Multispecies Coalescent Analysis Unravels the Non-Monophyly and Controversial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuroptera: Coniopterygidae) of the Arabian Peninsula
FAUNA OF ARABIA 22: 381-434 Date of publication: 18.12.2006 The dusty lacewings (Neuroptera: Coniopterygidae) of the Arabian Peninsula Gyorgy Sziraki and Antonius van Harten A b s t r act: The descriptions of nine new coniopterygid species (Cryptoscenea styfaris n. sp., Coniopteryx (Xeroconiopteryx) pfat yarcus n. sp., C (X) caudata n. sp., C (X) dudichi n. sp., C (X) stylobasalis n. sp., C (X) armata n. sp., C (X) loksai n. sp., C (Coniopteryx) gozmanyi n. sp., Conwentzia obscura n. sp.), and an annotated list of 53 other species of dusty lacewings found in the Arabian Peninsula are given, together with an identification key. Nine described species (Aleuropteryx wawrikae, Coniocompsa smithersi, Nimboa espanoli, N. kasyi, N. ressii, Coniopteryx (X) aegyptiaca, C (X) hastata, C (X) kerzhneri, C (X) mongolica) are also new to the fauna of the Arabian Peninsula. Aleuropteryx cruciata Szid.ki, 1990 is regarded as a junior synonym of A. arabica Meinander, 1977, while Helicoconis serrata Meinander, 1979 is transferred to the genus Cryptoscenea. A new informal species-group (the unguihipandriata-group) is proposed within the subgenus Xeroconiopteryx. Coniopteryx (X) martinmeinanderi nom. nov. is pro posed for C (X) forcata Meinander, 1998, which is a junior primary homonym. 4.~, 0.fi?--' ~ J (Coniopterygidae :~~, ~) o~' ~~, ~~) ~ ~ I! .. ~ :; J.jJpl ;y..ill ~":il 4J.~j if ~y of' ~ ~ WLi ~JJ t.lyl a.........;.....A..PJ f' :~~ 41"';"'i ~ ~ ;~..b:- t.lyi L4i J.>- J.j.J4' y t.'f! a.........; j ~i f' .~ c.l:A.. Jl ~W,l ,~..rJI ; .;:!y.,.1 Helicoconis -
Acta Zool. Hung. 53 (Suppl
Acta Zoologica Academiae Scientiarum Hungaricae 53 (Suppl. 1), pp. 211–224, 2007 THE DESCRIPTION OF THERITAS GOZMANYI FROM THE ANDES AND ITS SPECTROSCOPIC CHARACTERIZATION WITH SOME NOTES ON THE GENUS (LEPIDOPTERA: LYCAENIDAE: EUMAEINI) BÁLINT, ZS.1, WOJTUSIAK, J.2, KERTÉSZ, K.3 and BIRÓ, L. P.3 1Department of Zoology, Hungarian Natural History Museum H-1088 Budapest, Baross u. 13, Hungary; E-mail: [email protected] 2Zoological Museum, Jagiellonian University, 30–060 Kraków, Ingardena 6, Poland 3Department of Nanotechnology, Research Institute for Technical Physics and Material Science H-1525 Budapest, P.O. Box 49, Hungary A key for separating sister genera Arcas SWAINSON, 1832 and Theritas HÜBNER, 1818, plus eight nominal species placed in Theritas is given. Three species groups within the latter genus are distinguished. A new species, Theritas gozmanyi BÁLINT et WOJTUSIAK, sp. n. is described form Ecuador. The presence of a discal scent pad on the fore wing dorsal surface and spectral characteristics of the light reflected from the central part of the discal cell were used as charac- ters for discrimination of the new species. Key words: androconial clusters, spectroscopy, structural colours, Theritas species-groups INTRODUCTION The generic name Theritas was established by monotypy for the new species Theritas mavors by HÜBNER (1818). The genus-group name was not in general use until the revision of D’ABRERA (1995), who placed 23 species-group taxa in Theritas on the basis of the character “the pennent-like tail which projects out- wards, and an approximate right angle from, and as a part of, a squared-off projec- tion of the tapered h. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
A New Type of Neuropteran Larva from Burmese Amber
A 100-million-year old slim insectan predator with massive venom-injecting stylets – a new type of neuropteran larva from Burmese amber Joachim T. haug, PaTrick müller & carolin haug Lacewings (Neuroptera) have highly specialised larval stages. These are predators with mouthparts modified into venominjecting stylets. These stylets can take various forms, especially in relation to their body. Especially large stylets are known in larva of the neuropteran ingroups Osmylidae (giant lacewings or lance lacewings) and Sisyridae (spongilla flies). Here the stylets are straight, the bodies are rather slender. In the better known larvae of Myrmeleontidae (ant lions) and their relatives (e.g. owlflies, Ascalaphidae) stylets are curved and bear numerous prominent teeth. Here the stylets can also reach large sizes; the body and especially the head are