Balanced Trees Part One

Total Page:16

File Type:pdf, Size:1020Kb

Balanced Trees Part One Balanced Trees Part One Balanced Trees ● Balanced search trees are among the most useful and versatile data structures. ● Many programming languages ship with a balanced tree library. ● C++: std::map / std::set ● Java: TreeMap / TreeSet ● Many advanced data structures are layered on top of balanced trees. ● We’ll see several later in the quarter! Where We're Going ● B-Trees (Today) ● A simple type of balanced tree developed for block storage. ● Red/Black Trees (Today/Thursday) ● The canonical balanced binary search tree. ● Augmented Search Trees (Thursday) ● Adding extra information to balanced trees to supercharge the data structure. Outline for Today ● BST Review ● Refresher on basic BST concepts and runtimes. ● Overview of Red/Black Trees ● What we're building toward. ● B-Trees and 2-3-4 Trees ● Simple balanced trees, in depth. ● Intuiting Red/Black Trees ● A much better feel for red/black trees. A Quick BST Review Binary Search Trees ● A binary search tree is a binary tree with 9 the following properties: 5 13 ● Each node in the BST stores a key, and 1 6 10 14 optionally, some auxiliary information. 3 7 11 15 ● The key of every node in a BST is strictly greater than all keys 2 4 8 12 to its left and strictly smaller than all keys to its right. Binary Search Trees ● The height of a binary search tree is the 9 length of the longest path from the root to a 5 13 leaf, measured in the number of edges. 1 6 10 14 ● A tree with one node has height 0. 3 7 11 15 ● A tree with no nodes has height -1, by convention. 2 4 8 12 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Searching a BST 137 73 271 42 161 314 60 Inserting into a BST Inserting into a BST 137 73 271 42 161 314 60 Inserting into a BST 137 73 271 42 161 314 60 Inserting into a BST 137 73 271 42 161 314 60 Inserting into a BST 137 73 271 42 161 314 60 Inserting into a BST 137 73 271 42 161 314 60 Inserting into a BST 137 73 271 42 161 314 60 166 Inserting into a BST 137 73 271 42 161 314 60 166 Deleting from a BST Deleting from a BST DeleteDelete 60 60 from from this this tree, tree, then 73, and then 137. then 73, and then 137. 137 WorkWork this this out out with with a a pencil pencil and and paper,paper, and and we’ll we’ll reconvene reconvene as as a a groupgroup to to do do it it together. together. 73 271 42 161 314 60 166 Deleting from a BST 137 73 271 42 161 314 60 166 Deleting from a BST 137 73 271 42 161 314 60 166 Deleting from a BST 137 73 271 42 161 314 60 166 Deleting from a BST 137 73 271 42 161 314 60 166 Deleting from a BST 137 73 271 42 161 314 166 Deleting from a BST 137 73 271 42 161 314 CaseCase 0: 0: If If the the node node has has justjust no no children, children, just just remove it. 166 remove it. Deleting from a BST 137 73 271 42 161 314 166 Deleting from a BST 137 73 271 42 161 314 166 Deleting from a BST 137 271 42 161 314 166 Deleting from a BST 137 271 42 161 314 166 Deleting from a BST 137 42 271 161 314 166 Deleting from a BST 137 42 271 161 314 CaseCase 1: 1: If If the the node node has has justjust one one child, child, remove remove itit and and replace replace it it with with itsits child. child. 