2-3-4 Trees and Red- Black Trees

Total Page:16

File Type:pdf, Size:1020Kb

2-3-4 Trees and Red- Black Trees CS 16: Balanced Trees 2-3-4 Trees and Red- Black Trees erm 204 CS 16: Balanced Trees 2-3-4 Trees Revealed • Nodes store 1, 2, or 3 keys and have 2, 3, or 4 children, respectively • All leaves have the same depth k b e h nn rr a c d f g i l m p s x 1 ---log()N + 1 ≤≤height log()N + 1 2 erm 205 CS 16: Balanced Trees 2-3-4 Tree Nodes • Introduction of nodes with more than 1 key, and more than 2 children 2-node: a • same as a binary node <a >a a b 3-node: • 2 keys, 3 links <a >b >a <b 4-node: a b c • 3 keys, 4 links <a >c >a >b <b <c erm 206 CS 16: Balanced Trees Why 2-3-4? • Why not minimize height by maximizing children in a “d-tree”? • Let each node have d children so that we get O(logd N) search time! Right? log d N = log N/log d • That means if d = N1/2, we get a height of 2 • However, searching out the correct child on each level requires O(log N1/2) by binary search • 2 log N1/2 = O(log N) which is not as good as we had hoped for! • 2-3-4-trees will guarantee O(log N) height using only 2, 3, or 4 children per node erm 207 CS 16: Balanced Trees Insertion into 2-3-4 Trees • Insert the new key at the lowest internal node reached in the search • 2-node becomes 3-node g d d g • 3-node becomes 4-node f d g d f g • What about a 4-node? • We can’t insert another key! erm 208 CS 16: Balanced Trees Top Down Insertion • In our way down the tree, whenever we reach a 4-node, we break it up into two 2- nodes, and move the middle element up into the parent node e e n f n d f g d g • Now we can perform the insertion using one of the f n previous two cases • Since we follow this method from the root down d e g to the leaf, it is called top down insertion erm 209 CS 16: Balanced Trees Splitting the Tree As we travel down the tree, if we encounter any 4-node we will break it up into 2-nodes. This guarantees that we will never have the problem of inserting the middle element of a former 4- node into its parent 4-node. g c n t Whoa, cowboy a f i l p r x g n c t a f i l p r x erm 210 CS 16: Balanced Trees g n c t a f i l p r x n g c t Whoa, cowboy a f i l p r x erm 211 CS 16: Balanced Trees n g c t Whoa, cowboy a f i l p r x n g c i t a f l p r x n c i t axf g l p r erm 212 CS 16: Balanced Trees Time Complexity of Insertion in 2-3-4 Trees Time complexity: • A search visits O(log N) nodes • An insertion requires O(log N) node splits • Each node split takes constant time • Hence, operations Search and Insert each take time O(log N) Notes: • Instead of doing splits top-down, we can perform them bottom-up starting at the in- sertion node, and only when needed. This is called bottom-up insertion. • A deletion can be performed by fusing nodes (inverse of splitting), and takes O(log N) time erm 213 CS 16: Balanced Trees Beyond 2-3-4 Trees What do we know about 2-3-4 Trees? • Balanced Siskel • O(log N) search time Ebert • Different node structures Roberto Can we get 2-3-4 tree advantages in a binary tree format??? Welcome to the world of Red-Black Trees!!! erm 214 CS 16: Balanced Trees Red-Black Tree A red-black tree is a binary search tree with the following properties: • edges are colored red or black • no two consecutive red edges on any root-leaf path • same number of black edges on any root-leaf path (= black height of the tree) • edges connecting leaves are black Black Red Edge Edge erm 215 CS 16: Balanced Trees 2-3-4 Tree Evolution Note how 2-3-4 trees relate to red-black trees 2-3-4 Red-Black or Now we see red-black trees