Data Structures

Total Page:16

File Type:pdf, Size:1020Kb

Data Structures Data structures PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 17 Nov 2011 20:55:22 UTC Contents Articles Introduction 1 Data structure 1 Linked data structure 3 Succinct data structure 5 Implicit data structure 7 Compressed data structure 8 Search data structure 9 Persistent data structure 11 Concurrent data structure 15 Abstract data types 18 Abstract data type 18 List 26 Stack 29 Queue 57 Deque 60 Priority queue 63 Map 67 Bidirectional map 70 Multimap 71 Set 72 Tree 76 Arrays 79 Array data structure 79 Row-major order 84 Dope vector 86 Iliffe vector 87 Dynamic array 88 Hashed array tree 91 Gap buffer 92 Circular buffer 94 Sparse array 109 Bit array 110 Bitboard 115 Parallel array 119 Lookup table 121 Lists 127 Linked list 127 XOR linked list 143 Unrolled linked list 145 VList 147 Skip list 149 Self-organizing list 154 Binary trees 158 Binary tree 158 Binary search tree 166 Self-balancing binary search tree 176 Tree rotation 178 Weight-balanced tree 181 Threaded binary tree 182 AVL tree 188 Red-black tree 192 AA tree 207 Scapegoat tree 212 Splay tree 216 T-tree 230 Rope 233 Top Trees 238 Tango Trees 242 van Emde Boas tree 264 Cartesian tree 268 Treap 273 B-trees 276 B-tree 276 B+ tree 287 Dancing tree 291 2-3 tree 292 2-3-4 tree 293 Queaps 295 Fusion tree 299 Bx-tree 299 Heaps 303 Heap 303 Binary heap 305 Binomial heap 311 Fibonacci heap 316 2-3 heap 321 Pairing heap 321 Beap 324 Leftist tree 325 Skew heap 328 Soft heap 331 d-ary heap 333 Tries 335 Trie 335 Radix tree 342 Suffix tree 344 Suffix array 349 Compressed suffix array 352 FM-index 353 Generalised suffix tree 353 B-trie 355 Judy array 355 Directed acyclic word graph 357 Multiway trees 359 Ternary search tree 359 And–or tree 360 (a,b)-tree 362 Link/cut tree 363 SPQR tree 363 Spaghetti stack 366 Disjoint-set data structure 367 Space-partitioning trees 371 Space partitioning 371 Binary space partitioning 372 Segment tree 377 Interval tree 380 Range tree 385 Bin 386 k-d tree 388 Implicit k-d tree 395 min/max kd-tree 398 Adaptive k-d tree 399 Quadtree 399 Octree 402 Linear octrees 404 Z-order 404 UB-tree 409 R-tree 409 R+ tree 415 R* tree 416 Hilbert R-tree 419 X-tree 426 Metric tree 426 vP-tree 427 BK-tree 428 Hashes 429 Hash table 429 Hash function 442 Open addressing 450 Lazy deletion 453 Linear probing 453 Quadratic probing 454 Double hashing 458 Cuckoo hashing 459 Coalesced hashing 463 Perfect hash function 466 Universal hashing 468 Linear hashing 473 Extendible hashing 474 2-choice hashing 480 Pearson hashing 480 Fowler–Noll–Vo hash function 481 Bitstate hashing 483 Bloom filter 483 Locality preserving hashing 494 Morton number 495 Zobrist hashing 500 Rolling hash 501 Hash list 503 Hash tree 504 Prefix hash tree 506 Hash trie 506 Hash array mapped trie 507 Distributed hash table 508 Consistent hashing 513 Stable hashing 515 Koorde 515 Graphs 518 Graph 518 Adjacency list 520 Adjacency matrix 522 And-inverter graph 525 Binary decision diagram 527 Binary moment diagram 531 Zero-suppressed decision diagram 533 Propositional directed acyclic graph 534 Graph-structured stack 535 Scene graph 536 Appendix 541 Big O notation 541 Amortized analysis 551 Locality of reference 553 Standard Template Library 556 References Article Sources and Contributors 566 Image Sources, Licenses and Contributors 575 Article Licenses License 580 1 Introduction Data structure In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently.[1] [2] Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers. Data structures are used in almost every program or software system. Data structures provide a means to manage huge amounts of data efficiently, such as large databases and internet indexing services. Usually, efficient data structures are a key to designing efficient algorithms. Some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design. Overview • An array stores a number of elements of the same type in a specific order. They are accessed using an integer to specify which element is required (although the elements may be of almost any type). Arrays may be fixed-length or expandable. • Record (also called tuple or struct) Records are among the simplest data structures. A record is a value that contains other values, typically in fixed number and sequence and typically indexed by names. The elements of records are usually called fields or members. • A hash or dictionary or map is a more flexible variation on a record, in which name-value pairs can be added and deleted freely. • Union. A union type definition will specify which of a number of permitted primitive types may