa- Xanthorrhoeaceae T ragales, is synthesized by telomerase and thus constitutes Hemerocallidaceae T +6 the ‘true’ telomere, the telomerase repeat amplification Xeronemataceae T Iridaceae T +6 protocol (TRAP) was performed, and the products Doryanthaceae P sequenced. The results were unambiguously positive in Tecophilaeaceae P sampled Asparagales species, except for Allium cepa,in Ixioliriaceae which no activity was detected. We also show that the lack Boryaceae of telomerase activity in A. cepa is not due to inhibition Asteliaceae T of the TRAP assay. Hypoxidaceae T Lanariaceae Blandfordiaceae T Orchidaceae P +7 2. MATERIAL AND METHODS Commelinales T (a) Plant material Zingiberales The sources of plants used to extract total genomic DNA for Liliales P slot-blot analyses are given in figures 2–4. Control genomic Pandanales DNA for these experiments were Silene latifolia (Caryophilaceae; Institute of Biophysics, Czech Republic), Nicotiana sylvestris (Solanaceae, Queen Mary University of London, UK), A. cepa Figure 1. Phylogenetic tree of Asparagales (Fay et al. 2000). cv. Ailsa Craig (Alliaceae; Royal Botanic Gardens, Kew, UK; Arrow shows the node at which the Arabidopsis-type telomere RBGK), Homo sapiens DNA (Cambio UK Ltd) and Bombyx sequences were substituted (considered as lost by Adams et al. 2001). T denotes that slot-blot analyses are presented mori, a gift of Frantisˇek Marec (Institute of Entomology, Czech ˇ here; P denotes additional families studied by Adams et al. Acad. Sci., Ceske´ Budeˇjovice, Czech Republic). (2001); ϩ indicates that the TRAP assay generated a For FISH experiments, vigorously growing root tips were product; the subscript 7 or 6 denotes the periodicity in base obtained from pot-grown plants of the following: Ruscus pairs of the TRAP product; Ϫ indicates no TRAP products aculeatus (Ruscaceae), Lycoris squamigera (Amaryllidaceae), and generated. Ornithogalum umbellatum (Hyacinthaceae; all grown at Royal Botanic Gardens, Kew); Ornithogalum virens (Hyacinthaceae; Chelsea Physic Gardens, London, UK); Bowiea volubilis (Fay et al. 2000), these species cluster in a clade within (Hyacinthaceae) and Iris versicolor × I. virginica (Iridaceae; Asparagales, thereby indicating that the Arabidopsis-type Queen Mary University of London). telomeric sequence was lost in a single evolutionary event For telomerase activity assays (TRAP assays), the following ca.80–90 Myr ago (figure 1). More recently, Sykorova et plants were used. al. (2003) showed that the Arabidopsis-type telomere was also absent in some Cestrum species (family Solanaceae), (i) Harvested seedlings of A. cepa cv. Stuttgarter Riesen although the minisatellite sequences were present at inter- (Alliaceae; Semo Smrzˇice, Czech Republic), Asparagus stitial locations. officinalis (Asparagaceae; commercial cultivar), Gennaria These data raise questions as to what sequences have chaplinii (RBGK 1986-5342; Amaryllidaceae), Galtonia come to replace the Arabidopsis-type consensus sequence candicans (RBGK 1969-19589; Hyacinthaceae), and how do the new sequences function as telomeres. Agapanthus umbellatus
Recommended publications
  • (35-22) 1392( Generic Endemism in South-West Asia: an Overview
    رﺳﺘﻨﻴﻬﺎ Rostaniha 14(1): 22-35 (2013) (1392 22) 35- :( 14)1 Generic endemism in South-West Asia: an overview Received: 26.02.2013 / Accepted: 09.03.2013 F. Sales : Associate Prof., Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3001-456 Coimbra, Portugal ([email protected]) I.C. Hedge: Honorary Associate, Royal Botanic Garden Edinburgh, EH3 5LR, Scotland, U.K. ([email protected]) Abstract A provisional list of all the endemic vascular plant genera in SW Asia is presented. The area, here defined to include Turkey, the Caucasus, N Iraq, Iran, Afghanistan and adjacent parts of Pakistan and Central Asia, has 161 genera restricted to it. By far, the greatest numbers of the endemic genera are in Apiaceae , Brassicaceae and Asteraceae ; many are morphologically isolated and occur at random throughout the area. Non-endemic genera with relevant distributions in the area are also discussed, several having a major concentration in Central Asia/Afghanistan and radiate westwards from there reaching a limit in SE Turkey/N Iraq. Also in these and other non-endemic genera, there are many species confined to the west (Turkey) or the east (Afghanistan) but very few are distributed throughout. The paper attempts to provide a framework for future research. It draws attention to the need for a more precise terminology in discussing phytochoria and questions the validity of many currently widely used terms including Irano-Turanian. Keywords: Central Asia, endemism, Irano-Turanian, phytogeography Introduction “L’Orient” of Boissier covered: (1) Greece and its islands and European Turkey; (2) Crimea, Transcaucasus and Caucasus; (3) Egypt to the first cataracts and the Arabian Peninsula till the line of the tropics; (4) Asia Minor, Armenia, Syria and Mesopotamia; (5) Persia, Afghanistan and Baluchistan and (6) S Turkestan to the line cutting the Aral Sea in two.