166 Deleting from a BST 137 42 271 161 314 166 Deleting from a BST 137 42 271 161 314 166 Deleting from a BST 42 271 161 314 166 Deleting from a BST 42 271 161 314 166 Deleting from a BST 42 271 161 314 166 Deleting from a BST 137 42 271 161 314 166 Deleting from a BST 137 42 271 161 314 166 Deleting from a BST 137 42 271 161 314 166 Deleting from a BST 161 42 271 161 314 166 Deleting from a BST 161 42 271 314 166 Deleting from a BST 161 42 271 166 314 Deleting from a BST 161 42 271 166 314 CaseCase 2: 2: If If the the node node has has two two children,children, find find its its inorder inorder successorsuccessor (which (which has has zero zero or or oneone child), child), replace replace the the node's node's key with its successor's key, key with its successor's key, thenthen delete delete its its successor. successor. Runtime Analysis ● The time complexity of all these operations is O(h), where h is the height of the tree. ● That’s the longest path we can take. ● In the best case, h = O(log n) and all operations take time O(log n). ● In the worst case, h = Θ(n) and some operations will take time Θ(n). ● Challenge: How do you efficiently keep the height of a tree low? A Glimpse of Red/Black Trees Red/Black Trees ● A red/black tree is a BST with the 110 following properties: ● Every node is either red or black. 107 166 ● The root is black. ● No red node has a red child. 106 161 261 ● Every root-null path in the tree passes through the same number of black nodes. 140 Red/Black Trees ● A red/black tree is a BST with the 53 following properties: ● Every node is either red or black. 31 58 ● The root is black. ● No red node has a red child. 26 41 59 97 ● Every root-null path in the tree passes through the same number of black nodes. Red/Black Trees ● A red/black tree is a BST with the 53 following properties: ● Every node is either red or black. 31 58 ● The root is black. ● No red node has a red child. 26 41 59 97 ● Every root-null path in the tree passes through the same number of black nodes. Red/Black Trees ● A red/black tree is a BST with the 5 following properties: ● Every node is either red or black. 2 7 ● The root is black. ● No red node has a red child. 1 4 8 ● Every root-null path in the tree passes through the same number of black nodes. Red/Black Trees ● A red/black tree is a BST with the 5 following properties: ● Every node is either red or black. 2 7 ● The root is black. ● No red node has a red child. 1 4 8 ● Every root-null path in the tree passes through the same number of black nodes. Red/Black Trees ● A red/black tree is a BST with the 5 following properties: ● Every node is either red or black. 2 7 ● The root is black. ● No red node has a red child. 1 4 8 ● Every root-null path in the tree passes through the same number of black nodes. Red/Black Trees ● Theorem: Any red/black tree with n nodes has height O(log n). ● We could prove this now, but there's a much simpler proof of this we'll see later on. ● Given a fixed red/black tree, lookups can be done in time O(log n). Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 13 Mutating Red/Black Trees 17 7 31 3 11 23 37 13 Mutating Red/Black Trees 17 7 31 3 11 23 37 13 Mutating Red/Black Trees 17 7 31 3 11 23 37 WhatWhat are are we we 13 supposedsupposed to to do do with with thisthis new new node? node? Mutating Red/Black Trees Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 31 3 11 23 37 Mutating Red/Black Trees 17 7 37 3 11 23 37 Mutating Red/Black Trees 17 7 37 3 11 23 Mutating Red/Black Trees 17 7 37 3 11 23 HowHow do do we we fix fix upup thethe black-heightblack-height property? property? Fixing Up Red/Black Trees ● The Good News: After doing an insertion or deletion, we can locally modify a red/black tree in time O(log n) to fix up the red/black properties. ● The Bad News: There are a lot of cases to consider and they're not trivial.
