(PHBV) Bioplastic for Food Packaging Applications Disse

Total Page:16

File Type:pdf, Size:1020Kb

(PHBV) Bioplastic for Food Packaging Applications Disse Natural Rubber Toughened Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Bioplastic for Food Packaging Applications Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoying Zhao Graduate Program in Food Science and Technology The Ohio State University 2018 Dissertation Committee Yael Vodovotz, Advisor Katrina Cornish, Advisor Dr. Kurt Koelling Dr. David Nagib 1 Copyrighted by Xiaoying Zhao 2018 2 Abstract The packaging industry is searching for bio-based alternatives. Poly-(β- hydroxybutyrate-co-valerate) (PHBV) is a promising bioplastic made from bacterial fermentation of renewable resources. It has mechanical properties similar to propylene (PP) but is more brittle. PHBV toughness and flexibility must be improved before it can be commercially used for packaging. An industrially viable and economically effective way to toughen PHBV is blending it with flexible and ductile materials. Natural rubber (NR) is a promising toughening material due to its unique combination of ductility, flexibility, and renewability. NR has various packaging applications such as films and tapes. Blends from rubber and thermoplastics, such as polyethylene and PP, with improved toughness, flexibility, and other properties have been used in packaging industry. Therefore, the objective of this work is to improve PHBV toughness and flexibility through NR incorporation, elucidate the reaction mechanism of the coagent- assisted peroxide-induced reactive extrusion of NR and PHBV, optimize the PHBV/NR blends, and evaluate their suitability for food packaging applications. In this study, 2-25 wt. %NR was incorporated into PHBV through reactive extrusion in the presence of peroxide to improve PHBV flexibility and toughness. The PHBV/NR blends had two phases with crosslinked rubber being dispersed in PHBV matrix. Rubber addition restricted PHBV crystallization and decreased its degree of crystallinity. The blend had improved flexibility, toughness, thermal stability, and melt ii strength, but decreased tensile strength than pristine PHBV. The blend performance had clear rubber loading-dependent differences. To improve rubber toughening efficiency and the PHBV/NR blend strength, a trifunctional acrylic coagent was synergistically used with the peroxide during the melt blending process. The reaction mechanism was investigated through FTIR and NMR analysis. Coagent and peroxide synergically crosslinked rubber phase and grafted PHBV onto rubber backbones. The presence of coagent improved peroxide crosslinking efficiency and suppressed peroxy-radical caused polymer degradation, leading to a homogeneous rubber dispersion, increased rubber modulus and cohesive strength, and improved PHBV-rubber compatibility. The peroxide-coagent treatment decreased PHBV crystallinity and crystal size. The new PHBV/NR blends had a 70% better impact strength than pristine PHBV, 40% better tensile strength then peroxide-only cured blend, and a broadened processing window. Mechanical properties of the peroxide-coagent treated PHBV/NR blends were optimized using a response surface methodology (RSM) with a Box-Behnken design. Ascending coagent loading led to increased toughness and tensile strength, but decreased flexibility of the PHBV/NR blends. Ascending rubber loading led to increased flexibility, decreased tensile strength, and maximal toughness at 15 wt. % loading. Peroxide had minimal effect on tensile strength and flexibility, but increased toughness. The optimal PHBV/NR blend was obtained at 15 wt. % NR, 4.2 phr peroxide, and 3 phr coagent, with a tensile strength of 28.1 MPa, notched impact strength of 27.5 J/m, flex modulus (1% secant modulus) of 8,679 MPa. The blends degraded by ~15% in 53 days in a lab-scale iii aerobic composting system at 58 °C. Trays made from the optimized PHBV/NR blend had water vapor permeability and sealability comparable to polypropylene, good stabilitywith acid food under freezing and microwave heating. Migration studies indicated that the trays were safe for food-contact applications. This research demonstrated that the bio-based and bio-degradable PHBV/NR blends potentially can be used as bio-alternatives to the petroleum-based plastic packaging materials. iv Dedication To my family, my advisors, and my faithful friends v Acknowledgments I would like to express my sincerest gratitude to Dr. Yael Vodovotz and Dr. Katrina Cornish for their endless support, patience, motivation, and immense knowledge. Your advice on my research has been invaluable. I would also like to thank my committee members, Dr. Kurt Koelling and Dr. David Nagib, for their great support and insightful suggestions. I would like to thank the Center for Advanced Processing and Packaging