Polyhydroxyalkanoate Biosynthesis by Oxalotrophic Bacteria from High Andean Soil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of Polylactic Acid-Polyhydroxybutyrate Blends for Packaging Applications
Development of Polylactic Acid-Polyhydroxybutyrate Blends for Packaging Applications A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering DEHAO KONG B. Eng. School of Engineering College of Science, Engineering and Health RMIT University December 2017 1 DECLARATION I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. DEHAO KONG December 21, 2017 2 ACKNOWLEDGEMENTS I sincerely thank my supervisors, Associate Prof. Nhol Kao and Prof. Sati N. Bhattacharya for their supervision and for the opportunity to start and achieve my goal of obtaining a Master. It would not have been possible without your guidance, patience, understanding, and hard work throughout the process. I appreciate their immense knowledge and expertise and their assistance at all levels of the research project. I would also like to thank the staff members of Rheology and Materials Processing Group, especially Mike Allan, Dr. Muthu Pannirselvam and Cameron Crombie for their help in operational training initially and continuous support during the use of instruments throughout the course of the project. I would also like to acknowledge the support and encouragement of my colleagues in the Chemical and Environmental Engineering, School of Engineering as well. -
Aerobic Biodegradation of Polyhydroxybutyrate in Compost
ENVIRONMENTAL ENGINEERING SCIENCE Volume 28, Number 7, 2011 ª Mary Ann Liebert, Inc. DOI: 10.1089/ees.2010.0208 Aerobic Biodegradation of Polyhydroxybutyrate in Compost Maria T. Gutierrez-Wing,1,2,* Benjamin E. Stevens,3 Chandra S. Theegala,4 Ioan I. Negulescu,5,6 and Kelly A. Rusch1 Departments of 1Civil and Environmental Engineering, 4Biological and Agricultural Engineering, and 5Chemistry; 2Louisiana Sea Grant College Program 116 Elab; 6School of Human Ecology; Louisiana State University, Baton Rouge, Louisiana. 3Sage Environmental Consulting, Baton Rouge, Louisiana. Received: July 6, 2010 Accepted in revised form: February 3, 2011 Abstract Aerobic biodegradation of polyhydroxybutyrate (PHB) was investigated. Mass loss experiments were performed to determine degradation kinetics. Tributyl citrate was blended with some test samples to determine the impact of a natural plasticizer on biodegradation. Effects of biodegradation in the physical, chemical, thermal, and mechanical properties of the materials tested were determined. Plates of different thicknesses (0.24, 1.2, 3.5, and 5.0 mm) were degraded to determine the effect of initial mass:initial surface area ratio on degradation rates. The mass:initial surface area is proportional to the plate thickness. PHB biodegradation rates obtained are dependent on the mass:surface area ratio. Temperature affects the relation of degradation rate to initial mass:initial surface area. PHB in plates up to a thickness of 3.5 mm can degrade completely in compost. Plates with an initial mass:initial surface area ratio of < 67 will degrade in < 4 months. Maximum degradation rates were obtained in plates 3.5 mm thick (1.57 mg cm - 2 d - 1) and the minimum in plates 0.24 mm thick (0.16 mg cm - 2 d - 1). -
(Phb) Production Across Scale: Life Cycle Assessment, Pure Culture Experimentation, and Pathway/Genome Database Development
UNDERSTANDING METHANOTROPHIC POLYHYDROXYBUTYRATE (PHB) PRODUCTION ACROSS SCALE: LIFE CYCLE ASSESSMENT, PURE CULTURE EXPERIMENTATION, AND PATHWAY/GENOME DATABASE DEVELOPMENT A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Katherine Helen Rostkowski June 2012 © 2012 by Katherine Helen Rostkowski. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/mc120yq3299 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Craig Criddle, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael Lepech I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Perry McCarty I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Peter Karp Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. -