    [Show full text]
  • Partial Flora Survey Rottnest Island Golf Course
    PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge
    [Show full text]
  • View .Pdf of This Issue
    The Hardy Orchid Society Newsletter No. 21 July 2001 The Hardy Orchid Society Committee is… President: Richard M Bateman Vice-Presidents: Paul Harcourt Davies and Norman Heywood Chairman: Richard Manuel, Wye View Cottage, Leys Hill, Ross-on-Wye, Herefordshire, HR9 5QU Secretary: Sarah Marks, 83 Ladysmith, East Gomeldon, Salisbury, Wilts, SP4 6LE Treasurer: Tony Beresford, Pound Farm, Wearne, Langport, Somerset, TA10 0QJ Membership Secretary: Nick Storer, 17 Orchard Close, Lymm, Cheshire, WA13 9HH Show Secretary: Doreen Webster, 25 Highfields Drive, Loughborough, Leics, LE11 3JS Newsletter Editor: Moira Tarrant, Bumby’s, Fox Rd., Mashbury, Chelmsford, CM1 4TJ Meetings Secretary: Colin Clay, 14 Cromwell Place, Lighthorne Heath, Leamington Spa, CV33 9TG Ordinary Member (publicity): Simon Tarrant, Bumby’s, Fox Rd., Mashbury, Chelmsford, CM1 4TJ Ordinary Member (Newsletter Dist.): Bill Temple, Primrose Cottage, Hanney Rd., Ste- venton, Oxon, OX13 6AP Ordinary Member (Seed & Fungus Bank): Ted Weeks, 74 Over Lane, Almondsbury, Bristol, BS32 4BT Co-opted Member (BOC Rep.): Richard Nicol, 1364 Evesham Rd., Astwood Bank, Red- ditch, Worcs, B96 6BD Contents P.3 From the New President, Richard Bateman P.5 Report of the 9th AGM of the Hardy Orchid Society P.7 Publicity Posters, Simon Tarrant P.8 HELP!, Richard Manuel P.8 HOS Plant Show 2001, Tony Hughes P.10 Does DNA reveal All about the Evolution of Terrestrial Orchids? Part 3, Richard Bateman P.14 Getting Started - the Basics of Hardy Orchid Cultivation, Alan Dash P.20 Chemical Warfare, Richard Manuel P.21 AGS Summer South Show - Silver Award, Carol Dash P.22 Seed and Fungus Bank, Ted Weeks Colour Insert between Pages 12 and 13 Cover illustration: Serapias lingua by Carol Dash HOS Newsletter 21, July 2001 From the New President of the HOS Richard Bateman I am of course delighted to accept the Presidency of the Hardy Orchid Society.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Show Schedules 2012 Ver Finale
    119. 1 pan rock plant native to the Southern Hemisphere 120. 1 pan dwarf shurb THE SCOTTISH ROCK GARDEN CLUB 121. 1 pan rock plant raised from seed by the exhibitor. Date of sowing to be stated. Botanical notes permitted, AGS note 23(e) SECTION III Open to Amateur Members of AGS and SRGC who have not won an AGS Bronze Merit Medal or more than ten First Prizes at Shows run by either Society prior to 1st January 2011. Pan size not to exceed 19 cm outside diameter 130. 3 pans rock plants, distinct 131. 1 pan rock plant in flower 132. 1 pan Gentiana 133. 1 pan Cyclamen 134. 1 pan bulbous plant 135. 1 pan rock plant native to the Southern Hemisphere 136. 