Clemson University TigerPrints All Theses Theses 8-2018 Multiscale Behavior of Fused Deposition Additively Manufactured Thermoplastic Cellular Materials Kaitlynn Melissa Conway Clemson University,
[email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Conway, Kaitlynn Melissa, "Multiscale Behavior of Fused Deposition Additively Manufactured Thermoplastic Cellular Materials" (2018). All Theses. 2954. https://tigerprints.clemson.edu/all_theses/2954 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
[email protected]. MULTISCALE BEHAVIOR OF FUSED DEPOSITION ADDITIVELY MANUFACTURED THERMOPLASTIC CELLULAR MATERIALS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Kaitlynn Melissa Conway August 2018 Accepted by: Dr. Garrett J. Pataky: Thesis Advisor, Committee Chair Dr. Joshua D. Summers Dr. Huijuan Zhao Abstract Cellular materials are known for being lightweight as well as deforming in unique ways. Cellular materials have become more viable due to additive manufacturing (AM). AM cellular materials are easier to fabricate compared to traditional cellular materials and AM cellular materials are not as limited in geometry as traditional fabrication methods were. AM materials were studied in this paper in a two-phase approach. Phase 1 focused on the global mechanical properties of AM cellular materials. Phase 2 focused on the crazing of AM thermoplastic glassy polymers and how additive manufacturing affects the behavior or cellular materials. Because cellular materials do not have a consistent cross sectional area throughout the material, there is not a standard cross sectional area to use for property calculations.