relatively broad. We here describe a new type of larva from Burmese amber (100 million years old) with very prominent curved stylets, yet body and head are rather slender. Such a combination is unknown in the modern fauna. We provide a comparison with other fossil neuropteran larvae that show some similarities with the new larva. The new larva is unique in processing distinct protrusions on the trunk segments. Also the ratio of the length of the stylets vs. the width of the head is the highest ratio among all neuropteran larvae with curved stylets and reaches values only found in larvae with straight mandibles. We discuss possible phylogenetic systematic interpretations of the new larva and aspects of the diversity of neuropteran larvae in the Cretaceous. • Key words: Neuroptera, Myrmeleontiformia, extreme morphologies, palaeo evodevo, fossilised ontogeny. -
International Conference Integrated Control in Citrus Fruit Crops
IOBC / WPRS Working Group „Integrated Control in Citrus Fruit Crops“ International Conference on Integrated Control in Citrus Fruit Crops Proceedings of the meeting at Catania, Italy 5 – 7 November 2007 Edited by: Ferran García-Marí IOBC wprs Bulletin Bulletin OILB srop Vol. 38, 2008 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2008 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Julius Kuehn Institute (JKI), Federal University of Gent Research Centre for Cultivated Plants Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Montfavet Cedex (France) ISBN 978-92-9067-212-8 http://www.iobc-wprs.org Organizing Committee of the International Conference on Integrated Control in Citrus Fruit Crops Catania, Italy 5 – 7 November, 2007 Gaetano Siscaro1 Lucia Zappalà1 Giovanna Tropea Garzia1 Gaetana Mazzeo1 Pompeo Suma1 Carmelo Rapisarda1 Agatino Russo1 Giuseppe Cocuzza1 Ernesto Raciti2 Filadelfo Conti2 Giancarlo Perrotta2 1Dipartimento di Scienze e tecnologie Fitosanitarie Università degli Studi di Catania 2Regione Siciliana Assessorato Agricoltura e Foreste Servizi alla Sviluppo Integrated Control in Citrus Fruit Crops IOBC/wprs Bulletin Vol. -
Neuropterida of the Lower Cretaceous of Southern England, with a Study on Fossil and Extant Raphidioptera
NEUROPTERIDA OF THE LOWER CRETACEOUS OF SOUTHERN ENGLAND, WITH A STUDY ON FOSSIL AND EXTANT RAPHIDIOPTERA A thesis submitted to The University of Manchester for the degree of PhD in the Faculty of Engineering and Physical Sciences 2010 JAMES EDWARD JEPSON SCHOOL OF EARTH, ATMOSPHERIC AND ENVIRONMENTAL SCIENCES TABLE OF CONTENTS FIGURES.......................................................................................................................8 TABLES......................................................................................................................13 ABSTRACT.................................................................................................................14 LAY ABSTRACT.........................................................................................................15 DECLARATION...........................................................................................................16 COPYRIGHT STATEMENT...........................................................................................17 ABOUT THE AUTHOR.................................................................................................18 ACKNOWLEDGEMENTS..............................................................................................19 FRONTISPIECE............................................................................................................20 1. INTRODUCTION......................................................................................................21 1.1. The Project.......................................................................................................21 -
Moths and Butterflies
LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004MOTHS LJL©2004 LJL©2004AND BUTTERFLIES LJL©2004 LJL©2004 (LEPIDOPTERA) LJL©2004 LJL©2004 LJL©2004 FROM LJL©2004 BAHÍA LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004HONDA LJL©2004 LJL©2004 AND CANALES LJL©2004 LJL©2004 DE TIERRA LJL©2004 ISLANDLJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004(VERAGUAS, LJL©2004 LJL©2004 PANAMA LJL©2004) LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 -
Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)