Recommended publications
  • Trees • Binary Trees • Newer Types of Tree Structures • M-Ary Trees
    Data Organization and Processing Hierarchical Indexing (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza 1 Outline • Background • prefix tree • graphs • … • search trees • binary trees • Newer types of tree structures • m-ary trees • Typical tree type structures • B-tree • B+-tree • B*-tree 2 Motivation • Similarly as in hashing, the motivation is to find record(s) given a query key using only a few operations • unlike hashing, trees allow to retrieve set of records with keys from given range • Tree structures use “clustering” to efficiently filter out non relevant records from the data set • Tree-based indexes practically implement the index file data organization • for each search key, an indexing structure can be maintained 3 Drawbacks of Index(-Sequential) Organization • Static nature • when inserting a record at the beginning of the file, the whole index needs to be rebuilt • an overflow handling policy can be applied → the performance degrades as the file grows • reorganization can take a lot of time, especially for large tables • not possible for online transactional processing (OLTP) scenarios (as opposed to OLAP – online analytical processing) where many insertions/deletions occur 4 Tree Indexes • Most common dynamic indexing structure for external memory • When inserting/deleting into/from the primary file, the indexing structure(s) residing in the secondary file is modified to accommodate the new key • The modification of a tree is implemented by splitting/merging nodes • Used not only in databases • NTFS directory structure
    [Show full text]
  • 1 Suffix Trees
    This material takes about 1.5 hours. 1 Suffix Trees Gusfield: Algorithms on Strings, Trees, and Sequences. Weiner 73 “Linear Pattern-matching algorithms” IEEE conference on automata and switching theory McCreight 76 “A space-economical suffix tree construction algorithm” JACM 23(2) 1976 Chen and Seifras 85 “Efficient and Elegegant Suffix tree construction” in Apos- tolico/Galil Combninatorial Algorithms on Words Another “search” structure, dedicated to strings. Basic problem: match a “pattern” (of length m) to “text” (of length n) • goal: decide if a given string (“pattern”) is a substring of the text • possibly created by concatenating short ones, eg newspaper • application in IR, also computational bio (DNA seqs) • if pattern avilable first, can build DFA, run in time linear in text • if text available first, can build suffix tree, run in time linear in pattern. • applications in computational bio. First idea: binary tree on strings. Inefficient because run over pattern many times. • fractional cascading? • realize only need one character at each node! Tries: • used to store dictionary of strings • trees with children indexed by “alphabet” • time to search equal length of query string • insertion ditto. • optimal, since even hashing requires this time to hash. • but better, because no “hash function” computed. • space an issue: – using array increases stroage cost by |Σ| – using binary tree on alphabet increases search time by log |Σ| 1 – ok for “const alphabet” – if really fussy, could use hash-table at each node. • size in worst case: sum of word lengths (so pretty much solves “dictionary” problem. But what about substrings? • Relevance to DNA searches • idea: trie of all n2 substrings • equivalent to trie of all n suffixes.
    [Show full text]
  • Trees: Binary Search Trees
    COMP2012H Spring 2014 Dekai Wu Binary Trees & Binary Search Trees (data structures for the dictionary ADT) Outline } Binary tree terminology } Tree traversals: preorder, inorder and postorder } Dictionary and binary search tree } Binary search tree operations } Search } min and max } Successor } Insertion } Deletion } Tree balancing issue COMP2012H (BST) Binary Tree Terminology } Go to the supplementary notes COMP2012H (BST) Linked Representation of Binary Trees } The degree of a node is the number of children it has. The degree of a tree is the maximum of its element degree. } In a binary tree, the tree degree is two data } Each node has two links left right } one to the left child of the node } one to the right child of the node Left child Right child } if no child node exists for a node, the link is set to NULL root 32 32 79 42 79 42 / 13 95 16 13 95 16 / / / / / / COMP2012H (BST) Binary Trees as Recursive Data Structures } A binary tree is either empty … Anchor or } Consists of a node called the root } Root points to two disjoint binary (sub)trees Inductive step left and right (sub)tree r left right subtree subtree COMP2012H (BST) Tree Traversal is Also Recursive (Preorder example) If the binary tree is empty then Anchor do nothing Else N: Visit the root, process data L: Traverse the left subtree Inductive/Recursive step R: Traverse the right subtree COMP2012H (BST) 3 Types of Tree Traversal } If the pointer to the node is not NULL: } Preorder: Node, Left subtree, Right subtree } Inorder: Left subtree, Node, Right subtree Inductive/Recursive step } Postorder: Left subtree, Right subtree, Node template <class T> void BinaryTree<T>::InOrder( void(*Visit)(BinaryTreeNode<T> *u), template<class T> BinaryTreeNode<T> *t) void BinaryTree<T>::PreOrder( {// Inorder traversal.