Studies (CAPPS) for funding this research project. I would also like to thank Polymers Center of Excellence in Charlotte, North Carolina, Progressive Packaging in Plymouth, Minnesota, and Priority Design in Columbus, Ohio for assisting in sheeting and thermoforming of the materials. I would like to thank Dr. Jose Castro for providing the Instron universal testing machine and impact tester, Dr. Tea Meulia for assisting in TEM imaging, and Dr. Ming Gao from the Liquid Crystal Institute of Kent State University for assisting in TEM sample sectioning. I would like to thank my group members in Food Science and Chemical Engineering, for assisting in extrusion, rheology, mechanical, and biodegradation testing. vi Vita 2005-2009………………...............................Bachelor, Food Science and Engineering, Jilin University, China 2009-2012…………………………………...Master, Food Science and Engineering, Jilin University, China 2012-2014…………………………………...Research Assistant, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 2014-2018…………………………………...Graduate Research Assistant, The Ohio State University, Doctor of Philosophy Candidate Publications 1. Xiaoying Zhao, Varun Venoor, Kurt Koelling, Katrina Cornish, Yael Vodovotz. Bio-based Blends from Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Natural Rubber for Packaging Applications. J Appl Polym Sci 2018. DOI: 10.1002/app.47334. 2. Xiaoying Zhao, Katrina Cornish, Yael Vodovotz. Synergistic mechanisms underlie the peroxide and coagent improvement of natural rubber toughened PHBV mechanical performance. Submitted. vii 3. Xiaoying Zhao, Kuihao Ji, Katrina Cornish, Yael Vodovotz. Optimal Mechanical Properties of Biodegradable Natural Rubber-Toughened PHBV Bioplastics intended for Food Packaging Applications. Submitted. 4. Yael Vodovotz, Katrina Cornish, Xiaoying Zhao, Sunny Modi. Fabrication and improved performance of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) for packaging by addition of high molecular weight natural rubber. Proceedings of the International Elastomer Conference, Pittsburgh, PA, October 10-13, 2016. Fields of Study Major Field: Food Science and Technology viii Table of Contents Abstract ............................................................................................................................... ii Dedication ........................................................................................................................... v Acknowledgments.............................................................................................................. vi Vita .................................................................................................................................... vii List of Tables ..................................................................................................................... xi List of Figures ................................................................................................................... xii Chapter 1. Introduction ....................................................................................................... 1 Chapter 2. Statement of Problem ........................................................................................ 4 Chapter 3. Literature Review .............................................................................................. 6 3.1 Bioplastics Landscape ............................................................................................... 7 3.2 Compare with Conventional Plastics ...................................................................... 31 3.3 Toughening Methods .............................................................................................. 34 3.4 Compatibilization of Polymer Blends by Reactive Extrusion ................................ 46 Chapter 4. Bio-based Blends from Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Natural Rubber for Packaging Applications ..................................................................... 52 Abstract ......................................................................................................................... 52 4.1 Introduction ............................................................................................................. 54 4.2 Experimental ........................................................................................................... 60 4.3 Results and Discussion ........................................................................................... 65 3.4 Conclusions ............................................................................................................. 90 Chapter 5. Synergistic Mechanisms Underlie the Peroxide and Coagent Improvement of Natural Rubber
Recommended publications
  • (PHBV) Co-Polymer: a Critical Review
