Splay Trees Last Changed: January 28, 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trees • Binary Trees • Newer Types of Tree Structures • M-Ary Trees
Data Organization and Processing Hierarchical Indexing (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza 1 Outline • Background • prefix tree • graphs • … • search trees • binary trees • Newer types of tree structures • m-ary trees • Typical tree type structures • B-tree • B+-tree • B*-tree 2 Motivation • Similarly as in hashing, the motivation is to find record(s) given a query key using only a few operations • unlike hashing, trees allow to retrieve set of records with keys from given range • Tree structures use “clustering” to efficiently filter out non relevant records from the data set • Tree-based indexes practically implement the index file data organization • for each search key, an indexing structure can be maintained 3 Drawbacks of Index(-Sequential) Organization • Static nature • when inserting a record at the beginning of the file, the whole index needs to be rebuilt • an overflow handling policy can be applied → the performance degrades as the file grows • reorganization can take a lot of time, especially for large tables • not possible for online transactional processing (OLTP) scenarios (as opposed to OLAP – online analytical processing) where many insertions/deletions occur 4 Tree Indexes • Most common dynamic indexing structure for external memory • When inserting/deleting into/from the primary file, the indexing structure(s) residing in the secondary file is modified to accommodate the new key • The modification of a tree is implemented by splitting/merging nodes • Used not only in databases • NTFS directory structure -
Amortized Analysis Worst-Case Analysis
Beyond Worst Case Analysis Amortized Analysis Worst-case analysis. ■ Analyze running time as function of worst input of a given size. Average case analysis. ■ Analyze average running time over some distribution of inputs. ■ Ex: quicksort. Amortized analysis. ■ Worst-case bound on sequence of operations. ■ Ex: splay trees, union-find. Competitive analysis. ■ Make quantitative statements about online algorithms. ■ Ex: paging, load balancing. Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne 2 Amortized Analysis Dynamic Table Amortized analysis. Dynamic tables. ■ Worst-case bound on sequence of operations. ■ Store items in a table (e.g., for open-address hash table, heap). – no probability involved ■ Items are inserted and deleted. ■ Ex: union-find. – too many items inserted ⇒ copy all items to larger table – sequence of m union and find operations starting with n – too many items deleted ⇒ copy all items to smaller table singleton sets takes O((m+n) α(n)) time. – single union or find operation might be expensive, but only α(n) Amortized analysis. on average ■ Any sequence of n insert / delete operations take O(n) time. ■ Space used is proportional to space required. ■ Note: actual cost of a single insert / delete can be proportional to n if it triggers a table expansion or contraction. Bottleneck operation. ■ We count insertions (or re-insertions) and deletions. ■ Overhead of memory management is dominated by (or proportional to) cost of transferring items. 3 4 Dynamic Table: Insert Dynamic Table: Insert Dynamic Table Insert Accounting method. Initialize table size m = 1. ■ Charge each insert operation $3 (amortized cost). – use $1 to perform immediate insert INSERT(x) – store $2 in with new item IF (number of elements in table = m) ■ When table doubles: Generate new table of size 2m. -
Balanced Trees Part One
Balanced Trees Part One Balanced Trees ● Balanced search trees are among the most useful and versatile data structures. ● Many programming languages ship with a balanced tree library. ● C++: std::map / std::set ● Java: TreeMap / TreeSet ● Many advanced data structures are layered on top of balanced trees. ● We’ll see several later in the quarter! Where We're Going ● B-Trees (Today) ● A simple type of balanced tree developed for block storage. ● Red/Black Trees (Today/Thursday) ● The canonical balanced binary search tree. ● Augmented Search Trees (Thursday) ● Adding extra information to balanced trees to supercharge the data structure. Outline for Today ● BST Review ● Refresher on basic BST concepts and runtimes. ● Overview of Red/Black Trees ● What we're building toward. ● B-Trees and 2-3-4 Trees ● Simple balanced trees, in depth. ● Intuiting Red/Black Trees ● A much better feel for red/black trees. A Quick BST Review Binary Search Trees ● A binary search tree is a binary tree with 9 the following properties: 5 13 ● Each node in the BST stores a key, and 1 6 10 14 optionally, some auxiliary information. 3 7 11 15 ● The key of every node in a BST is strictly greater than all keys 2 4 8 12 to its left and strictly smaller than all keys to its right. Binary Search Trees ● The height of a binary search tree is the 9 length of the longest path from the root to a 5 13 leaf, measured in the number of edges. 1 6 10 14 ● A tree with one node has height 0. -