are just a way of representing 2-3-4 trees! erm 216 CS 16: Balanced Trees More Red-Black Tree Properties N # of internal nodes L # leaves (= N + 1) H height B black height Property 1: 2B ≤ N + 1 ≤ 4B 1 Property 2: ---log()N1+ ≤≤ Blog() N+ 1 2 Property 3: log()N1+ ≤≤ H 2log() N+ 1 This implies that searches take time O(logN)! erm 217 CS 16: Balanced Trees Insertion into Red-Black Trees 1.Perform a standard search to find the leaf where the key should be added 2.Replace the leaf with an internal node with the new key 3.Color the incoming edge of the new node red 4.Add two new leaves, and color their incoming edges black 5.If the parent had an incoming red edge, we now have two consecutive red edges! We must reorganize tree to remove that violation. What must be done depends on the sibling of the parent. R R G G erm 218 CS 16: Balanced Trees Insertion - Plain and Simple Let: n be the new node p be its parent g be its grandparent Case 1: Incoming edge of p is black No violation g p STOP! n Pretty easy, huh? Well... it gets messier... erm 219 CS 16: Balanced Trees Restructuring Case 2: Incoming edge of p is red, and its sibling is black Uh oh! g Much Better! p p n g n We call this a “right rotation” • No further work on tree is necessary • Inorder remains unchanged • Tree becomes more balanced • No two consecutive red edges! erm 220 CS 16: Balanced Trees More Rotations Similar to a right rotation, we can do a “left rotation”... g p p g n n Simple, huh? erm 221 CS 16: Balanced Trees Double Rotations What if the new node is between its parent and grandparent in the inorder sequence? We must perform a “double rotation” (which is no more difficult than a “single” one) g n p p g n This would be called a “left-right double rotation” erm 222 CS 16: Balanced Trees Last of the Rotations And this would be called a “right-left double rotation” g n p g p n erm 223 CS 16: Balanced Trees Bottom-Up Rebalancing Case 3: Incoming edge of p is red and its sibling is also red g g p p n n • We call this a “promotion” • Note how the black depth remains un- changed for all of the descendants of g • This process will continue upward beyond g if necessary: rename g as n and repeat. erm 224 CS 16: Balanced Trees Summary of Insertion •Iftwo red edges are present, we do either •arestructuring (with a simple or double rotation) and stop, or •apromotion and continue •Arestructuring takes constant time and is performed at most once. It reorganizes an off-balanced section of the tree. • Promotions may continue up the tree and are executed O(log N) times. • The time complexity of an insertion is O(logN). erm 225 CS 16: Balanced Trees An Example Start by inserting “REDSOX” into an empty tree E D R O S X Now, let’s insert “C U B S”... erm 226 CS 16: Balanced Trees A Cool Example C E D R O S X E D R C O S X erm 227 CS 16: Balanced Trees An Unbelievable Example U E D R C O S E X D R C O S Oh No! X What should we do? U erm 228 CS 16: Balanced Trees E D R C O S Double Rotation X U E D R C O U S X erm 229 CS 16: Balanced Trees A Beautiful Example E B D R C O U S X E D R What now? C O U B S X erm 230 CS 16: Balanced Trees E D R Rotation C O U B S X E C R B D O U S X erm 231 CS 16: Balanced Trees A Super Example S E C R B D O U S X E C R B D O U We could’ve Holy Consecutive placed it on S X Red Edges, Batman! either side S erm 232 CS 16: Balanced Trees E C R B D O U Use the Bat-Promoter!! S X E S C R BIFF! B D O U S X S erm 233 CS 16: Balanced Trees E C R Rotation B D O U S X S R The SUN lab and Red-Bat trees are safe... E U ...for now!!! C O S X B D S erm 234.