be stored in its instances, e.g. "float or long integer". Contrast with a record, which could be defined to contain a float and an integer; whereas, in a union, there is only one value at a time. • A tagged union (also called a variant, variant record, discriminated union, or disjoint union) contains an additional field indicating its current type, for enhanced type safety. • A set is an abstract data structure that can store certain values, without any particular order, and no repeated values. Values themselves are not retrieved from sets, rather one tests a value for membership to obtain a boolean "in" or "not in". • An object contains a number of data fields, like a record, and also a number of program code fragments for accessing or modifying them. Data structures not containing code, like those above, are called plain old data structure. Many others are possible, but they tend to be further variations and compounds of the above. Basic principles Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address—a bit string that can be itself stored in memory and manipulated by the program. Thus the record and array data structures are based on computing the addresses of data items with arithmetic operations; while the linked data structures are based on storing addresses of data items within the structure itself. Many data structures use both principles, sometimes combined in non-trivial ways (as in XOR linking) Data structure 2 The implementation of a data structure usually requires writing a set of procedures that create and manipulate instances of that structure. The efficiency of a data structure cannot be analyzed separately from those operations. This observation motivates the theoretical concept of an abstract data type, a data structure that is defined indirectly by the operations that may be performed on it, and the mathematical properties of those operations (including their space and time cost). Language support Most assembly languages and some low-level languages, such as BCPL, lack support for data structures. Many high-level programming languages, and some higher-level assembly languages, such as MASM, on the other hand, have special syntax or other built-in support for certain data structures, such as vectors (one-dimensional arrays) in the C language or multi-dimensional arrays in Pascal. Most programming languages feature some sorts of library mechanism that allows data structure implementations to be reused by different programs. Modern languages usually come with standard libraries that implement the most common data structures. Examples are the C++ Standard Template Library, the Java Collections Framework, and Microsoft's .NET Framework. Modern languages also generally support modular programming, the separation between the interface of a library module and its implementation. Some provide opaque data types that allow clients to hide implementation details. Object-oriented programming languages, such as C++, Java and .NET Framework use classes for this purpose. Many known data structures have concurrent versions that allow multiple computing threads to access the data structure simultaneously. References [1] Paul E. Black (ed.), entry for data structure in Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. 15 December 2004. Online version (http:/ / www. itl. nist. gov/ div897/ sqg/ dads/ HTML/ datastructur. html) Accessed May 21, 2009. [2] Entry data structure in the Encyclopædia Britannica (2009) Online entry (http:/ / www. britannica. com/ EBchecked/ topic/ 152190/ data-structure) accessed on May 21, 2009. Further readings • Peter Brass, Advanced Data Structures, Cambridge University Press, 2008. • Donald Knuth, The Art of Computer Programming, vol. 1. Addison-Wesley, 3rd edition, 1997. • Dinesh Mehta and Sartaj Sahni Handbook of Data Structures and Applications, Chapman and Hall/CRC Press, 2007. • Niklaus Wirth, Algorithms and Data Structures, Prentice Hall, 1985. External links • UC Berkeley video course on data structures (http:/ / academicearth. org/ courses/ data-structures) • Descriptions (http:/ / nist. gov/ dads/ ) from the Dictionary of Algorithms and Data Structures • CSE.unr.edu (http:/ / www. cse. unr. edu/ ~bebis/ CS308/ ) • Data structures course with animations (http:/ / www. cs. auckland. ac. nz/ software/ AlgAnim/ ds_ToC. html) • Data structure tutorials with animations (http:/ / courses. cs. vt. edu/ ~csonline/ DataStructures/ Lessons/ index. html) • An Examination of Data Structures from .NET perspective (http:/ / msdn. microsoft. com/ en-us/ library/ aa289148(VS. 71). aspx) • Schaffer, C. Data Structures and Algorithm Analysis (http:/ / people.