Assignment 3: Kdtree ______Due June 4, 11:59 PM
CS106L Handout #04 Spring 2014 May 15, 2014 Assignment 3: KDTree _________________________________________________________________________________________________________ Due June 4, 11:59 PM Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the linear vector and deque, along with the associative map and set. One property common to all these containers is that they are exact. An element is either in a set or it isn't. A value either ap- pears at a particular position in a vector or it does not. For most applications, this is exactly what we want. However, in some cases we may be interested not in the question “is X in this container,” but rather “what value in the container is X most similar to?” Queries of this sort often arise in data mining, machine learning, and computational geometry. In this assignment, you will implement a special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this operation. At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen- sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol). However, a kd-tree cannot be used to store collections of other data types, such as strings. Also note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in a kd-tree must have the same dimension. -
Search Trees
Lecture III Page 1 “Trees are the earth’s endless effort to speak to the listening heaven.” – Rabindranath Tagore, Fireflies, 1928 Alice was walking beside the White Knight in Looking Glass Land. ”You are sad.” the Knight said in an anxious tone: ”let me sing you a song to comfort you.” ”Is it very long?” Alice asked, for she had heard a good deal of poetry that day. ”It’s long.” said the Knight, ”but it’s very, very beautiful. Everybody that hears me sing it - either it brings tears to their eyes, or else -” ”Or else what?” said Alice, for the Knight had made a sudden pause. ”Or else it doesn’t, you know. The name of the song is called ’Haddocks’ Eyes.’” ”Oh, that’s the name of the song, is it?” Alice said, trying to feel interested. ”No, you don’t understand,” the Knight said, looking a little vexed. ”That’s what the name is called. The name really is ’The Aged, Aged Man.’” ”Then I ought to have said ’That’s what the song is called’?” Alice corrected herself. ”No you oughtn’t: that’s another thing. The song is called ’Ways and Means’ but that’s only what it’s called, you know!” ”Well, what is the song then?” said Alice, who was by this time completely bewildered. ”I was coming to that,” the Knight said. ”The song really is ’A-sitting On a Gate’: and the tune’s my own invention.” So saying, he stopped his horse and let the reins fall on its neck: then slowly beating time with one hand, and with a faint smile lighting up his gentle, foolish face, he began.. -
Search Trees for Strings a Balanced Binary Search Tree Is a Powerful Data Structure That Stores a Set of Objects and Supports Many Operations Including
Search Trees for Strings A balanced binary search tree is a powerful data structure that stores a set of objects and supports many operations including: Insert and Delete. Lookup: Find if a given object is in the set, and if it is, possibly return some data associated with the object. Range query: Find all objects in a given range. The time complexity of the operations for a set of size n is O(log n) (plus the size of the result) assuming constant time comparisons. There are also alternative data structures, particularly if we do not need to support all operations: • A hash table supports operations in constant time but does not support range queries. • An ordered array is simpler, faster and more space efficient in practice, but does not support insertions and deletions. A data structure is called dynamic if it supports insertions and deletions and static if not. 107 When the objects are strings, operations slow down: • Comparison are slower. For example, the average case time complexity is O(log n logσ n) for operations in a binary search tree storing a random set of strings. • Computing a hash function is slower too. For a string set R, there are also new types of queries: Lcp query: What is the length of the longest prefix of the query string S that is also a prefix of some string in R. Prefix query: Find all strings in R that have S as a prefix. The prefix query is a special type of range query. 108 Trie A trie is a rooted tree with the following properties: • Edges are labelled with symbols from an alphabet Σ. -
Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke
Trees Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke Department of Computer Science & Engineering University of Nebraska|Lincoln Lincoln, NE 68588, USA [email protected] http://cse.unl.edu/~cbourke 2015/01/31 21:05:31 Abstract These are lecture notes used in CSCE 156 (Computer Science II), CSCE 235 (Dis- crete Structures) and CSCE 310 (Data Structures & Algorithms) at the University of Nebraska|Lincoln. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 1 Contents I Trees4 1 Introduction4 2 Definitions & Terminology5 3 Tree Traversal7 3.1 Preorder Traversal................................7 3.2 Inorder Traversal.................................7 3.3 Postorder Traversal................................7 3.4 Breadth-First Search Traversal..........................8 3.5 Implementations & Data Structures.......................8 3.5.1 Preorder Implementations........................8 3.5.2 Inorder Implementation.........................9 3.5.3 Postorder Implementation........................ 10 3.5.4 BFS Implementation........................... 12 3.5.5 Tree Walk Implementations....................... 12 3.6 Operations..................................... 12 4 Binary Search Trees 14 4.1 Basic Operations................................. 15 5 Balanced Binary Search Trees 17 5.1 2-3 Trees...................................... 17 5.2 AVL Trees..................................... 17 5.3 Red-Black Trees.................................. 19 6 Optimal Binary Search Trees 19 7 Heaps 19 -
Leftist Heap: Is a Binary Tree with the Normal Heap Ordering Property, but the Tree Is Not Balanced. in Fact It Attempts to Be Very Unbalanced!
Leftist heap: is a binary tree with the normal heap ordering property, but the tree is not balanced. In fact it attempts to be very unbalanced! Definition: the null path length npl(x) of node x is the length of the shortest path from x to a node without two children. The null path lengh of any node is 1 more than the minimum of the null path lengths of its children. (let npl(nil)=-1). Only the tree on the left is leftist. Null path lengths are shown in the nodes. Definition: the leftist heap property is that for every node x in the heap, the null path length of the left child is at least as large as that of the right child. This property biases the tree to get deep towards the left. It may generate very unbalanced trees, which facilitates merging! It also also means that the right path down a leftist heap is as short as any path in the heap. In fact, the right path in a leftist tree of N nodes contains at most lg(N+1) nodes. We perform all the work on this right path, which is guaranteed to be short. Merging on a leftist heap. (Notice that an insert can be considered as a merge of a one-node heap with a larger heap.) 1. (Magically and recursively) merge the heap with the larger root (6) with the right subheap (rooted at 8) of the heap with the smaller root, creating a leftist heap. Make this new heap the right child of the root (3) of h1. -
SPLAY Trees • Splay Trees Were Invented by Daniel Sleator and Robert Tarjan
Red-Black, Splay and Huffman Trees Kuan-Yu Chen (陳冠宇) 2018/10/22 @ TR-212, NTUST Review • AVL Trees – Self-balancing binary search tree – Balance Factor • Every node has a balance factor of –1, 0, or 1 2 Red-Black Trees. • A red-black tree is a self-balancing binary search tree that was invented in 1972 by Rudolf Bayer – A special point to note about the red-black tree is that in this tree, no data is stored in the leaf nodes • A red-black tree is a binary search tree in which every node has a color which is either red or black 1. The color of a node is either red or black 2. The color of the root node is always black 3. All leaf nodes are black 4. Every red node has both the children colored in black 5. Every simple path from a given node to any of its leaf nodes has an equal number of black nodes 3 Red-Black Trees.. 4 Red-Black Trees... • Root is red 5 Red-Black Trees…. • A leaf node is red 6 Red-Black Trees….. • Every red node does not have both the children colored in black • Every simple path from a given node to any of its leaf nodes does not have equal number of black nodes 7 Searching in a Red-Black Tree • Since red-black tree is a binary search tree, it can be searched using exactly the same algorithm as used to search an ordinary binary search tree! 8 Insertion in a Red-Black Tree • In a binary search tree, we always add the new node as a leaf, while in a red-black tree, leaf nodes contain no data – For a given data 1. -
Amortized Complexity Analysis for Red-Black Trees and Splay Trees
