Data Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programming for Engineers Pointers in C Programming: Part 02
Programming For Engineers Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff1, Ahmad Fakhri Ab. Nasir2 Faculty of Manufacturing Engineering [email protected], [email protected] PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 0.0 Chapter’s Information • Expected Outcomes – To further use pointers in C programming • Contents 1.0 Pointer and Array 2.0 Pointer and String 3.0 Pointer and dynamic memory allocation PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array • We will review array data type first and later we will relate array with pointer. • Previously, we learn about basic data types such as integer, character and floating numbers. In C programming language, if we have 5 test scores and would like to average the scores, we may code in the following way. PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array • This program is manageable if the scores are only 5. What should we do if we have 100,000 scores? In such case, we need an efficient way to represent a collection of similar data type1. In C programming, we usually use array. • Array is a fixed-size sequence of elements of the same data type.1 • In C programming, we declare an array like the following statement: PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. -
C Programming: Data Structures and Algorithms
C Programming: Data Structures and Algorithms An introduction to elementary programming concepts in C Jack Straub, Instructor Version 2.07 DRAFT C Programming: Data Structures and Algorithms, Version 2.07 DRAFT C Programming: Data Structures and Algorithms Version 2.07 DRAFT Copyright © 1996 through 2006 by Jack Straub ii 08/12/08 C Programming: Data Structures and Algorithms, Version 2.07 DRAFT Table of Contents COURSE OVERVIEW ........................................................................................ IX 1. BASICS.................................................................................................... 13 1.1 Objectives ...................................................................................................................................... 13 1.2 Typedef .......................................................................................................................................... 13 1.2.1 Typedef and Portability ............................................................................................................. 13 1.2.2 Typedef and Structures .............................................................................................................. 14 1.2.3 Typedef and Functions .............................................................................................................. 14 1.3 Pointers and Arrays ..................................................................................................................... 16 1.4 Dynamic Memory Allocation ..................................................................................................... -
Precise Analysis of String Expressions
Precise Analysis of String Expressions Aske Simon Christensen, Anders Møller?, and Michael I. Schwartzbach BRICS??, Department of Computer Science University of Aarhus, Denmark aske,amoeller,mis @brics.dk f g Abstract. We perform static analysis of Java programs to answer a simple question: which values may occur as results of string expressions? The answers are summarized for each expression by a regular language that is guaranteed to contain all possible values. We present several ap- plications of this analysis, including statically checking the syntax of dynamically generated expressions, such as SQL queries. Our analysis constructs flow graphs from class files and generates a context-free gram- mar with a nonterminal for each string expression. The language of this grammar is then widened into a regular language through a variant of an algorithm previously used for speech recognition. The collection of resulting regular languages is compactly represented as a special kind of multi-level automaton from which individual answers may be extracted. If a program error is detected, examples of invalid strings are automat- ically produced. We present extensive benchmarks demonstrating that the analysis is efficient and produces results of useful precision. 1 Introduction To detect errors and perform optimizations in Java programs, it is useful to know which values that may occur as results of string expressions. The exact answer is of course undecidable, so we must settle for a conservative approxima- tion. The answers we provide are summarized for each expression by a regular language that is guaranteed to contain all its possible values. Thus we use an upper approximation, which is what most client analyses will find useful. -
Programming the Capabilities of the PC Have Changed Greatly Since the Introduction of Electronic Computers