Recommended publications
  • Trees • Binary Trees • Newer Types of Tree Structures • M-Ary Trees
    Data Organization and Processing Hierarchical Indexing (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza 1 Outline • Background • prefix tree • graphs • … • search trees • binary trees • Newer types of tree structures • m-ary trees • Typical tree type structures • B-tree • B+-tree • B*-tree 2 Motivation • Similarly as in hashing, the motivation is to find record(s) given a query key using only a few operations • unlike hashing, trees allow to retrieve set of records with keys from given range • Tree structures use “clustering” to efficiently filter out non relevant records from the data set • Tree-based indexes practically implement the index file data organization • for each search key, an indexing structure can be maintained 3 Drawbacks of Index(-Sequential) Organization • Static nature • when inserting a record at the beginning of the file, the whole index needs to be rebuilt • an overflow handling policy can be applied → the performance degrades as the file grows • reorganization can take a lot of time, especially for large tables • not possible for online transactional processing (OLTP) scenarios (as opposed to OLAP – online analytical processing) where many insertions/deletions occur 4 Tree Indexes • Most common dynamic indexing structure for external memory • When inserting/deleting into/from the primary file, the indexing structure(s) residing in the secondary file is modified to accommodate the new key • The modification of a tree is implemented by splitting/merging nodes • Used not only in databases • NTFS directory structure
    [Show full text]
  • Programming for Engineers Pointers in C Programming: Part 02
    Programming For Engineers Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff1, Ahmad Fakhri Ab. Nasir2 Faculty of Manufacturing Engineering [email protected], [email protected] PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 0.0 Chapter’s Information • Expected Outcomes – To further use pointers in C programming • Contents 1.0 Pointer and Array 2.0 Pointer and String 3.0 Pointer and dynamic memory allocation PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array • We will review array data type first and later we will relate array with pointer. • Previously, we learn about basic data types such as integer, character and floating numbers. In C programming language, if we have 5 test scores and would like to average the scores, we may code in the following way. PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array • This program is manageable if the scores are only 5. What should we do if we have 100,000 scores? In such case, we need an efficient way to represent a collection of similar data type1. In C programming, we usually use array. • Array is a fixed-size sequence of elements of the same data type.1 • In C programming, we declare an array like the following statement: PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab.
    [Show full text]
  • Curriculum for Second Year of Computer Engineering (2019 Course) (With Effect from 2020-21)
    Faculty of Science and Technology Savitribai Phule Pune University Maharashtra, India Curriculum for Second Year of Computer Engineering (2019 Course) (With effect from 2020-21) www.unipune.ac.in Savitribai Phule Pune University Savitribai Phule Pune University Bachelor of Computer Engineering Program Outcomes (PO) Learners are expected to know and be able to– PO1 Engineering Apply the knowledge of mathematics, science, Engineering fundamentals, knowledge and an Engineering specialization to the solution of complex Engineering problems PO2 Problem analysis Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences PO3 Design / Development Design solutions for complex Engineering problems and design system of Solutions components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations PO4 Conduct Use research-based knowledge and research methods including design of Investigations of experiments, analysis and interpretation of data, and synthesis of the Complex Problems information to provide valid conclusions. PO5 Modern Tool Usage Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations PO6 The Engineer and Apply reasoning informed by
    [Show full text]
  • C Programming: Data Structures and Algorithms
    C Programming: Data Structures and Algorithms An introduction to elementary programming concepts in C Jack Straub, Instructor Version 2.07 DRAFT C Programming: Data Structures and Algorithms, Version 2.07 DRAFT C Programming: Data Structures and Algorithms Version 2.07 DRAFT Copyright © 1996 through 2006 by Jack Straub ii 08/12/08 C Programming: Data Structures and Algorithms, Version 2.07 DRAFT Table of Contents COURSE OVERVIEW ........................................................................................ IX 1. BASICS.................................................................................................... 13 1.1 Objectives ...................................................................................................................................... 13 1.2 Typedef .......................................................................................................................................... 13 1.2.1 Typedef and Portability ............................................................................................................. 13 1.2.2 Typedef and Structures .............................................................................................................. 14 1.2.3 Typedef and Functions .............................................................................................................. 14 1.3 Pointers and Arrays ..................................................................................................................... 16 1.4 Dynamic Memory Allocation .....................................................................................................