    Rev Environ Sci Biotechnol (2021) 20:479–513 https://doi.org/10.1007/s11157-021-09575-z (0123456789().,-volV)(0123456789().,-volV) REVIEW PAPER Improving biological production of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) co-polymer: a critical review Grazia Policastro . Antonio Panico . Massimiliano Fabbricino Received: 23 January 2021 / Accepted: 2 April 2021 / Published online: 13 April 2021 Ó The Author(s) 2021 Abstract Although poly(3-hydroxybutyrate-co-3- indicates that the addition of 3HV precursors is hydroxyvalerate) (PHBV) is the most promising capable to dramatically enhance the hydroxyvalerate biopolymer for petroleum-based plastics replacement, fraction in the produced biopolymers. On the other the low processes productivity as well as the high sale hand, due to the high costs of the 3HV precursors, the price represent a major barrier for its widespread utilization of wild bacterial species capable to produce usage. The present work examines comparatively the the hydroxyvalerate fraction from unrelated carbon existing methods to enhance the yield of the PHBV co- sources (i.e. no 3HV precursors) also can be consid- polymer biologically produced and/or reduce their ered a valuable strategy for costs reduction. Moreover, costs. The study is addressed to researchers working metabolic engineering techniques can be successfully on the development of new biological production used to promote 3HV precursors-independent biosyn- methods and/or the improvement of those currently thesis pathways and enhance the process productivity. used. At this aim, the authors have considered the The use of mixed cultures or extremophile bacteria analysis of some crucial aspects related to substrates avoids the need of sterile working conditions, and and microorganism’s choice.
    [Show full text]
  • The Effects of Various Retort Motions on the Rate of Heat Penetration of a Food Simulant in Pouches" (2018)
    Clemson University TigerPrints All Dissertations Dissertations 12-2018 The ffecE ts of Various Retort Motions on the Rate of Heat Penetration of a Food Simulant in Pouches Mollye MacNaughton Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation MacNaughton, Mollye, "The Effects of Various Retort Motions on the Rate of Heat Penetration of a Food Simulant in Pouches" (2018). All Dissertations. 2260. https://tigerprints.clemson.edu/all_dissertations/2260 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE EFFECTS OF VARIOUS RETORT MOTIONS ON THE RATE OF HEAT PENETRATION OF A FOOD SIMULANT IN POUCHES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Food Technolgy by Mollye MacNaughton December 2018 Accepted by: Dr. William Scott Whiteside, Committee Chair Dr. Taner Baysal Dr. Paul Dawson Dr. Ron Thomas i ABSTRACT Processing foods in a retort is a reliable and established method of creating sterile and shelf stable products. The formula of the product and the package size dictates the processing time. Rotary retorts were invented to agitate cans to reduce the processing times and create uniform heating within the can. Recently, horizontal
    [Show full text]
  • Film Performance of Poly(Lactic Acid) Blends for Packaging Applications
    RESEARCH ARTICLE Film Performance of Poly(lactic acid) Blends for Packaging Applications PREFACE API 2015 Carlos Diaz Hsun Yi (Sarah) Pao Rochester Institute of Technology Rochester Institute of Technology [email protected] [email protected] Sungyoung Kim Rochester Institute of Technology [email protected] ABSTRACT Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. PLA based films for food packaging has been an area of both commercial and research interest within the context of sustainability. In spite of its high strength, packaging applications have been limited because PLA is more brittle than traditional oil-based plastics. Because of this, films display low tear and impact resistance and produce a loud crackling sound when manipulated. Although many studies address the toughening of PLA in the bulk, little attention has been placed on the film performance. The present study is aimed at providing a survey of binary PLA based blends with other biodegradable and non-biodegradable plastics. Acrylic impact modifier (AIM, 5 wt. %), ethylene vinyl acetate (EVA, 20 wt.%), polyhydroxyalkanoate (PHA, 10 wt.%), polycaprolactone (PCL, 30 wt.%), polybutylene succinate (PBS, 20 wt.%) and polypropylene carbonate (PPC, 30 wt.%) were each blended with PLA through single-screw extrusion and converted into films via the blown-film process. Tear and impact resistance, heat seal strength, and noise level were measured. EVA, PHA, PCL, and PBS improved the tear resistance with EVA having the highest effect (>2x). Similarly AIM, EVA and PPC improved the resistance of the film to impact-puncture penetration. Heat seal strength was significantly improved by the PHA and moderately increased by AIM (2x) and EVA.