International Journal of Innovative Research in Computer Science & Technology (IJIRCST) ISSN: 2347-5552, Volume-6, Issue-6, November2018 DOI: 10.21276/ijircst.2018.6.6.2 Amortized Complexity Analysis for Red-Black Trees and Splay Trees Isha Ashish Bahendwar, RuchitPurshottam Bhardwaj, Prof. S.G. Mundada Abstract—The basic conception behind the given problem It stores data in more efficient and practical way than basic definition is to discuss the working, operations and complexity data structures. Advanced data structures include data analyses of some advanced data structures. The Data structures like, Red Black Trees, B trees, B+ Trees, Splay structures that we have discussed further are Red-Black trees Trees, K-d Trees, Priority Search Trees, etc. Each of them and Splay trees.Red-Black trees are self-balancing trees has its own special feature which makes it unique and better having the properties of conventional tree data structures along with an added property of color of the node which can than the others.A Red-Black tree is a binary search tree with be either red or black. This inclusion of the property of color a feature of balancing itself after any operation is performed as a single bit property ensured maintenance of balance in the on it. Its nodes have an extra feature of color. As the name tree during operations such as insertion or deletion of nodes in suggests, they can be either red or black in color. These Red-Black trees. Splay trees, on the other hand, reduce the color bits are used to count the tree’s height and confirm complexity of operations such as insertion and deletion in trees that the tree possess all the basic properties of Red-Black by splayingor making the node as the root node thereby tree structure, The Red-Black tree data structure is a binary reducing the time complexity of insertion and deletions of a search tree, which means that any node of that tree can have node. -
Simple Balanced Binary Search Trees
Simple Balanced Binary Search Trees Prabhakar Ragde Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, Canada [email protected] Efficient implementations of sets and maps (dictionaries) are important in computer science, and bal- anced binary search trees are the basis of the best practical implementations. Pedagogically, however, they are often quite complicated, especially with respect to deletion. I present complete code (with justification and analysis not previously available in the literature) for a purely-functional implemen- tation based on AA trees, which is the simplest treatment of the subject of which I am aware. 1 Introduction Trees are a fundamental data structure, introduced early in most computer science curricula. They are easily motivated by the need to store data that is naturally tree-structured (family trees, structured doc- uments, arithmetic expressions, and programs). We also expose students to the idea that we can impose tree structure on data that is not naturally so, in order to implement efficient manipulation algorithms. The typical first example is the binary search tree. However, they are problematic. Naive insertion and deletion are easy to present in a first course using a functional language (usually the topic is delayed to a second course if an imperative language is used), but in the worst case, this im- plementation degenerates to a list, with linear running time for all operations. The solution is to balance the tree during operations, so that a tree with n nodes has height O(logn). There are many different ways of doing this, but most are too complicated to present this early in the curriculum, so they are usually deferred to a later course on algorithms and data structures, leaving a frustrating gap. -
Balanced Binary Search Trees – AVL Trees, 2-3 Trees, B-Trees
Balanced binary search trees – AVL trees, 2‐3 trees, B‐trees Professor Clark F. Olson (with edits by Carol Zander) AVL trees One potential problem with an ordinary binary search tree is that it can have a height that is O(n), where n is the number of items stored in the tree. This occurs when the items are inserted in (nearly) sorted order. We can fix this problem if we can enforce that the tree remains balanced while still inserting and deleting items in O(log n) time. The first (and simplest) data structure to be discovered for which this could be achieved is the AVL tree, which is names after the two Russians who discovered them, Georgy Adelson‐Velskii and Yevgeniy Landis. It takes longer (on average) to insert and delete in an AVL tree, since the tree must remain balanced, but it is faster (on average) to retrieve. An AVL tree must have the following properties: • It is a binary search tree. • For each node in the tree, the height of the left subtree and the height of the right subtree differ by at most one (the balance property). The height of each node is stored in the node to facilitate determining whether this is the case. The height of an AVL tree is logarithmic in the number of nodes. This allows insert/delete/retrieve to all be performed in O(log n) time. Here is an example of an AVL tree: 18 3 37 2 11 25 40 1 8 13 42 6 10 15 Inserting 0 or 5 or 16 or 43 would result in an unbalanced tree.