    [Show full text]
  • Balanced Trees Part One
    Balanced Trees Part One Balanced Trees ● Balanced search trees are among the most useful and versatile data structures. ● Many programming languages ship with a balanced tree library. ● C++: std::map / std::set ● Java: TreeMap / TreeSet ● Many advanced data structures are layered on top of balanced trees. ● We’ll see several later in the quarter! Where We're Going ● B-Trees (Today) ● A simple type of balanced tree developed for block storage. ● Red/Black Trees (Today/Thursday) ● The canonical balanced binary search tree. ● Augmented Search Trees (Thursday) ● Adding extra information to balanced trees to supercharge the data structure. Outline for Today ● BST Review ● Refresher on basic BST concepts and runtimes. ● Overview of Red/Black Trees ● What we're building toward. ● B-Trees and 2-3-4 Trees ● Simple balanced trees, in depth. ● Intuiting Red/Black Trees ● A much better feel for red/black trees. A Quick BST Review Binary Search Trees ● A binary search tree is a binary tree with 9 the following properties: 5 13 ● Each node in the BST stores a key, and 1 6 10 14 optionally, some auxiliary information. 3 7 11 15 ● The key of every node in a BST is strictly greater than all keys 2 4 8 12 to its left and strictly smaller than all keys to its right. Binary Search Trees ● The height of a binary search tree is the 9 length of the longest path from the root to a 5 13 leaf, measured in the number of edges. 1 6 10 14 ● A tree with one node has height 0.
    [Show full text]
  • Data Structures and Algorithms Binary Heaps (S&W 2.4)
    Data structures and algorithms DAT038/TDA417, LP2 2019 Lecture 12, 2019-12-02 Binary heaps (S&W 2.4) Some slides by Sedgewick & Wayne Collections A collection is a data type that stores groups of items. stack Push, Pop linked list, resizing array queue Enqueue, Dequeue linked list, resizing array symbol table Put, Get, Delete BST, hash table, trie, TST set Add, ontains, Delete BST, hash table, trie, TST A priority queue is another kind of collection. “ Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious.” — Fred Brooks 2 Priority queues Collections. Can add and remove items. Stack. Add item; remove the item most recently added. Queue. Add item; remove the item least recently added. Min priority queue. Add item; remove the smallest item. Max priority queue. Add item; remove the largest item. return contents contents operation argument value size (unordered) (ordered) insert P 1 P P insert Q 2 P Q P Q insert E 3 P Q E E P Q remove max Q 2 P E E P insert X 3 P E X E P X insert A 4 P E X A A E P X insert M 5 P E X A M A E M P X remove max X 4 P E M A A E M P insert P 5 P E M A P A E M P P insert L 6 P E M A P L A E L M P P insert E 7 P E M A P L E A E E L M P P remove max P 6 E M A P L E A E E L M P A sequence of operations on a priority queue 3 Priority queue API Requirement.
