Trees • Binary Trees • Newer Types of Tree Structures • M-Ary Trees

Total Page:16

File Type:pdf, Size:1020Kb

Trees • Binary Trees • Newer Types of Tree Structures • M-Ary Trees Data Organization and Processing Hierarchical Indexing (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza 1 Outline • Background • prefix tree • graphs • … • search trees • binary trees • Newer types of tree structures • m-ary trees • Typical tree type structures • B-tree • B+-tree • B*-tree 2 Motivation • Similarly as in hashing, the motivation is to find record(s) given a query key using only a few operations • unlike hashing, trees allow to retrieve set of records with keys from given range • Tree structures use “clustering” to efficiently filter out non relevant records from the data set • Tree-based indexes practically implement the index file data organization • for each search key, an indexing structure can be maintained 3 Drawbacks of Index(-Sequential) Organization • Static nature • when inserting a record at the beginning of the file, the whole index needs to be rebuilt • an overflow handling policy can be applied → the performance degrades as the file grows • reorganization can take a lot of time, especially for large tables • not possible for online transactional processing (OLTP) scenarios (as opposed to OLAP – online analytical processing) where many insertions/deletions occur 4 Tree Indexes • Most common dynamic indexing structure for external memory • When inserting/deleting into/from the primary file, the indexing structure(s) residing in the secondary file is modified to accommodate the new key • The modification of a tree is implemented by splitting/merging nodes • Used not only in databases • NTFS directory structure is built over B+ tree 5 Trees • Undirected graph without cycles • root • we will be interested in rooted trees • is the only node without parent – root → one node designated as the root of the hierarchy → orientation • leaves • nodes without children • inner nodes • Nodes are in parent-child relation • nodes with children • every parent has a finite set of • branch descendants (children nodes) • path from a leaf to the root • from a parent an edge points to child • every child has exactly one parent 6 Tree height = 3 Root Tree Characteristics (1) Tree arity = 3 width = 1 D:0-H:3 level 0 • Tree arity/degree • maximum number of children of any node width = 2 D:1-H:1 D:1-H:2 • Node depth level 1 • the length of the simplest path (number of edges) from the root node • depth(root) = 0 D:2-H:1 width = 5 • Tree depth level 2 • maximum of node depths • Tree level D:2-H:0 • set of nodes with the same depth (distance from root) width = 2 level 3 • Level width • number of nodes at given level D:3-H:0 • Node height • number of edges on the longest downward simple path from Y to a leaf Tree depth = 3 • Tree height • height of the root node 7 Tree Characteristics (2) • Balanced (vyvážený) tree • a tree whose subtrees differ in height by no more than one and the subtrees are height-balanced as well • Unsorted tree • general tree – the descendants of a node are not sorted at all • Sorted tree • unlike general tree the order of children of each node matters • children of a node are sorted based on a given key 8 Binary Tree • Each inner node contains at • Characteristics most two child nodes (tree arity • number of nodes of a perfect = 2) binary tree of height ℎ 풉 풊 풉+ퟏ • Types #풏풐풅풆풔풑풆풓풇 = ퟐ = ퟐ − ퟏ • perfect (perfektní) binary tree – 풊=ퟎ every non-leaf node has two child nodes • number of leaf nodes of a • complete (komletní) binary tree perfect binary tree of height ℎ – full tree except for the first non- 풉 leaf level where nodes are as far left #풍풆풂풇_풏풐풅풆풔풑풆풓풇 = ퟐ as possible 9 Binary Search Tree (BST) • Binary sorted tree where • Searching a record with a key 푘 • each node is assigned a value 1. Enter the tree at the root level corresponding to one of the keys 2. Compare 푘 with the value 푣 of the • all nodes in the left subtree of a node current node 푋 correspond to keys with lower values 3. If 푘 = 푣 return the record than the value of 푋 corresponding to the current node key • all nodes in the right subtree of a 4. If 푘 < 푣 descend to the left subtree node 푋 correspond to keys with higher 5. If 푘 > 푣 descend to the right subtree values than the value of 푋 6. Repeat steps 2-5 until a leaf is reached. If the condition in step 3 is • when using BST for storing records, not met at any level, no record with the records can be stored directly in the the key 푘 is present nodes or addressed from them 10 Redundant vs. Non-Redundant BST Non-Redundant BST Redundant BST • Records stored in (addressed • Records stored in (addressed from) both inner and leaf nodes from) the leaves • Structure of inner and leaf nodes differ 8 8 4 9 4 12 2 7 9 12 2 7 9 2 4 7 8 11 Applications of Binary Trees (not related to storing data records) • Expression trees • leaves = variables • inner nodes = operands • Huffman coding • leaves = data • coding along a branch leading to give leaf = leaf’s binary representation • Query optimizers in DBMS • query can be represented by an algebraic expression which can be in turn represented by a binary tree 12 M-ary Trees (1) • Motivation • binary trees are not suitable for magnetic disks because of their height – indexing 16 items would need an index of height 4 → up to 4 disk accesses (potentially in different locations) to retrieve one of the 16 records • log2 1000 = 10 , log2 1,000,000 = 20 • But increasing arity leads to decreasing the tree height 13 M-ary Trees (2) • Generalization of binary search trees • A binary tree is a special case of an m-ary tree for 푚 = 2 • only m-ary trees with 푚 > 2 are usually considered as true m−ary trees • unlike binary tree, m-ary tree contains 풎 − ퟏ discriminators (keys) in every node • every node 푁 points to up to 풎 child nodes (subtrees) • every subtree of 푁 contains records with keys restricted by the pair of discriminators of 푁 between which the subtree is rooted • the leftmost subtree contains only records with keys having lower values than all the discriminators in 푁 • the rightmost subtree contains only records with keys having higher values than all the discriminators in 푁 14 M-ary Trees (3) 풎 = ퟒ Data could be stored directly in disk block the node as well. But it is not usual in real-world database environments. 푘1 푘2 푘3 data1 data2 data3 subtree with subtree with subtree with subtree with all keys all keys all keys all keys 푘1 < 푘 < 푘2 < 푘 < 푘 < 푘1 푘3 < 푘 푘2 푘3 15 Characteristics of M-Ary Trees (1) • Maximum number of nodes • Maximum number of • tree height ℎ records/keys 0 • 푙푒푣푒푙0 = 푚 = 1, 푙푒푣푒푙1 = • every node contains up to 푚 − 1 1 2 ℎ keys/records 푚 , 푙푒푣푒푙2 = 푚 , … 푙푒푣푒푙ℎ = 푚 ℎ 푚ℎ+1 − 1 풎풉+ퟏ − ퟏ × 푚 − 1 = 풎풉+ퟏ − ퟏ 푚 = 푚 − 1 풎 − ퟏ =0 • 푚 = 3, ℎ = 3 → #푟푒푐표푟푑푠 ≤ 34 − 1 = 80 • 푚 = 100, ℎ = 3 → #푟푒푐표푟푑푠 ≤ 1004 − 1 = 100,000,000 16 Characteristics of M-Ary Trees (2) • Minimum height • Maximum height 풏 풉 ≐ 풎 풉 = 퐥퐨퐠풎 풏 • maximum height of the tree • minimum height of the tree corresponds to the maximum corresponds to the minimum number of disk operations needed number of disk operations needed to fetch a record → search complexity to fetch a record → search complexity 푶(풏) 푶(퐥퐨퐠퐦 풏) • The challenge is to keep the complexity logarithmic, that is to keep the tree more or less balanced 17 B-tree • Bayer & McCreight, 1972 • B-tree is a sorted balanced m-ary (not binary) tree with additional constraints restricting the branching in each node thus causing the tree to be reasonably “wide” • Inserting or deleting a record in B-tree causes only local changes and not rebuilding of the whole index 18 B-tree definition (1) • B-trees are balanced m-ary trees fulfilling the following conditions: 1. The root has at least two children unless it is a leaf. 풎 2. Every inner node except of the root has at least and at most 풎 ퟐ children. 