Biodiversity Data Journal 3: e4830 doi: 10.3897/BDJ.3.e4830 Data Paper Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera) Ulrike Aspöck‡§, Horst Aspöck , Agostino Letardi|, Yde de Jong ¶,# ‡ Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria § Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University (MUW), Kinderspitalgasse 15, 1090, Vienna, Austria | ENEA, Technical Unit for Sustainable Development and Agro-industrial innovation, Sustainable Management of Agricultural Ecosystems Laboratory, Rome, Italy ¶ University of Amsterdam - Faculty of Science, Amsterdam, Netherlands # University of Eastern Finland, Joensuu, Finland Corresponding author: Ulrike Aspöck ([email protected]), Horst Aspöck (horst.aspoeck@meduni wien.ac.at), Agostino Letardi ([email protected]), Yde de Jong ([email protected]) Academic editor: Benjamin Price Received: 06 Mar 2015 | Accepted: 24 Mar 2015 | Published: 17 Apr 2015 Citation: Aspöck U, Aspöck H, Letardi A, de Jong Y (2015) Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera). Biodiversity Data Journal 3: e4830. doi: 10.3897/BDJ.3.e4830 Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. -
Neuroptera, Insecta)
Arthropod Structure & Development 37 (2008) 410–417 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Sperm ultrastructure and spermiogenesis of Coniopterygidae (Neuroptera, Insecta) Z.V. Zizzari, P. Lupetti, C. Mencarelli, R. Dallai* Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy article info abstract Article history: The spermiogenesis and the sperm ultrastructure of several species of Coniopterygidae have been ex- Received 16 January 2008 amined. The spermatozoa consist of a three-layered acrosome, an elongated elliptical nucleus, a long Accepted 17 March 2008 flagellum provided with a 9þ9þ3 axoneme and two mitochondrial derivatives. No accessory bodies were observed. The axoneme exhibits accessory microtubules provided with 13, rather than 16, protofilaments in their tubular wall; the intertubular material is reduced and distributed differently from that observed Keywords: in other Neuropterida. Sperm axoneme organization supports the isolated position of the family Insect spermiogenesis previously proposed on the basis of morphological data. Insect sperm ultrastructure 2008 Elsevier Ltd. All rights reserved. Electron microscopy Ó Insect phylogeny 1. Introduction appear normal in the larval instars, but progressively degenerate in the pupa so that in the adult only a ventral oval receptacle Neuropterida (Neuroptera sensu lato) comprise the orders filled with spermatozoa and secretion is evident; this single re- Raphidioptera (snakeflies), Megaloptera (alderflies and dobson- ceptacle is considered to be a seminal vesicle. A wide ductus flies) and the extremely heterogeneous Neuroptera (lacewings). ejaculatorius leads from the vesicula seminalis to the penis The first modern approach towards systematization of the Neuro- (Withycombe, 1925; Meinander, 1972). -
Journal of the Lepidopterists' Society
JOURNAL OF THE LEPIDOPTERISTS' SOCIETY Volume 25 1971 Number 2 A REVIEW OF THE GENUS ARGAS WITH DESCRIPTIONS OF NEW SPECIES (LYCAENIDAE, STRYMONINI) S. S. NICOLAY 1500 Wakefield Drive, Virginia Beach, Virginia In 1832, William Swainson described Arcas as a "subgenus" of the sub family "Theclanae" (= Theclinae) and established Papilio imperialis Cramer as the type species. Yet, most writers throughout the intervening 138 years have neglected to use the name, to identify additional species as belonging to this subgenus or to further define and clarify its status. The purpose of this work is to establish Arcas as a valid genus of the Lycaenidae, and to separate those species that belong to Arcas from thc all-inclusive genus Thecla. Arcas, as presently conceived, contains seven species; five heretofore contained in Thecla Fabricius, the sixth and seventh described as new. The male of one species, A. splendor Druce has been unknown for almost 64 ycars and is herein described and figured for the first time. Clench (1963) allied Arcas with Atlides Htibner and Pseudolycaena Wallen gren. Certainly the three genera share many structural similarities. By the same token, Arcas may be readily separated from both by such sig nificant characters as the male scent-spot, the very deep tornal cleft and extraordinarily long tails on the hind wing, and obvious differences in the genitalia of both sexes. All species in the genus are Neotropical. The type species, A. imperialis has the widest distribution, being found virtually unchanged in habitus from Mexico south through Panama and throughout South America to southern Brazil and Bolivia (Figure 6). -