Recommended publications
  • Trees • Binary Trees • Newer Types of Tree Structures • M-Ary Trees
    Data Organization and Processing Hierarchical Indexing (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza 1 Outline • Background • prefix tree • graphs • … • search trees • binary trees • Newer types of tree structures • m-ary trees • Typical tree type structures • B-tree • B+-tree • B*-tree 2 Motivation • Similarly as in hashing, the motivation is to find record(s) given a query key using only a few operations • unlike hashing, trees allow to retrieve set of records with keys from given range • Tree structures use “clustering” to efficiently filter out non relevant records from the data set • Tree-based indexes practically implement the index file data organization • for each search key, an indexing structure can be maintained 3 Drawbacks of Index(-Sequential) Organization • Static nature • when inserting a record at the beginning of the file, the whole index needs to be rebuilt • an overflow handling policy can be applied → the performance degrades as the file grows • reorganization can take a lot of time, especially for large tables • not possible for online transactional processing (OLTP) scenarios (as opposed to OLAP – online analytical processing) where many insertions/deletions occur 4 Tree Indexes • Most common dynamic indexing structure for external memory • When inserting/deleting into/from the primary file, the indexing structure(s) residing in the secondary file is modified to accommodate the new key • The modification of a tree is implemented by splitting/merging nodes • Used not only in databases • NTFS directory structure
    [Show full text]
  • Tree-Combined Trie: a Compressed Data Structure for Fast IP Address Lookup
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 6, No. 12, 2015 Tree-Combined Trie: A Compressed Data Structure for Fast IP Address Lookup Muhammad Tahir Shakil Ahmed Department of Computer Engineering, Department of Computer Engineering, Sir Syed University of Engineering and Technology, Sir Syed University of Engineering and Technology, Karachi Karachi Abstract—For meeting the requirements of the high-speed impact their forwarding capacity. In order to resolve two main Internet and satisfying the Internet users, building fast routers issues there are two possible solutions one is IPv6 IP with high-speed IP address lookup engine is inevitable. addressing scheme and second is Classless Inter-domain Regarding the unpredictable variations occurred in the Routing or CIDR. forwarding information during the time and space, the IP lookup algorithm should be able to customize itself with temporal and Finding a high-speed, memory-efficient and scalable IP spatial conditions. This paper proposes a new dynamic data address lookup method has been a great challenge especially structure for fast IP address lookup. This novel data structure is in the last decade (i.e. after introducing Classless Inter- a dynamic mixture of trees and tries which is called Tree- Domain Routing, CIDR, in 1994). In this paper, we will Combined Trie or simply TC-Trie. Binary sorted trees are more discuss only CIDR. In addition to these desirable features, advantageous than tries for representing a sparse population reconfigurability is also of great importance; true because while multibit tries have better performance than trees when a different points of this huge heterogeneous structure of population is dense.
    [Show full text]
  • Balanced Trees Part One
    Balanced Trees Part One Balanced Trees ● Balanced search trees are among the most useful and versatile data structures. ● Many programming languages ship with a balanced tree library. ● C++: std::map / std::set ● Java: TreeMap / TreeSet ● Many advanced data structures are layered on top of balanced trees. ● We’ll see several later in the quarter! Where We're Going ● B-Trees (Today) ● A simple type of balanced tree developed for block storage. ● Red/Black Trees (Today/Thursday) ● The canonical balanced binary search tree. ● Augmented Search Trees (Thursday) ● Adding extra information to balanced trees to supercharge the data structure. Outline for Today ● BST Review ● Refresher on basic BST concepts and runtimes. ● Overview of Red/Black Trees ● What we're building toward. ● B-Trees and 2-3-4 Trees ● Simple balanced trees, in depth. ● Intuiting Red/Black Trees ● A much better feel for red/black trees. A Quick BST Review Binary Search Trees ● A binary search tree is a binary tree with 9 the following properties: 5 13 ● Each node in the BST stores a key, and 1 6 10 14 optionally, some auxiliary information. 3 7 11 15 ● The key of every node in a BST is strictly greater than all keys 2 4 8 12 to its left and strictly smaller than all keys to its right. Binary Search Trees ● The height of a binary search tree is the 9 length of the longest path from the root to a 5 13 leaf, measured in the number of edges. 1 6 10 14 ● A tree with one node has height 0.