1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in INTRODUCTION TO PROGRAMMING LANGUAGE Topic Objective: At the end of this topic the student will be able to understand: History of Computer Programming C++ Definition/Overview: Overview: A personal computer (PC) is any general-purpose computer whose original sales price, size, and capabilities make it useful for individuals, and which is intended to be operated directly by an end user, with no intervening computer operator. Today a PC may be a desktop computer, a laptop computer or a tablet computer. The most common operating systems are Microsoft Windows, Mac OS X and Linux, while the most common microprocessors are x86-compatible CPUs, ARM architecture CPUs and PowerPC CPUs. Software applications for personal computers include word processing, spreadsheets, databases, games, and myriad of personal productivity and special-purpose software. Modern personal computers often have high-speed or dial-up connections to the Internet, allowing access to the World Wide Web and a wide range of other resources. Key Points: 1. History of ComputeWWW.BSSVE.INr Programming The capabilities of the PC have changed greatly since the introduction of electronic computers. By the early 1970s, people in academic or research institutions had the opportunity for single-person use of a computer system in interactive mode for extended durations, although these systems would still have been too expensive to be owned by a single person. The introduction of the microprocessor, a single chip with all the circuitry that formerly occupied large cabinets, led to the proliferation of personal computers after about 1975. Early personal computers - generally called microcomputers - were sold often in Electronic kit form and in limited volumes, and were of interest mostly to hobbyists and technicians. -
Data Structure Invariants
Lecture 8 Notes Data Structures 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, André Platzer, Rob Simmons 1 Introduction In this lecture we introduce the idea of imperative data structures. So far, the only interfaces we’ve used carefully are pixels and string bundles. Both of these interfaces had the property that, once we created a pixel or a string bundle, we weren’t interested in changing its contents. In this lecture, we’ll talk about an interface that mimics the arrays that are primitively available in C0. To implement this interface, we’ll need to round out our discussion of types in C0 by discussing pointers and structs, two great tastes that go great together. We will discuss using contracts to ensure that pointer accesses are safe. Relating this to our learning goals, we have Computational Thinking: We illustrate the power of abstraction by con- sidering both the client-side and library-side of the interface to a data structure. Algorithms and Data Structures: The abstract arrays will be one of our first examples of abstract datatypes. Programming: Introduction of structs and pointers, use and design of in- terfaces. 2 Structs So far in this course, we’ve worked with five different C0 types — int, bool, char, string, and arrays t[] (there is a array type t[] for every type t). The character, Boolean and integer values that we manipulate, store LECTURE NOTES Data Structures L8.2 locally, and pass to functions are just the values themselves. For arrays (and strings), the things we store in assignable variables or pass to functions are addresses, references to the place where the data stored in the array can be accessed. -
Regular Languages
id+id*id / (id+id)*id - ( id + +id ) +*** * (+)id + Formal languages Strings Languages Grammars 2 Marco Maggini Language Processing Technologies Symbols, Alphabet and strings 3 Marco Maggini Language Processing Technologies String operations 4 • Marco Maggini Language Processing Technologies Languages 5 • Marco Maggini Language Processing Technologies Operations on languages 6 Marco Maggini Language Processing Technologies Concatenation and closure 7 Marco Maggini Language Processing Technologies Closure and linguistic universe 8 Marco Maggini Language Processing Technologies Examples 9 • Marco Maggini Language Processing Technologies Grammars 10 Marco Maggini Language Processing Technologies Production rules L(G) = {anbncn | n ≥ 1} T = {a,b,c} N = {A,B,C} production rules 11 Marco Maggini Language Processing Technologies Derivation 12 Marco Maggini Language Processing Technologies The language of G • Given a grammar G the generated language is the set of strings, made up of terminal symbols, that can be derived in 0 or more steps from the start symbol LG = { x ∈ T* | S ⇒* x} Example: grammar for the arithmetic expressions T = {num,+,*,(,)} start symbol N = {E} S = E E ⇒ E * E ⇒ ( E ) * E ⇒ ( E + E ) * E ⇒ ( num + E ) * E ⇒ (num+num)* E ⇒ (num + num) * num language phrase 13 Marco Maggini Language Processing Technologies Classes of generative grammars 14 Marco Maggini Language Processing Technologies Regular languages • Regular languages can be described by different formal models, that are equivalent ▫ Finite State Automata (FSA) ▫ Regular -