Biodegradation of Different Formulations of Polyhydroxybutyrate Films in Soil
Altaee et al. SpringerPlus (2016) 5:762 DOI 10.1186/s40064-016-2480-2 RESEARCH Open Access Biodegradation of different formulations of polyhydroxybutyrate films in soil Nadia Altaee1,2, Gamal A. El‑Hiti3* , Ayad Fahdil1, Kumar Sudesh4 and Emad Yousif5* *Correspondence: gelhiti@ ksu.edu.sa; emadayousif@ Abstract gmail.com Background: Petroleum polymers contribute to non-degradable waste materials and 3 Cornea Research Chair, Department of Optometry, it would therefore be desirable to produce ecofriendly degradable materials. Biodeg‑ College of Applied Medical radation of polyhydroxybutyrate (PHB) in the presence of oligomer hydrolase and PHB Sciences, King Saud depolymerase gave 3-hydroxybutyric acid which could be oxidized to acetyl acetate. University, P.O. Box 10219, Riyadh 11433, Saudi Arabia Several bacteria and fungi can degrade PHB in the soil. 5 Department of Chemistry, Results: Biodegradation of PHB showed a significant decrease in the molecular College of Science, Al-Nahrain University, weight (Mw), number-average molecular weight (Mn) and the dispersity (Mw/Mn) for Baghdad 64021, Iraq all the film formulations. Nanofibers of PHB and its composites showed faster degrada‑ Full list of author information tion compared to other films and displayed complete degradation after 3 weeks. The is available at the end of the article SEM micrographs showed various surface morphology changes including alterations in appearance of pores, cavity, grooves, incisions, slots and pointers. Such changes were due to the growth of microorganisms that secreted PHB depolymerase enzyme which lead to the biopolymer films degradation. However, PHB nanofibers and its composites films in the presence of TiO2 demonstrated more surface changes with rupture of most nanofibers in which there was a drop in fibres diameter. -
Operational Group B. Amyloliquefaciens” Within the B
ORIGINAL RESEARCH published: 20 January 2017 doi: 10.3389/fmicb.2017.00022 Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex Ben Fan 1, Jochen Blom 2, Hans-Peter Klenk 3 and Rainer Borriss 4, 5* 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China, 2 Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany, 3 School of Biology, Newcastle University, Newcastle upon Tyne, UK, 4 Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt Universität zu Berlin, Berlin, Germany, 5 Nord Reet UG, Greifswald, Germany Edited by: Rakesh Sharma, The plant growth promoting model bacterium FZB42T was proposed as the type strain Institute of Genomics and Integrative Biology (CSIR), India of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been Reviewed by: recently recognized as being synonymous to Bacillus velezensis due to phylogenomic Prabhu B. Patil, analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider Institute of Microbial Technology plant-associated close relatives of FZB42 still as “B. amyloliquefaciens.” Here, we (CSIR), India Bo Liu, reinvestigated the taxonomic status of FZB42 and related strains in its context to Fujian Academy of Agaricultural the free-living soil bacterium DSM7T, the type strain of B. amyloliquefaciens. We Sciences, China identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7T. *Correspondence: Rainer Borriss Dendrograms based on complete rpoB nucleotide sequences and on core genome [email protected] sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. -
Complete Issue