    [Show full text]
  • Heaps a Heap Is a Complete Binary Tree. a Max-Heap Is A
    Heaps Heaps 1 A heap is a complete binary tree. A max-heap is a complete binary tree in which the value in each internal node is greater than or equal to the values in the children of that node. A min-heap is defined similarly. 97 Mapping the elements of 93 84 a heap into an array is trivial: if a node is stored at 90 79 83 81 index k, then its left child is stored at index 42 55 73 21 83 2k+1 and its right child at index 2k+2 01234567891011 97 93 84 90 79 83 81 42 55 73 21 83 CS@VT Data Structures & Algorithms ©2000-2009 McQuain Building a Heap Heaps 2 The fact that a heap is a complete binary tree allows it to be efficiently represented using a simple array. Given an array of N values, a heap containing those values can be built, in situ, by simply “sifting” each internal node down to its proper location: - start with the last 73 73 internal node * - swap the current 74 81 74 * 93 internal node with its larger child, if 79 90 93 79 90 81 necessary - then follow the swapped node down 73 * 93 - continue until all * internal nodes are 90 93 90 73 done 79 74 81 79 74 81 CS@VT Data Structures & Algorithms ©2000-2009 McQuain Heap Class Interface Heaps 3 We will consider a somewhat minimal maxheap class: public class BinaryHeap<T extends Comparable<? super T>> { private static final int DEFCAP = 10; // default array size private int size; // # elems in array private T [] elems; // array of elems public BinaryHeap() { .
    [Show full text]
  • Assignment 3: Kdtree ______Due June 4, 11:59 PM
    CS106L Handout #04 Spring 2014 May 15, 2014 Assignment 3: KDTree _________________________________________________________________________________________________________ Due June 4, 11:59 PM Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the linear vector and deque, along with the associative map and set. One property common to all these containers is that they are exact. An element is either in a set or it isn't. A value either ap- pears at a particular position in a vector or it does not. For most applications, this is exactly what we want. However, in some cases we may be interested not in the question “is X in this container,” but rather “what value in the container is X most similar to?” Queries of this sort often arise in data mining, machine learning, and computational geometry. In this assignment, you will implement a special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this operation. At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen- sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol). However, a kd-tree cannot be used to store collections of other data types, such as strings. Also note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in a kd-tree must have the same dimension.
    [Show full text]
  • Splay Trees Last Changed: January 28, 2017
    15-451/651: Design & Analysis of Algorithms January 26, 2017 Lecture #4: Splay Trees last changed: January 28, 2017 In today's lecture, we will discuss: • binary search trees in general • definition of splay trees • analysis of splay trees The analysis of splay trees uses the potential function approach we discussed in the previous lecture. It seems to be required. 1 Binary Search Trees These lecture notes assume that you have seen binary search trees (BSTs) before. They do not contain much expository or backtround material on the basics of BSTs. Binary search trees is a class of data structures where: 1. Each node stores a piece of data 2. Each node has two pointers to two other binary search trees 3. The overall structure of the pointers is a tree (there's a root, it's acyclic, and every node is reachable from the root.) Binary search trees are a way to store and update a set of items, where there is an ordering on the items. I know this is rather vague. But there is not a precise way to define the gamut of applications of search trees. In general, there are two classes of applications. Those where each item has a key value from a totally ordered universe, and those where the tree is used as an efficient way to represent an ordered list of items. Some applications of binary search trees: • Storing a set of names, and being able to lookup based on a prefix of the name. (Used in internet routers.) • Storing a path in a graph, and being able to reverse any subsection of the path in O(log n) time.