    [Show full text]
  • Data Structure
    EDUSAT LEARNING RESOURCE MATERIAL ON DATA STRUCTURE (For 3rd Semester CSE & IT) Contributors : 1. Er. Subhanga Kishore Das, Sr. Lect CSE 2. Mrs. Pranati Pattanaik, Lect CSE 3. Mrs. Swetalina Das, Lect CA 4. Mrs Manisha Rath, Lect CA 5. Er. Dillip Kumar Mishra, Lect 6. Ms. Supriti Mohapatra, Lect 7. Ms Soma Paikaray, Lect Copy Right DTE&T,Odisha Page 1 Data Structure (Syllabus) Semester & Branch: 3rd sem CSE/IT Teachers Assessment : 10 Marks Theory: 4 Periods per Week Class Test : 20 Marks Total Periods: 60 Periods per Semester End Semester Exam : 70 Marks Examination: 3 Hours TOTAL MARKS : 100 Marks Objective : The effectiveness of implementation of any application in computer mainly depends on the that how effectively its information can be stored in the computer. For this purpose various -structures are used. This paper will expose the students to various fundamentals structures arrays, stacks, queues, trees etc. It will also expose the students to some fundamental, I/0 manipulation techniques like sorting, searching etc 1.0 INTRODUCTION: 04 1.1 Explain Data, Information, data types 1.2 Define data structure & Explain different operations 1.3 Explain Abstract data types 1.4 Discuss Algorithm & its complexity 1.5 Explain Time, space tradeoff 2.0 STRING PROCESSING 03 2.1 Explain Basic Terminology, Storing Strings 2.2 State Character Data Type, 2.3 Discuss String Operations 3.0 ARRAYS 07 3.1 Give Introduction about array, 3.2 Discuss Linear arrays, representation of linear array In memory 3.3 Explain traversing linear arrays, inserting & deleting elements 3.4 Discuss multidimensional arrays, representation of two dimensional arrays in memory (row major order & column major order), and pointers 3.5 Explain sparse matrices.
    [Show full text]
  • Full Functional Verification of Linked Data Structures
    Full Functional Verification of Linked Data Structures Karen Zee Viktor Kuncak Martin C. Rinard MIT CSAIL, Cambridge, MA, USA EPFL, I&C, Lausanne, Switzerland MIT CSAIL, Cambridge, MA, USA ∗ [email protected] viktor.kuncak@epfl.ch [email protected] Abstract 1. Introduction We present the first verification of full functional correctness for Linked data structures such as lists, trees, graphs, and hash tables a range of linked data structure implementations, including muta- are pervasive in modern software systems. But because of phenom- ble lists, trees, graphs, and hash tables. Specifically, we present the ena such as aliasing and indirection, it has been a challenge to de- use of the Jahob verification system to verify formal specifications, velop automated reasoning systems that are capable of proving im- written in classical higher-order logic, that completely capture the portant correctness properties of such data structures. desired behavior of the Java data structure implementations (with the exception of properties involving execution time and/or mem- 1.1 Background ory consumption). Given that the desired correctness properties in- In principle, standard specification and verification approaches clude intractable constructs such as quantifiers, transitive closure, should work for linked data structure implementations. But in prac- and lambda abstraction, it is a challenge to successfully prove the tice, many of the desired correctness properties involve logical generated verification conditions. constructs such transitive closure and
    [Show full text]
  • Priority Queues and Binary Heaps Chapter 6.5
    Priority Queues and Binary Heaps Chapter 6.5 1 Some animals are more equal than others • A queue is a FIFO data structure • the first element in is the first element out • which of course means the last one in is the last one out • But sometimes we want to sort of have a queue but we want to order items according to some characteristic the item has. 107 - Trees 2 Priorities • We call the ordering characteristic the priority. • When we pull something from this “queue” we always get the element with the best priority (sometimes best means lowest). • It is really common in Operating Systems to use priority to schedule when something happens. e.g. • the most important process should run before a process which isn’t so important • data off disk should be retrieved for more important processes first 107 - Trees 3 Priority Queue • A priority queue always produces the element with the best priority when queried. • You can do this in many ways • keep the list sorted • or search the list for the minimum value (if like the textbook - and Unix actually - you take the smallest value to be the best) • You should be able to estimate the Big O values for implementations like this. e.g. O(n) for choosing the minimum value of an unsorted list. • There is a clever data structure which allows all operations on a priority queue to be done in O(log n). 107 - Trees 4 Binary Heap Actually binary min heap • Shape property - a complete binary tree - all levels except the last full.