1 pan rock plant native to the Northern Hemisphere 137. 1 pan rock plant for foliage effect 138. 1 pan dwarf shrub or conifer 139. 1 pan rock plant. For exhibitors who have never won a first prize at an AGS or SRGC National show SHOW SCHEDULES 2012 DUNBLANE EARLY BULB DISPLAY 18th February* BLACKPOOL SHOW 17th March* STIRLING SHOW 24th March† New Location - Show this Year is in KINCARDINE NORTHUMBERLAND 40th ANNIVERSARY SHOW, HEXHAM 31st March EDINBURGH & THE LOTHIANS SHOW 14th April* PERTH SHOW 21st April HIGHLAND SHOW, NAIRN 28th April GLASGOW SHOW 5th May* ABERDEEN SHOW 19th May* GARDENING SCOTLAND (Joint Rock Only) 2nd June* LATE BULB DISPLAY, RBGE 8th September DISCUSSION WEEKEND, DUMFRIES 29th - 30th September NEWCASTLE SHOW 13th October* AGM 10th November† *Joint Rock Garden Plant Committee meetings 48 †Photographic/Art Competition SHOWS 2012 SHOW RULES 1.
    [Show full text]
  • 1 the Global Flower Bulb Industry
    1 The Global Flower Bulb Industry: Production, Utilization, Research Maarten Benschop Hobaho Testcentrum Hillegom, The Netherlands Rina Kamenetsky Department of Ornamental Horticulture Agricultural Research Organization The Volcani Center Bet Dagan 50250, Israel Marcel Le Nard Institut National de la Recherche Agronomique 29260 Ploudaniel, France Hiroshi Okubo Laboratory of Horticultural Science Kyushu University 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan August De Hertogh Department of Horticultural Science North Carolina State University Raleigh, NC 29565-7609, USA COPYRIGHTED MATERIAL I. INTRODUCTION II. HISTORICAL PERSPECTIVES III. GLOBALIZATION OF THE WORLD FLOWER BULB INDUSTRY A. Utilization and Development of Expanded Markets Horticultural Reviews, Volume 36 Edited by Jules Janick Copyright Ó 2010 Wiley-Blackwell. 1 2 M. BENSCHOP, R. KAMENETSKY, M. LE NARD, H. OKUBO, AND A. DE HERTOGH B. Introduction of New Crops C. International Conventions IV. MAJOR AREAS OF RESEARCH A. Plant Breeding and Genetics 1. Breeders’ Right and Variety Registration 2. Hortus Bulborum: A Germplasm Repository 3. Gladiolus 4. Hyacinthus 5. Iris (Bulbous) 6. Lilium 7. Narcissus 8. Tulipa 9. Other Genera B. Physiology 1. Bulb Production 2. Bulb Forcing and the Flowering Process 3. Morpho- and Physiological Aspects of Florogenesis 4. Molecular Aspects of Florogenesis C. Pests, Physiological Disorders, and Plant Growth Regulators 1. General Aspects for Best Management Practices 2. Diseases of Ornamental Geophytes 3. Insects of Ornamental Geophytes 4. Physiological Disorders of Ornamental Geophytes 5. Exogenous Plant Growth Regulators (PGR) D. Other Research Areas 1. Specialized Facilities and Equipment for Flower Bulbs52 2. Transportation of Flower Bulbs 3. Forcing and Greenhouse Technology V. MAJOR FLOWER BULB ORGANIZATIONS A.