    [Show full text]
  • Binary Search Tree
    ADT Binary Search Tree! Ellen Walker! CPSC 201 Data Structures! Hiram College! Binary Search Tree! •" Value-based storage of information! –" Data is stored in order! –" Data can be retrieved by value efficiently! •" Is a binary tree! –" Everything in left subtree is < root! –" Everything in right subtree is >root! –" Both left and right subtrees are also BST#s! Operations on BST! •" Some can be inherited from binary tree! –" Constructor (for empty tree)! –" Inorder, Preorder, and Postorder traversal! •" Some must be defined ! –" Insert item! –" Delete item! –" Retrieve item! The Node<E> Class! •" Just as for a linked list, a node consists of a data part and links to successor nodes! •" The data part is a reference to type E! •" A binary tree node must have links to both its left and right subtrees! The BinaryTree<E> Class! The BinaryTree<E> Class (continued)! Overview of a Binary Search Tree! •" Binary search tree definition! –" A set of nodes T is a binary search tree if either of the following is true! •" T is empty! •" Its root has two subtrees such that each is a binary search tree and the value in the root is greater than all values of the left subtree but less than all values in the right subtree! Overview of a Binary Search Tree (continued)! Searching a Binary Tree! Class TreeSet and Interface Search Tree! BinarySearchTree Class! BST Algorithms! •" Search! •" Insert! •" Delete! •" Print values in order! –" We already know this, it#s inorder traversal! –" That#s why it#s called “in order”! Searching the Binary Tree! •" If the tree is
    [Show full text]
  • 6.172 Lecture 19 : Cache-Oblivious B-Tree (Tokudb)
    How TokuDB Fractal TreeTM Indexes Work Bradley C. Kuszmaul Guest Lecture in MIT 6.172 Performance Engineering, 18 November 2010. 6.172 —How Fractal Trees Work 1 My Background • I’m an MIT alum: MIT Degrees = 2 × S.B + S.M. + Ph.D. • I was a principal architect of the Connection Machine CM-5 super­ computer at Thinking Machines. • I was Assistant Professor at Yale. • I was Akamai working on network mapping and billing. • I am research faculty in the SuperTech group, working with Charles. 6.172 —How Fractal Trees Work 2 Tokutek A few years ago I started collaborating with Michael Bender and Martin Farach-Colton on how to store data on disk to achieve high performance. We started Tokutek to commercialize the research. 6.172 —How Fractal Trees Work 3 I/O is a Big Bottleneck Sensor Query Systems include Sensor Disk Query sensors and Sensor storage, and Query want to perform Millions of data elements arrive queries on per second Query recently arrived data using indexes. recent data. Sensor 6.172 —How Fractal Trees Work 4 The Data Indexing Problem • Data arrives in one order (say, sorted by the time of the observation). • Data is queried in another order (say, by URL or location). Sensor Query Sensor Disk Query Sensor Query Millions of data elements arrive per second Query recently arrived data using indexes. Sensor 6.172 —How Fractal Trees Work 5 Why Not Simply Sort? • This is what data Data Sorted by Time warehouses do. • The problem is that you Sort must wait to sort the data before querying it: Data Sorted by URL typically an overnight delay.
    [Show full text]
  • Search Trees for Strings a Balanced Binary Search Tree Is a Powerful Data Structure That Stores a Set of Objects and Supports Many Operations Including
    Search Trees for Strings A balanced binary search tree is a powerful data structure that stores a set of objects and supports many operations including: Insert and Delete. Lookup: Find if a given object is in the set, and if it is, possibly return some data associated with the object. Range query: Find all objects in a given range. The time complexity of the operations for a set of size n is O(log n) (plus the size of the result) assuming constant time comparisons. There are also alternative data structures, particularly if we do not need to support all operations: • A hash table supports operations in constant time but does not support range queries. • An ordered array is simpler, faster and more space efficient in practice, but does not support insertions and deletions. A data structure is called dynamic if it supports insertions and deletions and static if not. 107 When the objects are strings, operations slow down: • Comparison are slower. For example, the average case time complexity is O(log n logσ n) for operations in a binary search tree storing a random set of strings. • Computing a hash function is slower too. For a string set R, there are also new types of queries: Lcp query: What is the length of the longest prefix of the query string S that is also a prefix of some string in R. Prefix query: Find all strings in R that have S as a prefix. The prefix query is a special type of range query. 108 Trie A trie is a rooted tree with the following properties: • Edges are labelled with symbols from an alphabet Σ.