Formal Languages
Formal Languages Discrete Mathematical Structures Formal Languages 1 Strings Alphabet: a finite set of symbols – Normally characters of some character set – E.g., ASCII, Unicode – Σ is used to represent an alphabet String: a finite sequence of symbols from some alphabet – If s is a string, then s is its length ¡ ¡ – The empty string is symbolized by ¢ Discrete Mathematical Structures Formal Languages 2 String Operations Concatenation x = hi, y = bye ¡ xy = hibye s ¢ = s = ¢ s ¤ £ ¨© ¢ ¥ § i 0 i s £ ¥ i 1 ¨© s s § i 0 ¦ Discrete Mathematical Structures Formal Languages 3 Parts of a String Prefix Suffix Substring Proper prefix, suffix, or substring Subsequence Discrete Mathematical Structures Formal Languages 4 Language A language is a set of strings over some alphabet ¡ Σ L Examples: – ¢ is a language – ¢ is a language £ ¤ – The set of all legal Java programs – The set of all correct English sentences Discrete Mathematical Structures Formal Languages 5 Operations on Languages Of most concern for lexical analysis Union Concatenation Closure Discrete Mathematical Structures Formal Languages 6 Union The union of languages L and M £ L M s s £ L or s £ M ¢ ¤ ¡ Discrete Mathematical Structures Formal Languages 7 Concatenation The concatenation of languages L and M £ LM st s £ L and t £ M ¢ ¤ ¡ Discrete Mathematical Structures Formal Languages 8 Kleene Closure The Kleene closure of language L ∞ ¡ i L £ L i 0 Zero or more concatenations Discrete Mathematical Structures Formal Languages 9 Positive Closure The positive closure of language L ∞ i L £ L -
Formal Languages
Formal Languages Wednesday, September 29, 2010 Reading: Sipser pp 13-14, 44-45 Stoughton 2.1, 2.2, end of 2.3, beginning of 3.1 CS235 Languages and Automata Department of Computer Science Wellesley College Alphabets, Strings, and Languages An alphabet is a set of symbols. E.g.: 1 = {0,1}; 2 = {-,0,+} 3 = {a,b, …, y, z}; 4 = {, , a , aa } A string over is a seqqfyfuence of symbols from . The empty string is ofte written (Sipser) or ; Stoughton uses %. * denotes all strings over . E.g.: * • 1 contains , 0, 1, 00, 01, 10, 11, 000, … * • 2 contains , -, 0, +, --, -0, -+, 0-, 00, 0+, +-, +0, ++, ---, … * • 3 contains , a, b, …, aa, ab, …, bar, baz, foo, wellesley, … * • 4 contains , , , a , aa, …, a , …, a aa , aa a ,… A lnlanguage over (Stoug hto nns’s -lnlanguage ) is any sbstsubset of *. I.e., it’s a (possibly countably infinite) set of strings over . E.g.: •L1 over 1 is all sequences of 1s and all sequences of 10s. •L2 over 2 is all strings with equal numbers of -, 0, and +. •L3 over 3 is all lowercase words in the OED. •L4 over 4 is {, , a aa }. Formal Languages 11-2 1 Languages over Finite Alphabets are Countable A language = a set of strings over an alphabet = a subset of *. Suppose is finite. Then * (and any subset thereof) is countable. Why? Can enumerate all strings in lexicographic (dictionary) order! • 1 = {0,1} 1 * = {, 0, 1 00, 01, 10, 11 000, 001, 010, 011, 100, 101, 110, 111, …} • for 3 = {a,b, …, y, z}, can enumerate all elements of 3* in lexicographic order -- we’ll eventually get to any given element. -
String Solving with Word Equations and Transducers: Towards a Logic for Analysing Mutation XSS (Full Version)
String Solving with Word Equations and Transducers: Towards a Logic for Analysing Mutation XSS (Full Version) Anthony W. Lin Pablo Barceló Yale-NUS College, Singapore Center for Semantic Web Research [email protected] & Dept. of Comp. Science, Univ. of Chile, Chile [email protected] Abstract to name a few (e.g. see [3] for others). Certain applications, how- We study the fundamental issue of decidability of satisfiability ever, require more expressive constraint languages. The framework over string logics with concatenations and finite-state transducers of satisfiability modulo theories (SMT) builds on top of the basic as atomic operations. Although restricting to one type of opera- constraint satisfaction problem by interpreting atomic propositions tions yields decidability, little is known about the decidability of as a quantifier-free formula in a certain “background” logical the- their combined theory, which is especially relevant when analysing ory, e.g., linear arithmetic. Today fast SMT-solvers supporting a security vulnerabilities of dynamic web pages in a more realis- multitude of background theories are available including Boolector, tic browser model. On the one hand, word equations (string logic CVC4, Yices, and Z3, to name a few (e.g. see [4] for others). The with concatenations) cannot precisely capture sanitisation func- backbones of fast SMT-solvers are usually a highly efficient SAT- tions (e.g. htmlescape) and implicit browser transductions (e.g. in- solver (to handle disjunctions) and an effective method of dealing nerHTML mutations). On the other hand, transducers suffer from with satisfiability of formulas in the background theory. the reverse problem of being able to model sanitisation functions In the past seven years or so there have been a lot of works and browser transductions, but not string concatenations. -