    [Show full text]
  • Dyuhei Sato Division of Genetics, Bot. Inst. Faculty of Science, Tokyo
    ANALYSIS OF THE KARYOTYPES IN YUCCA, A GA VE AND THE RELATED GENERA WITH SPECIAL REFERENCE TO THE PHYLOGENETIC SIGNIFICANCEI~ Dyuhei SATo Divisionof Genetics, Bot. Inst. Faculty of Science, Tokyo Imperial University McKelvey and Sax (2933) have called attention to the existence of taxonomic and cytological similarities of the genera Yucca, Hesperoyucca, Gleistvucca,Hesperoaloe and Samuela of the Liliaceae with the genera Agave and Fourcroya which belong to a related family, Amaryllidaceae. Wh.itaker (1934) also has reported that Polianhes and Fourcroya have exactly the same chromosome constitution as the Yucca-Abave karyotype (5 long and 25 short chromosomes) (Figs. 1, 2). These observations when considered in respect to taxonomic resemblances, seem to indicate that the genera mentioned above are more closely related than it is shown by their classifica- tion into distinct families. Whitaker also has remarked that Dasylirion (2n=38) and ATolina(2n=36) in Yucceae and Doryanthes (2n=36) in Agavoideae are of different karyotypes from the Yucca-Agave type. In the present work an analysis of the karyotypes in Liliaceous plants has been attempted and several karyotypes have been found in Scilloideae. Eucornis and Carassia have been selected with the purpose of discovering a possible connecting link between these genera and the Yucca-Agave group. In the present paper an analysis of the karyotypes of the following species is given. LILIACEAE Scilloideae 211 Fig. Euconis undulata 60=8L+8M+44S (4b)2) 3 Euconsispallidi ora 60=8L+8M+44S (4b) 4 Eucomispunctata 60=8L±8M+44S (4b) 5 Camassiaescrema 30=6L+24S (2b) 6 Yucceae Yuccafilamentosa 30 60=1OL+50S (2b) 1, 7 Yuccarecurvifolia 30 60=1OL+50S (2b) 2, 8 Yuccaaloifolia 60=1OL+50S (2b) 9 „ var.
    [Show full text]
  • Ecosystems Mario V
    Ecosystems Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, Cristina Branquinho, Jean-Claude Dutay, Monia El Bour, Frédéric Médail, Meryem Mojtahid, et al. To cite this version: Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, et al.. Ecosystems. Cramer W, Guiot J, Marini K. Climate and Environmental Change in the Mediterranean Basin -Current Situation and Risks for the Future, Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, pp.323-468, 2021, ISBN: 978-2-9577416-0-1. hal-03210122 HAL Id: hal-03210122 https://hal-amu.archives-ouvertes.fr/hal-03210122 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future First Mediterranean Assessment Report (MAR1) Chapter 4 Ecosystems Coordinating Lead Authors: Mario V. Balzan (Malta), Abed El Rahman Hassoun (Lebanon) Lead Authors: Najet Aroua (Algeria), Virginie Baldy (France), Magda Bou Dagher (Lebanon), Cristina Branquinho (Portugal), Jean-Claude Dutay (France), Monia El Bour (Tunisia), Frédéric Médail (France), Meryem Mojtahid (Morocco/France), Alejandra Morán-Ordóñez (Spain), Pier Paolo Roggero (Italy), Sergio Rossi Heras (Italy), Bertrand Schatz (France), Ioannis N.