J. Fernholz and Q.E. Phelps – Influence of PIT tags on growth and survival of banded sculpin (Cottus carolinae): implications for endangered grotto sculpin (Cottus specus). Journal of Cave and Karst Studies, v. 78, no. 3, p. 139–143. DOI: 10.4311/2015LSC0145 INFLUENCE OF PIT TAGS ON GROWTH AND SURVIVAL OF BANDED SCULPIN (COTTUS CAROLINAE): IMPLICATIONS FOR ENDANGERED GROTTO SCULPIN (COTTUS SPECUS) 1 2 JACOB FERNHOLZ * AND QUINTON E. PHELPS Abstract: To make appropriate restoration decisions, fisheries scientists must be knowledgeable about life history, population dynamics, and ecological role of a species of interest. However, acquisition of such information is considerably more challenging for species with low abundance and that occupy difficult to sample habitats. One such species that inhabits areas that are difficult to sample is the recently listed endangered, cave-dwelling grotto sculpin, Cottus specus. To understand more about the grotto sculpin’s ecological function and quantify its population demographics, a mark-recapture study is warranted. However, the effects of PIT tagging on grotto sculpin are unknown, so a passive integrated transponder (PIT) tagging study was performed. Banded sculpin, Cottus carolinae, were used as a surrogate for grotto sculpin due to genetic and morphological similarities. Banded sculpin were implanted with 8.3 3 1.4 mm and 12.0 3 2.15 mm PIT tags to determine tag retention rates, growth, and mortality. Our results suggest sculpin species of the genus Cottus implanted with 8.3 3 1.4 mm tags exhibited higher growth, survival, and tag retention rates than those implanted with 12.0 3 2.15 mm tags. -
Draft Genome Sequence of Bacillus Amyloliquefaciens Subsp
Pinto et al. Standards in Genomic Sciences (2018) 13:30 https://doi.org/10.1186/s40793-018-0327-x EXTENDED GENOME REPORT Open Access Draft genome sequence of Bacillus amyloliquefaciens subsp. plantarum strain Fito_F321, an endophyte microorganism from Vitis vinifera with biocontrol potential Cátia Pinto1,2, Susana Sousa1, Hugo Froufe1, Conceição Egas1,3, Christophe Clément2, Florence Fontaine2 and Ana C Gomes1,3* Abstract Bacillus amyloliquefaciens subsp. plantarum strain Fito_F321 is a naturally occurring strain in vineyard, with the ability to colonise grapevine and which unveils a naturally antagonistic potential against phytopathogens of grapevine, including those responsible for the Botryosphaeria dieback, a GTD disease. Herein we report the draft genome sequence of B. amyloliquefaciens subsp. plantarum Fito_F321, isolated from the leaf of Vitis vinifera cv. Merlot at Bairrada appellation (Cantanhede, Portugal). The genome size is 3,856,229 bp, with a GC content of 46.54% that contains 3697 protein-coding genes, 86 tRNA coding genes and 5 rRNA genes. The draft genome of strain Fito_F321 allowed to predict a set of bioactive compounds as bacillaene, difficidin, macrolactin, surfactin and fengycin that due to their antimicrobial activity are hypothesized to be of utmost importance for biocontrol of grapevine diseases. Keywords: Genome sequencing, Bacillus amyloliquefaciens subsp. plantarum, Fito_F321 strain, Grapevine-associated microorganism, Biocontrol, Endophytic microorganism Introduction kept as singular species across their clade however, and Bacillus amyloliquefaciens is a species from the genus due to their close relationship, these species should be Bacillus, genetically and phenotypically related to B. included in the “operational group B. amyloliquefaciens” subtilis, B. vallismortis, B. mojavensis, B. -
Bacillus Species in Animal Nutrition
EUROPEAN COMMISSION HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL Directorate B - Scientific Health Opinions Unit B3 - Management of scientific committees II OPINION OF THE SCIENTIFIC COMMITTEE ON ANIMAL NUTRITION ON THE SAFETY OF USE OF BACILLUS SPECIES IN ANIMAL NUTRITION (EXPRESSED ON 17 FEBRUARY 2000) 1. BACKGROUND In its report on the use of certain micro-organisms as feed additives expressed on 26 September 1997, the Scientific Committee on Animal Nutrition (hereafter SCAN) stated that the use of Bacillus species may be ill-advised and should be accepted only for clearly defined strains which have been tested negative for toxicity and pathogenicity in vitro and in vivo. In June 1999, Denmark drew the attention of the Commission to a number of scientific publications describing the detection of toxigenic strains of Bacillus cereus and other Bacillus spp. Strains of these species are used in animal nutrition either as microbial feed additives or as a source of enzymes used as feed additives. 