    [Show full text]
  • Q-Tree: a Multi-Attribute Based Range Query Solution for Tele-Immersive Framework
    Q-Tree: A Multi-Attribute Based Range Query Solution for Tele-Immersive Framework Md Ahsan Arefin, Md Yusuf Sarwar Uddin, Indranil Gupta, Klara Nahrstedt Department of Computer Science University of Illinois at Urbana Champaign Illinois, USA {marefin2, mduddin2, indy, klara}@illinois.edu Abstract given in a high level description which are transformed into multi-attribute composite range queries. Some of the Users and administrators of large distributed systems are examples include “which site is highly congested?”, “which frequently in need of monitoring and management of its components are not working properly?” etc. To answer the various components, data items and resources. Though there first one, the query is transformed into a multi-attribute exist several distributed query and aggregation systems, the composite range query with constrains (range of values) on clustered structure of tele-immersive interactive frameworks CPU utilization, memory overhead, stream rate, bandwidth and their time-sensitive nature and application requirements utilization, delay and packet loss rate. The later one can represent a new class of systems which poses different chal- be answered by constructing a multi-attribute range query lenges on this distributed search. Multi-attribute composite with constrains on static and dynamic characteristics of range queries are one of the key features in this class. those components. Queries can also be made by defining Queries are given in high level descriptions and then trans- different multi-attribute ranges explicitly. Another mention- formed into multi-attribute composite range queries. Design- able property of such systems is that the number of site is ing such a query engine with minimum traffic overhead, low limited due to limited display space and limited interactions, service latency, and with static and dynamic nature of large but the number of data items to store and manage can datasets, is a challenging task.
    [Show full text]
  • Heaps a Heap Is a Complete Binary Tree. a Max-Heap Is A
    Heaps Heaps 1 A heap is a complete binary tree. A max-heap is a complete binary tree in which the value in each internal node is greater than or equal to the values in the children of that node. A min-heap is defined similarly. 97 Mapping the elements of 93 84 a heap into an array is trivial: if a node is stored at 90 79 83 81 index k, then its left child is stored at index 42 55 73 21 83 2k+1 and its right child at index 2k+2 01234567891011 97 93 84 90 79 83 81 42 55 73 21 83 CS@VT Data Structures & Algorithms ©2000-2009 McQuain Building a Heap Heaps 2 The fact that a heap is a complete binary tree allows it to be efficiently represented using a simple array. Given an array of N values, a heap containing those values can be built, in situ, by simply “sifting” each internal node down to its proper location: - start with the last 73 73 internal node * - swap the current 74 81 74 * 93 internal node with its larger child, if 79 90 93 79 90 81 necessary - then follow the swapped node down 73 * 93 - continue until all * internal nodes are 90 93 90 73 done 79 74 81 79 74 81 CS@VT Data Structures & Algorithms ©2000-2009 McQuain Heap Class Interface Heaps 3 We will consider a somewhat minimal maxheap class: public class BinaryHeap<T extends Comparable<? super T>> { private static final int DEFCAP = 10; // default array size private int size; // # elems in array private T [] elems; // array of elems public BinaryHeap() { .
    [Show full text]
  • Assignment 3: Kdtree ______Due June 4, 11:59 PM
    CS106L Handout #04 Spring 2014 May 15, 2014 Assignment 3: KDTree _________________________________________________________________________________________________________ Due June 4, 11:59 PM Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the linear vector and deque, along with the associative map and set. One property common to all these containers is that they are exact. An element is either in a set or it isn't. A value either ap- pears at a particular position in a vector or it does not. For most applications, this is exactly what we want. However, in some cases we may be interested not in the question “is X in this container,” but rather “what value in the container is X most similar to?” Queries of this sort often arise in data mining, machine learning, and computational geometry. In this assignment, you will implement a special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this operation. At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen- sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol). However, a kd-tree cannot be used to store collections of other data types, such as strings. Also note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in a kd-tree must have the same dimension.