풎 3. Every node contains at least − ퟏ and at most 풎 − ퟏ (pointers ퟐ to) data records. 4. Each branch has the same length. 19 B-tree definition (2) 5. The nodes have following organization: 풑ퟎ, 풌ퟏ, 풑ퟏ, 풅ퟏ , 풌ퟐ, 풑ퟐ, 풅ퟐ , … , , 풌풏, 풑풏, 풅풏 , 풖 • where 풑ퟎ, 풑ퟏ, … , 풑풏 are pointers to the child nodes, 풌ퟏ, 풌ퟐ, … , 풌풏 are keys, 풅ퟏ, 풅ퟐ, … , 풅풏 are associated data, 풖 is unused space and the records 풌풊, 풑풊, 풅풊 are sorted in increasing order with respect to the keys and 풎 − ퟏ ≤ 풏 ≤ 풎 − ퟏ ퟐ 6. If a subtree 푼 풑풊 corresponds to the pointer 푝 then: i. ∀풌 ∈ 푼 풑풊−ퟏ : 풌 < 풌풊 ii. ∀풌 ∈ 푼 풑풊 : 풌 > 풌풊 20 Example of a B-Tree • Keys: 25, 48, 27, 91, 35, 78, 12, 56, 38, 19 48 19 27 78 12 25 35 38 56 91 21 Redundant B-Tree • Redundant vs. non-redundant B-trees • the presented definition introduced the non-redundant B-tree where each key value occurred just once in the whole tree • redundant B-trees store the data values in the leaves and thus have to allow repeating of keys in the inner nodes • restriction 6(i) is modified so that • ∀풌 ∈ 푼 풑풊−ퟏ : 풌 ≤ 풌풊 • moreover, the inner nodes do not contain pointers to the data records 22 B-Tree implementations • Nodes vs.
Recommended publications
  • Balanced Trees Part One
    Balanced Trees Part One Balanced Trees ● Balanced search trees are among the most useful and versatile data structures. ● Many programming languages ship with a balanced tree library. ● C++: std::map / std::set ● Java: TreeMap / TreeSet ● Many advanced data structures are layered on top of balanced trees. ● We’ll see several later in the quarter! Where We're Going ● B-Trees (Today) ● A simple type of balanced tree developed for block storage. ● Red/Black Trees (Today/Thursday) ● The canonical balanced binary search tree. ● Augmented Search Trees (Thursday) ● Adding extra information to balanced trees to supercharge the data structure. Outline for Today ● BST Review ● Refresher on basic BST concepts and runtimes. ● Overview of Red/Black Trees ● What we're building toward. ● B-Trees and 2-3-4 Trees ● Simple balanced trees, in depth. ● Intuiting Red/Black Trees ● A much better feel for red/black trees. A Quick BST Review Binary Search Trees ● A binary search tree is a binary tree with 9 the following properties: 5 13 ● Each node in the BST stores a key, and 1 6 10 14 optionally, some auxiliary information. 3 7 11 15 ● The key of every node in a BST is strictly greater than all keys 2 4 8 12 to its left and strictly smaller than all keys to its right. Binary Search Trees ● The height of a binary search tree is the 9 length of the longest path from the root to a 5 13 leaf, measured in the number of edges. 1 6 10 14 ● A tree with one node has height 0.
    [Show full text]
  • Assignment 3: Kdtree ______Due June 4, 11:59 PM
    CS106L Handout #04 Spring 2014 May 15, 2014 Assignment 3: KDTree _________________________________________________________________________________________________________ Due June 4, 11:59 PM Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the linear vector and deque, along with the associative map and set. One property common to all these containers is that they are exact. An element is either in a set or it isn't. A value either ap- pears at a particular position in a vector or it does not. For most applications, this is exactly what we want. However, in some cases we may be interested not in the question “is X in this container,” but rather “what value in the container is X most similar to?” Queries of this sort often arise in data mining, machine learning, and computational geometry. In this assignment, you will implement a special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this operation. At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen- sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol). However, a kd-tree cannot be used to store collections of other data types, such as strings. Also note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in a kd-tree must have the same dimension.