    [Show full text]
  • Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke
    Trees Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke Department of Computer Science & Engineering University of Nebraska|Lincoln Lincoln, NE 68588, USA [email protected] http://cse.unl.edu/~cbourke 2015/01/31 21:05:31 Abstract These are lecture notes used in CSCE 156 (Computer Science II), CSCE 235 (Dis- crete Structures) and CSCE 310 (Data Structures & Algorithms) at the University of Nebraska|Lincoln. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 1 Contents I Trees4 1 Introduction4 2 Definitions & Terminology5 3 Tree Traversal7 3.1 Preorder Traversal................................7 3.2 Inorder Traversal.................................7 3.3 Postorder Traversal................................7 3.4 Breadth-First Search Traversal..........................8 3.5 Implementations & Data Structures.......................8 3.5.1 Preorder Implementations........................8 3.5.2 Inorder Implementation.........................9 3.5.3 Postorder Implementation........................ 10 3.5.4 BFS Implementation........................... 12 3.5.5 Tree Walk Implementations....................... 12 3.6 Operations..................................... 12 4 Binary Search Trees 14 4.1 Basic Operations................................. 15 5 Balanced Binary Search Trees 17 5.1 2-3 Trees...................................... 17 5.2 AVL Trees..................................... 17 5.3 Red-Black Trees.................................. 19 6 Optimal Binary Search Trees 19 7 Heaps 19
    [Show full text]
  • B-Trees M-Ary Search Tree Solution
    M-ary Search Tree B-Trees • Maximum branching factor of M • Complete tree has height = Section 4.7 in Weiss # disk accesses for find : Runtime of find : 2 Solution: B-Trees B-Trees • specialized M-ary search trees What makes them disk-friendly? • Each node has (up to) M-1 keys: 1. Many keys stored in a node – subtree between two keys x and y contains leaves with values v such that • All brought to memory/cache in one access! 3 7 12 21 x ≤ v < y 2. Internal nodes contain only keys; • Pick branching factor M Only leaf nodes contain keys and actual data such that each node • The tree structure can be loaded into memory takes one full irrespective of data object size {page, block } x<3 3≤x<7 7≤x<12 12 ≤x<21 21 ≤x • Data actually resides in disk of memory 3 4 B-Tree: Example B-Tree Properties ‡ B-Tree with M = 4 (# pointers in internal node) and L = 4 (# data items in leaf) – Data is stored at the leaves – All leaves are at the same depth and contain between 10 40 L/2 and L data items – Internal nodes store up to M-1 keys 3 15 20 30 50 – Internal nodes have between M/2 and M children – Root (special case) has between 2 and M children (or root could be a leaf) 1 2 10 11 12 20 25 26 40 42 AB xG 3 5 6 9 15 17 30 32 33 36 50 60 70 Data objects, that I’ll Note: All leaves at the same depth! ignore in slides 5 ‡These are technically B +-Trees 6 1 Example, Again B-trees vs.
    [Show full text]
  • AVL Trees and Rotations
    / AVL trees and rotations Q1 Operations (insert, delete, search) are O(height) Tree height is O(log n) if perfectly balanced ◦ But maintaining perfect balance is O(n) Height-balanced trees are still O(log n) ◦ For T with height h, N(T) ≤ Fib(h+3) – 1 ◦ So H < 1.44 log (N+2) – 1.328 * AVL (Adelson-Velskii and Landis) trees maintain height-balance using rotations Are rotations O(log n)? We’ll see… / or = or \ Different representations for / = \ : Just two bits in a low-level language Enum in a higher-level language / Assume tree is height-balanced before insertion Insert as usual for a BST Move up from the newly inserted node to the lowest “unbalanced” node (if any) ◦ Use the balance code to detect unbalance - how? Do an appropriate rotation to balance the sub-tree rooted at this unbalanced node For example, a single left rotation: Two basic cases ◦ “See saw” case: Too-tall sub-tree is on the outside So tip the see saw so it’s level ◦ “Suck in your gut” case: Too-tall sub-tree is in the middle Pull its root up a level Q2-3 Unbalanced node Middle sub-tree attaches to lower node of the “see saw” Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen Q4-5 Unbalanced node Pulled up Split between the nodes pushed down Weiss calls this “right-left double rotation” Q6 Write the method: static BalancedBinaryNode singleRotateLeft ( BalancedBinaryNode parent, /* A */ BalancedBinaryNode child /* B */ ) { } Returns a reference to the new root of this subtree.
    [Show full text]