    [Show full text]
  • Development of Polylactic Acid-Polyhydroxybutyrate Blends for Packaging Applications
    Development of Polylactic Acid-Polyhydroxybutyrate Blends for Packaging Applications A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering DEHAO KONG B. Eng. School of Engineering College of Science, Engineering and Health RMIT University December 2017 1 DECLARATION I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. DEHAO KONG December 21, 2017 2 ACKNOWLEDGEMENTS I sincerely thank my supervisors, Associate Prof. Nhol Kao and Prof. Sati N. Bhattacharya for their supervision and for the opportunity to start and achieve my goal of obtaining a Master. It would not have been possible without your guidance, patience, understanding, and hard work throughout the process. I appreciate their immense knowledge and expertise and their assistance at all levels of the research project. I would also like to thank the staff members of Rheology and Materials Processing Group, especially Mike Allan, Dr. Muthu Pannirselvam and Cameron Crombie for their help in operational training initially and continuous support during the use of instruments throughout the course of the project. I would also like to acknowledge the support and encouragement of my colleagues in the Chemical and Environmental Engineering, School of Engineering as well.
    [Show full text]
  • Aerobic Biodegradation of Polyhydroxybutyrate in Compost
    ENVIRONMENTAL ENGINEERING SCIENCE Volume 28, Number 7, 2011 ª Mary Ann Liebert, Inc. DOI: 10.1089/ees.2010.0208 Aerobic Biodegradation of Polyhydroxybutyrate in Compost Maria T. Gutierrez-Wing,1,2,* Benjamin E. Stevens,3 Chandra S. Theegala,4 Ioan I. Negulescu,5,6 and Kelly A. Rusch1 Departments of 1Civil and Environmental Engineering, 4Biological and Agricultural Engineering, and 5Chemistry; 2Louisiana Sea Grant College Program 116 Elab; 6School of Human Ecology; Louisiana State University, Baton Rouge, Louisiana. 3Sage Environmental Consulting, Baton Rouge, Louisiana. Received: July 6, 2010 Accepted in revised form: February 3, 2011 Abstract Aerobic biodegradation of polyhydroxybutyrate (PHB) was investigated. Mass loss experiments were performed to determine degradation kinetics. Tributyl citrate was blended with some test samples to determine the impact of a natural plasticizer on biodegradation. Effects of biodegradation in the physical, chemical, thermal, and mechanical properties of the materials tested were determined. Plates of different thicknesses (0.24, 1.2, 3.5, and 5.0 mm) were degraded to determine the effect of initial mass:initial surface area ratio on degradation rates. The mass:initial surface area is proportional to the plate thickness. PHB biodegradation rates obtained are dependent on the mass:surface area ratio. Temperature affects the relation of degradation rate to initial mass:initial surface area. PHB in plates up to a thickness of 3.5 mm can degrade completely in compost. Plates with an initial mass:initial surface area ratio of < 67 will degrade in < 4 months. Maximum degradation rates were obtained in plates 3.5 mm thick (1.57 mg cm - 2 d - 1) and the minimum in plates 0.24 mm thick (0.16 mg cm - 2 d - 1).