    [Show full text]
  • Splay Trees Last Changed: January 28, 2017
    15-451/651: Design & Analysis of Algorithms January 26, 2017 Lecture #4: Splay Trees last changed: January 28, 2017 In today's lecture, we will discuss: • binary search trees in general • definition of splay trees • analysis of splay trees The analysis of splay trees uses the potential function approach we discussed in the previous lecture. It seems to be required. 1 Binary Search Trees These lecture notes assume that you have seen binary search trees (BSTs) before. They do not contain much expository or backtround material on the basics of BSTs. Binary search trees is a class of data structures where: 1. Each node stores a piece of data 2. Each node has two pointers to two other binary search trees 3. The overall structure of the pointers is a tree (there's a root, it's acyclic, and every node is reachable from the root.) Binary search trees are a way to store and update a set of items, where there is an ordering on the items. I know this is rather vague. But there is not a precise way to define the gamut of applications of search trees. In general, there are two classes of applications. Those where each item has a key value from a totally ordered universe, and those where the tree is used as an efficient way to represent an ordered list of items. Some applications of binary search trees: • Storing a set of names, and being able to lookup based on a prefix of the name. (Used in internet routers.) • Storing a path in a graph, and being able to reverse any subsection of the path in O(log n) time.
    [Show full text]
  • Search Trees for Strings a Balanced Binary Search Tree Is a Powerful Data Structure That Stores a Set of Objects and Supports Many Operations Including
    Search Trees for Strings A balanced binary search tree is a powerful data structure that stores a set of objects and supports many operations including: Insert and Delete. Lookup: Find if a given object is in the set, and if it is, possibly return some data associated with the object. Range query: Find all objects in a given range. The time complexity of the operations for a set of size n is O(log n) (plus the size of the result) assuming constant time comparisons. There are also alternative data structures, particularly if we do not need to support all operations: • A hash table supports operations in constant time but does not support range queries. • An ordered array is simpler, faster and more space efficient in practice, but does not support insertions and deletions. A data structure is called dynamic if it supports insertions and deletions and static if not. 107 When the objects are strings, operations slow down: • Comparison are slower. For example, the average case time complexity is O(log n logσ n) for operations in a binary search tree storing a random set of strings. • Computing a hash function is slower too. For a string set R, there are also new types of queries: Lcp query: What is the length of the longest prefix of the query string S that is also a prefix of some string in R. Prefix query: Find all strings in R that have S as a prefix. The prefix query is a special type of range query. 108 Trie A trie is a rooted tree with the following properties: • Edges are labelled with symbols from an alphabet Σ.