    [Show full text]
  • Advanced Data Structures
    Advanced Data Structures PETER BRASS City College of New York CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880374 © Peter Brass 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-43685-7 eBook (EBL) ISBN-13 978-0-521-88037-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xi 1 Elementary Structures 1 1.1 Stack 1 1.2 Queue 8 1.3 Double-Ended Queue 16 1.4 Dynamical Allocation of Nodes 16 1.5 Shadow Copies of Array-Based Structures 18 2 Search Trees 23 2.1 Two Models of Search Trees 23 2.2 General Properties and Transformations 26 2.3 Height of a Search Tree 29 2.4 Basic Find, Insert, and Delete 31 2.5ReturningfromLeaftoRoot35 2.6 Dealing with Nonunique Keys 37 2.7 Queries for the Keys in an Interval 38 2.8 Building Optimal Search Trees 40 2.9 Converting Trees into Lists 47 2.10
    [Show full text]
  • A Binary Decision Diagram Based Approach on Improving Probabilistic Databases Kaj Derek Van Rijn University of Twente P.O
    A Binary Decision Diagram based approach on improving Probabilistic Databases Kaj Derek van Rijn University of Twente P.O. Box 217, 7500AE Enschede The Netherlands [email protected] ABSTRACT to be insufficient [5]. This research hopes to come up with This research focusses on improving Binary Decision Di- algorithms that can create, evaluate and perform logical agram algorithms in the scope of probabilistic databases. operations on BDDs in a more efficient way. The driving factor is to create probabilistic databases that scale, the first order logic formulae generated when re- 2. BACKGROUND trieving data from these databases create a bottleneck 2.1 Probabilistic Databases in the scalability in the number of random variables. It Many real world databases contain uncertainty in correct- is believed that Binary Decision Diagrams are capable ness of the data, probabilistic databases deal with such of manipulating these formulae in a more scalable way. uncertainty. We assign probability values (between 0 and This research studies the complexity of existing BDD al- 1) to a group of entries in the database, the probabilities gorithms with regards to characteristics such as the depth in this group add to one. For example, entry A and B have and breadth of a tree, the scale and other metrics. These probability values of 0.4 and 0.6 respectively. Probabilistic results will be evaluated and compared to the charac- databases keep track of multiple states and play out dif- teristics of equations typically produced by probabilistic ferent scenarios, a query will not just return a single right databases.
    [Show full text]
  • Data Structure Invariants
    Lecture 8 Notes Data Structures 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, André Platzer, Rob Simmons 1 Introduction In this lecture we introduce the idea of imperative data structures. So far, the only interfaces we’ve used carefully are pixels and string bundles. Both of these interfaces had the property that, once we created a pixel or a string bundle, we weren’t interested in changing its contents. In this lecture, we’ll talk about an interface that mimics the arrays that are primitively available in C0. To implement this interface, we’ll need to round out our discussion of types in C0 by discussing pointers and structs, two great tastes that go great together. We will discuss using contracts to ensure that pointer accesses are safe. Relating this to our learning goals, we have Computational Thinking: We illustrate the power of abstraction by con- sidering both the client-side and library-side of the interface to a data structure. Algorithms and Data Structures: The abstract arrays will be one of our first examples of abstract datatypes. Programming: Introduction of structs and pointers, use and design of in- terfaces. 2 Structs So far in this course, we’ve worked with five different C0 types — int, bool, char, string, and arrays t[] (there is a array type t[] for every type t). The character, Boolean and integer values that we manipulate, store LECTURE NOTES Data Structures L8.2 locally, and pass to functions are just the values themselves. For arrays (and strings), the things we store in assignable variables or pass to functions are addresses, references to the place where the data stored in the array can be accessed.
    [Show full text]