Using Machine Learning to Improve Dense and Sparse Matrix Multiplication Kernels
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Using machine learning to improve dense and sparse matrix multiplication kernels Brandon Groth Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Applied Mathematics Commons, and the Computer Sciences Commons Recommended Citation Groth, Brandon, "Using machine learning to improve dense and sparse matrix multiplication kernels" (2019). Graduate Theses and Dissertations. 17688. https://lib.dr.iastate.edu/etd/17688 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using machine learning to improve dense and sparse matrix multiplication kernels by Brandon Micheal Groth A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Applied Mathematics Program of Study Committee: Glenn R. Luecke, Major Professor James Rossmanith Zhijun Wu Jin Tian Kris De Brabanter The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright c Brandon Micheal Groth, 2019. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my wife Maria and our puppy Tiger. -
Verification-Aware Opencl Based Read Mapper for Heterogeneous
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 CORAL: Verification-aware OpenCL based Read Mapper for Heterogeneous Systems Sidharth Maheshwari, Venkateshwarlu Y. Gudur, Rishad Shafik, Senion Member, IEEE, Ian Wilson, Alex Yakovlev, Fellow, IEEE, and Amit Acharyya, Member, IEEE Abstract—Genomics has the potential to transform medicine from reactive to a personalized, predictive, preventive and participatory (P4) form. Being a Big Data application with continuously increasing rate of data production, the computational costs of genomics have become a daunting challenge. Most modern computing systems are heterogeneous consisting of various combinations of computing resources, such as CPUs, GPUs and FPGAs. They require platform-specific software and languages to program making their simultaneous operation challenging. Existing read mappers and analysis tools in the whole genome sequencing (WGS) pipeline do not scale for such heterogeneity. Additionally, the computational cost of mapping reads is high due to expensive dynamic programming based verification, where optimized implementations are already available. Thus, improvement in filtration techniques is needed to reduce verification overhead. To address the aforementioned limitations with regards to the mapping element of the WGS pipeline, we propose a Cross-platfOrm Read mApper using opencL (CORAL). CORAL is capable of executing on heterogeneous devices/platforms simultaneously. It can reduce computational time by suitably distributing the workload without any additional programming effort. We showcase this on a quadcore Intel CPU along with two Nvidia GTX 590 GPUs, distributing the workload judiciously to achieve up to 2× speedup compared to when only CPUs are used. To reduce the verification overhead, CORAL dynamically adapts k-mer length during filtration. -
Applying Front End Compiler Process to Parse Polynomials in Parallel
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-16-2020 10:30 AM Applying Front End Compiler Process to Parse Polynomials in Parallel Amha W. Tsegaye, The University of Western Ontario Supervisor: Dr. Marc Moreno Maza, The University of Western Ontario A thesis submitted in partial fulfillment of the equirr ements for the Master of Science degree in Computer Science © Amha W. Tsegaye 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Computer Sciences Commons, and the Mathematics Commons Recommended Citation Tsegaye, Amha W., "Applying Front End Compiler Process to Parse Polynomials in Parallel" (2020). Electronic Thesis and Dissertation Repository. 7592. https://ir.lib.uwo.ca/etd/7592 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Parsing large expressions, in particular large polynomial expressions, is an important task for computer algebra systems. Despite of the apparent simplicity of the problem, its efficient software implementation brings various challenges. Among them is the fact that this is a memory bound application for which a multi-threaded implementation is necessarily limited by the characteristics of the memory organization of supporting hardware. In this thesis, we design, implement and experiment with a multi-threaded parser for large polynomial expressions. We extract parallelism by splitting the input character string, into meaningful sub-strings that can be parsed concurrently before being merged into a single polynomial.