    [Show full text]
  • Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke
    Trees Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke Department of Computer Science & Engineering University of Nebraska|Lincoln Lincoln, NE 68588, USA [email protected] http://cse.unl.edu/~cbourke 2015/01/31 21:05:31 Abstract These are lecture notes used in CSCE 156 (Computer Science II), CSCE 235 (Dis- crete Structures) and CSCE 310 (Data Structures & Algorithms) at the University of Nebraska|Lincoln. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 1 Contents I Trees4 1 Introduction4 2 Definitions & Terminology5 3 Tree Traversal7 3.1 Preorder Traversal................................7 3.2 Inorder Traversal.................................7 3.3 Postorder Traversal................................7 3.4 Breadth-First Search Traversal..........................8 3.5 Implementations & Data Structures.......................8 3.5.1 Preorder Implementations........................8 3.5.2 Inorder Implementation.........................9 3.5.3 Postorder Implementation........................ 10 3.5.4 BFS Implementation........................... 12 3.5.5 Tree Walk Implementations....................... 12 3.6 Operations..................................... 12 4 Binary Search Trees 14 4.1 Basic Operations................................. 15 5 Balanced Binary Search Trees 17 5.1 2-3 Trees...................................... 17 5.2 AVL Trees..................................... 17 5.3 Red-Black Trees.................................. 19 6 Optimal Binary Search Trees 19 7 Heaps 19
    [Show full text]
  • Simple Balanced Binary Search Trees
    Simple Balanced Binary Search Trees Prabhakar Ragde Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, Canada [email protected] Efficient implementations of sets and maps (dictionaries) are important in computer science, and bal- anced binary search trees are the basis of the best practical implementations. Pedagogically, however, they are often quite complicated, especially with respect to deletion. I present complete code (with justification and analysis not previously available in the literature) for a purely-functional implemen- tation based on AA trees, which is the simplest treatment of the subject of which I am aware. 1 Introduction Trees are a fundamental data structure, introduced early in most computer science curricula. They are easily motivated by the need to store data that is naturally tree-structured (family trees, structured doc- uments, arithmetic expressions, and programs). We also expose students to the idea that we can impose tree structure on data that is not naturally so, in order to implement efficient manipulation algorithms. The typical first example is the binary search tree. However, they are problematic. Naive insertion and deletion are easy to present in a first course using a functional language (usually the topic is delayed to a second course if an imperative language is used), but in the worst case, this im- plementation degenerates to a list, with linear running time for all operations. The solution is to balance the tree during operations, so that a tree with n nodes has height O(logn). There are many different ways of doing this, but most are too complicated to present this early in the curriculum, so they are usually deferred to a later course on algorithms and data structures, leaving a frustrating gap.
    [Show full text]
  • Balanced Binary Search Trees – AVL Trees, 2-3 Trees, B-Trees
    Balanced binary search trees – AVL trees, 2‐3 trees, B‐trees Professor Clark F. Olson (with edits by Carol Zander) AVL trees One potential problem with an ordinary binary search tree is that it can have a height that is O(n), where n is the number of items stored in the tree. This occurs when the items are inserted in (nearly) sorted order. We can fix this problem if we can enforce that the tree remains balanced while still inserting and deleting items in O(log n) time. The first (and simplest) data structure to be discovered for which this could be achieved is the AVL tree, which is names after the two Russians who discovered them, Georgy Adelson‐Velskii and Yevgeniy Landis. It takes longer (on average) to insert and delete in an AVL tree, since the tree must remain balanced, but it is faster (on average) to retrieve. An AVL tree must have the following properties: • It is a binary search tree. • For each node in the tree, the height of the left subtree and the height of the right subtree differ by at most one (the balance property). The height of each node is stored in the node to facilitate determining whether this is the case. The height of an AVL tree is logarithmic in the number of nodes. This allows insert/delete/retrieve to all be performed in O(log n) time. Here is an example of an AVL tree: 18 3 37 2 11 25 40 1 8 13 42 6 10 15 Inserting 0 or 5 or 16 or 43 would result in an unbalanced tree.