    [Show full text]
  • CSCI 333 Data Structures Binary Trees Binary Tree Example Full And
    Notes with the dark blue background CSCI 333 were prepared by the textbook author Data Structures Clifford A. Shaffer Chapter 5 Department of Computer Science 18, 20, 23, and 25 September 2002 Virginia Tech Copyright © 2000, 2001 Binary Trees Binary Tree Example A binary tree is made up of a finite set of Notation: Node, nodes that is either empty or consists of a children, edge, node called the root together with two parent, ancestor, binary trees, called the left and right descendant, path, subtrees, which are disjoint from each depth, height, level, other and from the root. leaf node, internal node, subtree. Full and Complete Binary Trees Full Binary Tree Theorem (1) Full binary tree: Each node is either a leaf or Theorem: The number of leaves in a non-empty internal node with exactly two non-empty children. full binary tree is one more than the number of internal nodes. Complete binary tree: If the height of the tree is d, then all leaves except possibly level d are Proof (by Mathematical Induction): completely full. The bottom level has all nodes to the left side. Base case: A full binary tree with 1 internal node must have two leaf nodes. Induction Hypothesis: Assume any full binary tree T containing n-1 internal nodes has n leaves. 1 Full Binary Tree Theorem (2) Full Binary Tree Corollary Induction Step: Given tree T with n internal Theorem: The number of null pointers in a nodes, pick internal node I with two leaf children. non-empty tree is one more than the Remove I’s children, call resulting tree T’.
    [Show full text]
  • Splay Trees Last Changed: January 28, 2017
    15-451/651: Design & Analysis of Algorithms January 26, 2017 Lecture #4: Splay Trees last changed: January 28, 2017 In today's lecture, we will discuss: • binary search trees in general • definition of splay trees • analysis of splay trees The analysis of splay trees uses the potential function approach we discussed in the previous lecture. It seems to be required. 1 Binary Search Trees These lecture notes assume that you have seen binary search trees (BSTs) before. They do not contain much expository or backtround material on the basics of BSTs. Binary search trees is a class of data structures where: 1. Each node stores a piece of data 2. Each node has two pointers to two other binary search trees 3. The overall structure of the pointers is a tree (there's a root, it's acyclic, and every node is reachable from the root.) Binary search trees are a way to store and update a set of items, where there is an ordering on the items. I know this is rather vague. But there is not a precise way to define the gamut of applications of search trees. In general, there are two classes of applications. Those where each item has a key value from a totally ordered universe, and those where the tree is used as an efficient way to represent an ordered list of items. Some applications of binary search trees: • Storing a set of names, and being able to lookup based on a prefix of the name. (Used in internet routers.) • Storing a path in a graph, and being able to reverse any subsection of the path in O(log n) time.
    [Show full text]
  • Tree Structures
    Tree Structures Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest o A tree is a connected digraph with these properties: . There is exactly one node (Root) with in-degree=0 . All other nodes have in-degree=1 . A leaf is a node with out-degree=0 . There is exactly one path from the root to any leaf o The degree of a tree is the maximum out-degree of the nodes in the tree. o If (X,Y) is a path: X is an ancestor of Y, and Y is a descendant of X. Root X Y CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1 Level of a node: Level 0 or 1 1 or 2 2 or 3 3 or 4 Height or depth: o The depth of a node is the number of edges from the root to the node. o The root node has depth zero o The height of a node is the number of edges from the node to the deepest leaf. o The height of a tree is a height of the root. o The height of the root is the height of the tree o Leaf nodes have height zero o A tree with only a single node (hence both a root and leaf) has depth and height zero. o An empty tree (tree with no nodes) has depth and height −1. o It is the maximum level of any node in the tree. CSci 1112 – Algorithms and Data Structures, A.