    [Show full text]
  • Circumscribing Genera in the European Orchid Flora: a Subjective
    Ber. Arbeitskrs. Heim. Orchid. Beiheft 8; 2012: 94 - 126 Circumscribing genera in the European orchid lora: a subjective critique of recent contributions Richard M. BATEMAN Keywords: Anacamptis, Androrchis, classiication, evolutionary tree, genus circumscription, monophyly, orchid, Orchidinae, Orchis, phylogeny, taxonomy. Zusammenfassung/Summary: BATEMAN , R. M. (2012): Circumscribing genera in the European orchid lora: a subjective critique of recent contributions. – Ber. Arbeitskrs. Heim. Orch. Beiheft 8; 2012: 94 - 126. Die Abgrenzung von Gattungen oder anderen höheren Taxa erfolgt nach modernen Ansätzen weitestgehend auf der Rekonstruktion der Stammesgeschichte (Stamm- baum-Theorie), mit Hilfe von großen Daten-Matrizen. Wenngleich aufgrund des Fortschritts in der DNS-Sequenzierungstechnik immer mehr Merkmale in der DNS identiiziert werden, ist es mindestens genauso wichtig, die Anzahl der analysierten Planzen zu erhöhen, um genaue Zuordnungen zu erschließen. Die größere Vielfalt mathematischer Methoden zur Erstellung von Stammbäumen führt nicht gleichzeitig zu verbesserten Methoden zur Beurteilung der Stabilität der Zweige innerhalb der Stammbäume. Ein weiterer kontraproduktiver Trend ist die wachsende Tendenz, diverse Datengruppen mit einzelnen Matrizen zu verquicken, die besser einzeln analysiert würden, um festzustellen, ob sie ähnliche Schlussfolgerungen bezüglich der Verwandtschaftsverhältnisse liefern. Ein Stammbaum zur Abgrenzung höherer Taxa muss nicht so robust sein, wie ein Stammbaum, aus dem man Details des Evo- lutionsmusters
    [Show full text]
  • The Orchids of the Isle of Formentera
    Jour. Eur. Orch. 37 (4): 501 – 528. 2005. Barbara Klahr Translated by Dr.Eckhard Kiehl The Orchids of the Isle of Formentera Keywords Orchidaceae; Aceras anthropophorum, Barlia robertiana, Gennaria diphylla, Neotinea maculata, Ophrys bombyliflora, O. dyris, O. cf. fabrella, O. fusca, O. speculum, O. tenthredinifera, Orchis collina, O. fragrans, Serapias parviflora; Formentera, Pityuses, Balearic Islands; distribution; ecology; endangerment; protection. Summary Klahr, B. (2005): The orchids of Formentera.- Jour. Eur. Orch. 37 (4): 501 XXX. A short review of history and geography of Formentera is given; aspects of flora and fauna of a south mediterranean Island, survival of plants in a half-arid zone without any wells or fresh ground water. As the most southern Island of the Pityuses, Formentera belongs climatically more to Africa than to Europe. It is a very rocky eroded Island after having had a long period without agriculture. Endemic species in flora and fauna are mentioned. Wild Orchids are growing on this small Island mainly in the higher regions of the plateau La Mola and Cap de Barbaria. There is not as much pastureland as in other mediterranean countries. Ophrys and Orchis predominate.. Most areas of Formentera were explored during the whole year, also difficult to reach regions like “Torrentes” (Canyons). The period of my observation is 2002 - 2005. The Orchids are endangered as a result of the reinforced agriculture and chemical fertilizing, subsidized by the EU, and by increasing building activities. Centuries fallow agricultural land that makes very interesting biotopes will be destroyed. The orchids of Formentera are bibliographically quoted; the results are to be supplemented with four new found species and new sites.
    [Show full text]
  • Supporting Information Appendix Pliocene Reversal of Late Neogene
    1 Supporting Information Appendix 2 Pliocene reversal of late Neogene aridification 3 4 J.M.K. Sniderman, J. Woodhead, J. Hellstrom, G.J. Jordan, R.N. Drysdale, J.J. Tyler, N. 5 Porch 6 7 8 SUPPLEMENTARY MATERIALS AND METHODS 9 10 Pollen analysis. We attempted to extract fossil pollen from 81 speleothems collected from 11 16 caves from the Western Australian portion of the Nullarbor Plain. Nullarbor speleothems 12 and caves are essentially “fossil” features that appear to have been preserved by very slow 13 rates of landscape change in a semi-arid landscape. Sample collection targeted fallen, well 14 preserved speleothems in multiple caves. U-Pb dates of these speleothems (Table S3) 15 ranged from late Miocene (8.19 Ma) to Middle Pleistocene (0.41 Ma), with an average age 16 of 4.11 Ma. 17 Fossil pollen typically is present in speleothems in very low concentrations, so pollen 18 processing techniques were developed to minimize contamination by modern pollen (1), but 19 also to maximize recovery, to accommodate the highly variable organic matter content of the 20 speleothems, and to remove a clay- to fine silt-sized mineral fraction present in many 21 samples, which was resistant to cold HF and which can become electrostatically attracted to 22 pollen grains, inhibiting their identification. Stalagmite and flowstone samples of 30-200 g 23 mass were first cut on a diamond rock saw in order to remove any obviously porous material. 24 All subsequent physical and chemical processes were carried out within a HEPA-filtered 25 exhausting clean air cabinet in an ISO Class 7 clean room.
    [Show full text]