    [Show full text]
  • Binary Heaps
    Binary Heaps COL 106 Shweta Agrawal and Amit Kumar Revisiting FindMin • Application: Find the smallest ( or highest priority) item quickly – Operating system needs to schedule jobs according to priority instead of FIFO – Event simulation (bank customers arriving and departing, ordered according to when the event happened) – Find student with highest grade, employee with highest salary etc. 2 Priority Queue ADT • Priority Queue can efficiently do: – FindMin (and DeleteMin) – Insert • What if we use… – Lists: If sorted, what is the run time for Insert and FindMin? Unsorted? – Binary Search Trees: What is the run time for Insert and FindMin? – Hash Tables: What is the run time for Insert and FindMin? 3 Less flexibility More speed • Lists – If sorted: FindMin is O(1) but Insert is O(N) – If not sorted: Insert is O(1) but FindMin is O(N) • Balanced Binary Search Trees (BSTs) – Insert is O(log N) and FindMin is O(log N) • Hash Tables – Insert O(1) but no hope for FindMin • BSTs look good but… – BSTs are efficient for all Finds, not just FindMin – We only need FindMin 4 Better than a speeding BST • We can do better than Balanced Binary Search Trees? – Very limited requirements: Insert, FindMin, DeleteMin. The goals are: – FindMin is O(1) – Insert is O(log N) – DeleteMin is O(log N) 5 Binary Heaps • A binary heap is a binary tree (NOT a BST) that is: – Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right – Satisfies the heap order property • every node is less than or equal to its children
    [Show full text]
  • B-Trees and 2-3-4 Trees Reading
    B-Trees and 2-3-4 Trees Reading: • B-Trees 18 CLRS • Multi-Way Search Trees 3.3.1 and (2,4) Trees 3.3.2 GT B-trees are an extension of binary search trees: • They store more than one key at a node to divide the range of its subtree's keys into more than two subranges. 2, 7 • Every internal node has between t and 2t children. Every internal node has one more child than key. • 1, 0 3, 6 8, 9, 11 • All of the leaves must be at same level. − We will see shortly that the last two properties keep the tree balanced. Most binary search tree algorithms can easily be converted to B-trees. The amount of work done at each node increases with t (e.g. determining which branch to follow when searching for a key), but the height of the tree decreases with t, so less nodes are visited. Databases use high values of t to minimize I/O overhead: Reading each tree node requires a slow random disk access, so high branching factors reduce the number of such accesses. We will assume a low branching factor of t = 2 because our focus is on balanced data structures. But the ideas we present apply to higher branching factors. Such B-trees are often called 2-3-4 trees because their branching factor is always 2, 3, or 4. To guarantee a branching factor of 2 to 4, each internal node must store 1 to 3 keys. As with binary trees, we assume that the data associated with the key is stored with the key in the node.
    [Show full text]
  • 2-3-4 Trees and Red- Black Trees
    CS 16: Balanced Trees 2-3-4 Trees and Red- Black Trees erm 204 CS 16: Balanced Trees 2-3-4 Trees Revealed • Nodes store 1, 2, or 3 keys and have 2, 3, or 4 children, respectively • All leaves have the same depth k b e h nn rr a c d f g i l m p s x 1 ---log()N + 1 ≤≤height log()N + 1 2 erm 205 CS 16: Balanced Trees 2-3-4 Tree Nodes • Introduction of nodes with more than 1 key, and more than 2 children 2-node: a • same as a binary node <a >a a b 3-node: • 2 keys, 3 links <a >b >a <b 4-node: a b c • 3 keys, 4 links <a >c >a >b <b <c erm 206 CS 16: Balanced Trees Why 2-3-4? • Why not minimize height by maximizing children in a “d-tree”? • Let each node have d children so that we get O(logd N) search time! Right? log d N = log N/log d • That means if d = N1/2, we get a height of 2 • However, searching out the correct child on each level requires O(log N1/2) by binary search • 2 log N1/2 = O(log N) which is not as good as we had hoped for! • 2-3-4-trees will guarantee O(log N) height using only 2, 3, or 4 children per node erm 207 CS 16: Balanced Trees Insertion into 2-3-4 Trees • Insert the new key at the lowest internal node reached in the search • 2-node becomes 3-node g d d g • 3-node becomes 4-node f d g d f g • What about a 4-node? • We can’t insert another key! erm 208 CS 16: Balanced Trees Top Down Insertion • In our way down the tree, whenever we reach a 4-node, we break it up into two 2- nodes, and move the middle element up into the parent node e e n f n d f g d g • Now we can perform the insertion using one of the f n previous two cases • Since we follow this method from the root down d e g to the leaf, it is called top down insertion erm 209 CS 16: Balanced Trees Splitting the Tree As we travel down the tree, if we encounter any 4-node we will break it up into 2-nodes.