    [Show full text]
  • Validation Guide for Medical Packaging
    VVVAAALLLIIIDDDAAATTTIIIOOONNN GGGUUUIIIDDDEEE Useful guide for Packworld USA Impulse Heat Sealers $29.95 ACKNOWLEDGEMENTS This booklet was prepared by Packworld USA as an aid in the Validation process used in producing and assuring perfectly repeatable heat sealing cycles and more reliable packaging. The contributions of the institutions and the individuals involved are appreciated and gratefully acknowledged. Mr. Ron Pilchik, principal of the Techmark Group, was a key contributor. His book, “Validating Medical Packaging”, cited in this guide, is an important reference in the validation of medical packaging design and process. DISCLAIMER This documentation is for reference only and is not intended to replace good engineering practice and design necessary to apply equipment to a given process. The user is responsible for any and all consequences of the design and application of the equipment. In no manner is Packworld USA liable for any situation by use of this document. For More Information Contact Packworld USA Phone 610-746-2765 Fax 610-759-1766 Email: [email protected] 539 South Main Street Nazareth, PA 18064 www.packworldusa.com Table of Contents What Is A Perfect Seal?....................................................................................................2 Impulse Heat Sealing........................................................................................................3 Calibration Certification of Temperature Controllers and Heatseal Bands .....................4 Maintenance of Packworld Impulse Heat Sealers............................................................5
    [Show full text]
  • Fracture of Polycarbonate/Abs Blends
    FRACTURE OF POLYCARBONATE/ABS BLENDS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. F.A. van Vught, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 27 april 2001 om 13.15 uur door Judith Pouwlien Frederika Inberg geboren op 27 juli 1972 te Britswerd Dit proefschrift is goedgekeurd door de promotor: Prof. L.C.E. Struik en de assistent-promotor: Dr. R.J. Gaymans ".... Het voornaamste probleem met die Tijdbesparingsobsessie ligt heel eenvoudig: tijd kun je niet besparen. Je kunt hem alleen besteden." Benjamin Hoff, in Tao van Poeh Fracture of polycarbonate/ABS blends J.P.F. Inberg Thesis, University of Twente, Enschede, The Netherlands April 2001 ISBN 90 365 1553x Cover: TEM picture of deformation zone ahead of an arrested crack in a co-continuous polycarbonate/ABS blend Ó J.P.F. Inberg Printed by: Grafisch Centrum Twente, Enschede Voorwoord Met dit proefschrift sluit ik mijn tijd binnen de onderzoeksgroep 'Synthese en Technologie van Engineering Plastics' (STEP) af, en komt er tevens een einde aan mijn tijd in Enschede. Het schrijven van een proefschrift mag dan een wat eenzaam karwei zijn, velen hebben bijgedragen aan het tot stand komen van dit proefschrift, waarvoor allen dank. Een aantal van hen wil ik hier met name noemen. Mijn mentor Reinoud Gaymans, voor het bieden van de mogelijkheid te promoveren binnen een gezellige groep, en de begeleiding van de afgelopen 4 jaar. Mijn promotor Professor Struik, voor de kritische maar altijd bijzonder waardevolle opmerkingen en aanwijzingen.
    [Show full text]
  • (Phb) Production Across Scale: Life Cycle Assessment, Pure Culture Experimentation, and Pathway/Genome Database Development
    UNDERSTANDING METHANOTROPHIC POLYHYDROXYBUTYRATE (PHB) PRODUCTION ACROSS SCALE: LIFE CYCLE ASSESSMENT, PURE CULTURE EXPERIMENTATION, AND PATHWAY/GENOME DATABASE DEVELOPMENT A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Katherine Helen Rostkowski June 2012 © 2012 by Katherine Helen Rostkowski. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/mc120yq3299 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Craig Criddle, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael Lepech I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Perry McCarty I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Peter Karp Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format.
    [Show full text]
  • Synthesis and Characterization of Liquid Natural Rubber As Impact Modifier for Epoxy Resin
    Available online at www.sciencedirect.com ScienceDirect Physics Procedia 55 ( 2014 ) 129 – 137 Eight International Conference on Material Sciences (CSM8-ISM5) Synthesis And Characterization Of Liquid Natural Rubber As Impact Modifier For Epoxy Resin A.B. BEN SALEHa, Z.A. MOHD ISHAKb, A. S. HASHIMb, W.A. KAMILc, U.S. ISHIAKUd Faculty of education, Misurata University,Misurata, Libyaa, School of Material and Mineral Resourcesb School of Chemical Sciencec Universiti Sains Malaysia, Penang, Malaysia Kyoto Institute of Technology, Matsugasaki, Sakyo-kud Kyoto 606-8585, Japan Abstract Liquid natural rubber (LNR) with a molecular weight CMn =16×103 was prepared by the depolymerization of deproteinized natural rubber latex (DPNR). The liquid natural rubber (LNR) was characterized by FTIR and H’NMR spectroscopic analysis. LNR was premixed with the epoxy resin (EP) and cured with a diamine curing agent for 1 h at 100 °C and post cured at 110 °C, for 2 h in air oven. The modified EP containing different contents of LNR (5, 10, 15 and 20 phr) were evaluated. Thermal, mechanical and morphology properties were determined. The fracture toughness (KIC) of both unmodified and modified EPs were determined on static loaded single edge notched (SEN-B) specimens at room temperature. The glass transition temperatures (Tg) of the modified EPs were decreased with increasing LNR content. The strengths and modulus of EPs were slightly reduced with the incorporation of LNR. The effect was also reflected in the significant increase in the tensile strain of modified EP. Fracture toughness of the EP was observed to increase with the presence of LNR.