Phylogeny and Bayesian Divergence Time Estimates of Neuropterida (Insecta) Based on Morphological and Molecular Data
Systematic Entomology (2010), 35, 349–378 DOI: 10.1111/j.1365-3113.2010.00521.x On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data SHAUN L. WINTERTON1,2, NATE B. HARDY2 and BRIAN M. WIEGMANN3 1School of Biological Sciences, University of Queensland, Brisbane, Australia, 2Entomology, Queensland Primary Industries & Fisheries, Brisbane, Australia and 3Department of Entomology, North Carolina State University, Raleigh, NC, U.S.A. Abstract. Neuropterida comprise the holometabolan orders Neuroptera (lacewings, antlions and relatives), Megaloptera (alderflies, dobsonflies) and Raphidioptera (snakeflies) as a monophyletic group sister to Coleoptera (beetles). The higher-level phylogenetic relationships among these groups, as well as the family-level hierarchy of Neuroptera, have to date proved difficult to reconstruct. We used morphological data and multi-locus DNA sequence data to infer Neuropterida relationships. Nucleotide sequences were obtained for fragments of two nuclear genes (CAD, 18S rDNA) and two mitochondrial genes (COI, 16S rDNA) for 69 exemplars representing all recently recognized families of Neuropterida as well as outgroup exemplars from Coleoptera. The joint posterior probability of phylogeny and divergence times was estimated using a Bayesian relaxed-clock inference method to establish a temporal sequence of cladogenesis for the group over geological time. Megaloptera were found to be paraphyletic with respect to the rest of Neuropterida, calling into question the validity of the ordinal status for Megaloptera as presently defined. Ordinal relationships were weakly supported, and monophyly of Megaloptera was not recovered in any total- evidence analysis; Corydalidae were frequently recovered as sister to Raphidioptera. Only in relaxed-clock inferences were Raphidioptera and a paraphyletic Megaloptera recovered with strong support as a monophyletic group sister to Neuroptera. -
Threatened, Endangered, and Sensitive Insects in Eastern Oregon and Washington Forests and Adiacent Lands
JamesR. LaBonte, P ant D v s on OregonDepartrnent of Agr cu ture 635Capto NE Sae.n,Oregon97810email j abonte@odastate or.us DonaldW Scott, B ue Mountans Pestlvlanagement Serv ce Center,USDA Forest Service, 140T Geke er Lane.La Grande,Oregon 97850 James D. Mclver and Jane Leslie Hayes,Pacfic NorthwestResearch Staton Forestryand Fange Scences LaboratorvT40T GekeLer Lane La Grande Oregon97850 Threatened,Endangered, and SensitiveInsects in EasternOregon and WashingtonForests and AdiacentLands Abstract lnsecrspla) an inrcgral role in ihe heald of lbrest ecosystens. While mosl insect spcciesin easiernOregon and [ishington forestsare presumcdto be abundantand secure.some may bc rare or in decline.Accounts are given lbr iltcen east-sideforesl insed speciescurrenrly listed as threatcned.endangered. or rensitile (TES). We discussreasons for thcir listjng, \\'hich includc peripheralpopulations. relict spccics.species with resficted habitatsor hosls. and endemi( \peLi(\ Wherherlhc nccdsofcurently listcd TES east-sideibrest insectsare being met by cuffent managementpracdces can onl) be ascenainedil adequateinforDarion is availableon their distribuiion. abundance.habital requiremenls,and biologies. However' thjs infofmation is lacking for many specics.For instance.i\c of lhe TES speciesdiscussed in ibis paper have poorly known di\tributions, andbeucr information may changctheir status.Applicatjon ofgeneral principlcsforthe conser!adonofinvertebrale di\crsj!y andfunctions na,v help prevento$ercas! sideforest inseclsliom acquiringlederal or stateTESclassiiicalion and could aid spcciesalreadl lisred. Manl' pracricesalrcady undenakenb,,- lcdcral land m.rnagersma! be helping to prolec! TES popula- lions and habirar.Spcciiic managemenlpractices, such as preserlalion of key habrlu|sat risk of degfadalionor alteration (e.9., springs and sphagnun bogs), may be ncccssarl,to prevenr fic dccljne or local extinction of someTES insccls.