    [Show full text]
  • Slides-Data-Structures.Pdf
    Data structures ● Organize your data to support various queries using little time an space Example: Inventory Want to support SEARCH INSERT DELETE ● Given n elements A[1..n] ● Support SEARCH(A,x) := is x in A? ● Trivial solution: scan A. Takes time Θ(n) ● Best possible given A, x. ● What if we are first given A, are allowed to preprocess it, can we then answer SEARCH queries faster? ● How would you preprocess A? ● Given n elements A[1..n] ● Support SEARCH(A,x) := is x in A? ● Preprocess step: Sort A. Takes time O(n log n), Space O(n) ● SEARCH(A[1..n],x) := /* Binary search */ If n = 1 then return YES if A[1] = x, and NO otherwise else if A[n/2] ≤ x then return SEARCH(A[n/2..n]) else return SEARCH(A[1..n/2]) ● Time T(n) = ? ● Given n elements A[1..n] ● Support SEARCH(A,x) := is x in A? ● Preprocess step: Sort A. Takes time O(n log n), Space O(n) ● SEARCH(A[1..n],x) := /* Binary search */ If n = 1 then return YES if A[1] = x, and NO otherwise else if A[n/2] ≤ x then return SEARCH(A[n/2..n]) else return SEARCH(A[1..n/2]) ● Time T(n) = O(log n). ● Given n elements A[1..n] each ≤ k, can you do faster? ● Support SEARCH(A,x) := is x in A? ● DIRECTADDRESS: Initialize S[1..k] to 0 ● Preprocess step: For (i = 1 to n) S[A[i]] = 1 ● T(n) = O(n), Space O(k) ● SEARCH(A,x) = ? ● Given n elements A[1..n] each ≤ k, can you do faster? ● Support SEARCH(A,x) := is x in A? ● DIRECTADDRESS: Initialize S[1..k] to 0 ● Preprocess step: For (i = 1 to n) S[A[i]] = 1 ● T(n) = O(n), Space O(k) ● SEARCH(A,x) = return S[x] ● T(n) = O(1) ● Dynamic problems: ● Want to support SEARCH, INSERT, DELETE ● Support SEARCH(A,x) := is x in A? ● If numbers are small, ≤ k Preprocess: Initialize S to 0.
    [Show full text]
  • Data Structures Lecture 11
    Fall 2021 Fang Yu Software Security Lab. Data Structures Dept. Management Information Systems, National Chengchi University Lecture 11 Search Trees Binary Search Trees, AVL trees, and Splay Trees 3 Binary Search Trees ¡ A binary search tree is a binary tree storing keys (or key-value ¡ An inorder traversal of a binary entries) at its internal nodes and search trees visits the keys in an satisfying the following increasing order property: ¡ Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. 6 We have key(u) ≤ key(v) ≤ key(w) 2 9 ¡ External nodes do not store items 1 4 8 4 Search Algorithm TreeSearch(k, v) ¡ To search for a key k, we trace if T.isExternal (v) a downward path starting at the return v root if k < key(v) return TreeSearch(k, T.left(v)) ¡ The next node visited depends else if k key(v) on the comparison of k with the = return v key of the current node else { k > key(v) } ¡ If we reach a leaf, the key is return TreeSearch(k, T.right(v)) not found < 6 ¡ Example: get(4): 2 9 > ¡ Call TreeSearch(4,root) 1 4 = 8 ¡ The algorithms for floorEntry and ceilingEntry are similar 5 Insertion 6 ¡ To perform operation put(k, o), < we search for key k (using 2 9 > TreeSearch) 1 4 8 > ¡ Assume k is not already in the tree, and let w be the leaf w reached by the search 6 ¡ We insert k at node w and expand w into an internal node 2 9 ¡ Example: insert 5 1 4 8 w 5 6 Deletion 6 ¡ To perform operation remove(k), < we search for key k 2 9 > ¡ Assume key k is in the tree, and 1 4 v 8 let v be
    [Show full text]