    [Show full text]
  • Analysis of Peelable Film in Food Packaging
    Matt Baker,1 Analysis of Peelable Film in Food Packaging 2008-09 Italian Packaging Technology Awards Program Matt Baker Department of Packaging Science Clemson University February 11, 2009 Matt Baker,2 Abstract This paper is an analysis of peelable lidding films used in cup and tray style food packaging applications, focusing on what should be considered when developing a new package or adapting an existing package application to a peelable film. Three types of peelable films will be discussed and how they influence the various parts of a packaging line and also any advantages and disadvantages at each point in the packaging line. This paper will also focus on the machinery aspect including both hot fill and retort applications. However, to do so, requires an understanding of the film and what affects a packaging machinery change may have on transportation and food quality, therefore several post production areas will also be mentioned. Medical bags or pouches such as those from vertical form fill seal machines are not under the same production conditions as cups or trays so they will only be mentioned when and if applicable. Introduction The key focus on any peelable film is to increase the ease of use for the consumer without compromising any of the other properties of the package. Traditionally, film covered trays or bowls are welded together either by heat or ultrasonic methods. These extremely robust seals provide superior tamper evidence, but it can be difficult to remove without a cutting utensil. “[Consumers] don't want it Matt Baker,3 to be really difficult to break the seal because you end up tipping the contents all over yourself”(Packaging News).
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]
  • Biodegradation of Different Formulations of Polyhydroxybutyrate Films in Soil
    Altaee et al. SpringerPlus (2016) 5:762 DOI 10.1186/s40064-016-2480-2 RESEARCH Open Access Biodegradation of different formulations of polyhydroxybutyrate films in soil Nadia Altaee1,2, Gamal A. El‑Hiti3* , Ayad Fahdil1, Kumar Sudesh4 and Emad Yousif5* *Correspondence: gelhiti@ ksu.edu.sa; emadayousif@ Abstract gmail.com Background: Petroleum polymers contribute to non-degradable waste materials and 3 Cornea Research Chair, Department of Optometry, it would therefore be desirable to produce ecofriendly degradable materials. Biodeg‑ College of Applied Medical radation of polyhydroxybutyrate (PHB) in the presence of oligomer hydrolase and PHB Sciences, King Saud depolymerase gave 3-hydroxybutyric acid which could be oxidized to acetyl acetate. University, P.O. Box 10219, Riyadh 11433, Saudi Arabia Several bacteria and fungi can degrade PHB in the soil. 5 Department of Chemistry, Results: Biodegradation of PHB showed a significant decrease in the molecular College of Science, Al-Nahrain University, weight (Mw), number-average molecular weight (Mn) and the dispersity (Mw/Mn) for Baghdad 64021, Iraq all the film formulations. Nanofibers of PHB and its composites showed faster degrada‑ Full list of author information tion compared to other films and displayed complete degradation after 3 weeks. The is available at the end of the article SEM micrographs showed various surface morphology changes including alterations in appearance of pores, cavity, grooves, incisions, slots and pointers. Such changes were due to the growth of microorganisms that secreted PHB depolymerase enzyme which lead to the biopolymer films degradation. However, PHB nanofibers and its composites films in the presence of TiO2 demonstrated more surface changes with rupture of most nanofibers in which there was a drop in fibres diameter.
    [Show full text]