    [Show full text]
  • AVL Trees, Page 1 ' $
    CS 310 AVL Trees, Page 1 ' $ Motives of Balanced Trees Worst-case search steps #ofentries complete binary tree skewed binary tree 15 4 15 63 6 63 1023 10 1023 65535 16 65535 1,048,575 20 1048575 1,073,741,823 30 1073741823 & % CS 310 AVL Trees, Page 2 ' $ Analysis r • logx y =anumberr such that x = y ☞ log2 1024 = 10 ☞ log2 65536 = 16 ☞ log2 1048576 = 20 ☞ log2 1073741824 = 30 •bxc = an integer a such that a ≤ x dxe = an integer a such that a ≥ x ☞ b3.1416c =3 ☞ d3.1416e =4 ☞ b5c =5=d5e & % CS 310 AVL Trees, Page 3 ' $ • If a binary search tree of N nodes happens to be complete, then a search in the tree requires at most b c log2 N +1 steps. • Big-O notation: We say f(x)=O(g(x)) if f(x)isbounded by c · g(x), where c is a constant, for sufficiently large x. ☞ x2 +11x − 30 = O(x2) (consider c =2,x ≥ 6) ☞ x100 + x50 +2x = O(2x) • If a BST happens to be complete, then a search in the tree requires O(log2 N)steps. • In a linked list of N nodes, a search requires O(N)steps. & % CS 310 AVL Trees, Page 4 ' $ AVL Trees • A balanced binary search tree structure proposed by Adelson, Velksii and Landis in 1962. • In an AVL tree of N nodes, every searching, deletion or insertion operation requires only O(log2 N)steps. • AVL tree searching is exactly the same as that of the binary search tree. & % CS 310 AVL Trees, Page 5 ' $ Definition • An empty tree is balanced.
    [Show full text]
  • Binary Search Tree
    ADT Binary Search Tree! Ellen Walker! CPSC 201 Data Structures! Hiram College! Binary Search Tree! •" Value-based storage of information! –" Data is stored in order! –" Data can be retrieved by value efficiently! •" Is a binary tree! –" Everything in left subtree is < root! –" Everything in right subtree is >root! –" Both left and right subtrees are also BST#s! Operations on BST! •" Some can be inherited from binary tree! –" Constructor (for empty tree)! –" Inorder, Preorder, and Postorder traversal! •" Some must be defined ! –" Insert item! –" Delete item! –" Retrieve item! The Node<E> Class! •" Just as for a linked list, a node consists of a data part and links to successor nodes! •" The data part is a reference to type E! •" A binary tree node must have links to both its left and right subtrees! The BinaryTree<E> Class! The BinaryTree<E> Class (continued)! Overview of a Binary Search Tree! •" Binary search tree definition! –" A set of nodes T is a binary search tree if either of the following is true! •" T is empty! •" Its root has two subtrees such that each is a binary search tree and the value in the root is greater than all values of the left subtree but less than all values in the right subtree! Overview of a Binary Search Tree (continued)! Searching a Binary Tree! Class TreeSet and Interface Search Tree! BinarySearchTree Class! BST Algorithms! •" Search! •" Insert! •" Delete! •" Print values in order! –" We already know this, it#s inorder traversal! –" That#s why it#s called “in order”! Searching the Binary Tree! •" If the tree is
    [Show full text]
  • 7. Hierarchies & Trees Visualizing Topological Relations
    7. Hierarchies & Trees Visualizing topological relations Vorlesung „Informationsvisualisierung” Prof. Dr. Andreas Butz, WS 2011/12 Konzept und Basis für Folien: Thorsten Büring LMU München – Medieninformatik – Andreas Butz – Informationsvisualisierung – WS2011/12 Folie 1 Outline • Hierarchical data and tree representations • 2D Node-link diagrams – Hyperbolic Tree Browser – SpaceTree – Cheops – Degree of interest tree – 3D Node-link diagrams • Enclosure – Treemap – Ordererd Treemaps – Various examples – Voronoi treemap – 3D Treemaps • Circular visualizations • Space-filling node-link diagram LMU München – Medieninformatik – Andreas Butz – Informationsvisualisierung – WS2011/12 Folie 2 Hierarchical Data • Card et al. 1999: data repository in which data cases are related to subcases • Many data collections have an inherent hierarchical organization – Organizational Charts – Websites (approximately hierarchical) Yee et al. 2001 – File system – Family tree – OO programming • Hierarchies are usually represented as tree visual structures • Trees tend to be easier to lay out and interpret than networks (e.g. no cycles) • But: as shown in the example, networks may in some cases be visualized as a tree LMU München – Medieninformatik – Andreas Butz – Informationsvisualisierung – WS2011/12 Folie 3 Tree Representations • Two kinds of representations • Node-link diagram (see previous lecture): represent connections as edges between vertices (data cases) http://www.icann.org • Enclosure: space-filling approaches by visually nesting the hierarchy LMU
    [Show full text]