2. TERMS OF REFERENCE In the light of its previous report and of newly available scientific data, SCAN is requested to reassess the safety of the use of bacteria of the genus Bacillus (Bacillus cereus and other species) in animal nutrition. SCAN is also requested to identify the scientific data which should be provided for the safety evaluation of products using strains of Bacillus species submitted for authorisation as feed additives. 3. INTRODUCTION The genus Bacillus contains a number of industrially important species. The large range of physiological types found amongst the bacilli (attributed to the genetic diversity of the genus) and the fact that most species are non-pathogenic and are relatively easy to manipulate and to grow, makes Bacillus spp. -
POLYHYDROXYALKANOATE BLENDS NONWOVEN AGRICULTURAL MULCHES in AMBIENT SOIL CONDITIONS Sathiskumar Dharmalingam University of Tennessee - Knoxville, [email protected]
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2014 BIODEGRADATION AND PHOTODEGRADATION OF POLYLACTIC ACID AND POLYLACTIC ACID/ POLYHYDROXYALKANOATE BLENDS NONWOVEN AGRICULTURAL MULCHES IN AMBIENT SOIL CONDITIONS Sathiskumar Dharmalingam University of Tennessee - Knoxville, [email protected] Recommended Citation Dharmalingam, Sathiskumar, "BIODEGRADATION AND PHOTODEGRADATION OF POLYLACTIC ACID AND POLYLACTIC ACID/ POLYHYDROXYALKANOATE BLENDS NONWOVEN AGRICULTURAL MULCHES IN AMBIENT SOIL CONDITIONS. " PhD diss., University of Tennessee, 2014. https://trace.tennessee.edu/utk_graddiss/2760 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Sathiskumar Dharmalingam entitled "BIODEGRADATION AND PHOTODEGRADATION OF POLYLACTIC ACID AND POLYLACTIC ACID/ POLYHYDROXYALKANOATE BLENDS NONWOVEN AGRICULTURAL MULCHES IN AMBIENT SOIL CONDITIONS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Biosystems Engineering. Douglas G. Hayes, Major Professor We have read -
Biodegradable Plastic (Phb) from Bacteria Collected from Gopalpur Beach, Bhubaneswar
International Journal of Current Pharmaceutical Research ISSN- 0975-7066 Vol 12, Issue 6, 2020 Original Article BIODEGRADABLE PLASTIC (PHB) FROM BACTERIA COLLECTED FROM GOPALPUR BEACH, BHUBANESWAR DIPALI KUMARI, DIPTI SONI JAIPURIAR, PARIJATHAM KANCHANA, SIBYALA MALATHI VARMA, SONY GURJA Department of Biochemistry, St. Francis College for Women, Hyderabad, Telangana, India 500016 Email: [email protected] Received: 10 Jul 2020, Revised and Accepted: 08 Sep 2020 ABSTRACT Objective: Environmental concerns have prompted research into the development of biodegradable polymer as an alternative to petroleum-based plastics. Polyhydroxybutyrates (PHBs) are good alternatives to produce biodegradable plastics. Some bacteria are found to be producing PHB. The aim of this work was to isolate potential PHB producing bacteria and screen them for their ability to produce PHB. Methods: Contaminated water sample from Gopalpur beach, Bhubaneswar was the source of bacteria. Three colonies were isolated from the water sample. The samples were named as C1, C2 and C3. The colonies were first identified by colony morphology. The sudan black screening test was done to screen for the production of (PHB) polyhydroxy butyrate by bacterial isolates. Results: The bacterial isolates C1 and C2 showed a positive result for the production of polyhydroxy butyrate (PHB). Presence of PHB granules in Cocobacillus and Rod shaped bacillus was confirmed. Conclusion: Polyhydroxybutyrate (PHB), a kind of microbial polyester that accumulates as a carbon/energy reserve material in various microorganisms, was thus concluded to be a decent alternative for plastics. Because of their special characteristics and broad biological applications, biodegradable plastics are compounds with a promising future. Keywords: Bacteria, Biochemical tests, Bioplastic, Biodegradable, Polyhydroxybutyrate © 2020 The Authors. -
Development and Characterisation of Polyhydroxybutyrate from Selected Bacterial Species
Development and Characterisation of Polyhydroxybutyrate from Selected Bacterial Species By Soroosh Bagheriasl, MRes. A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY SCHOOL OF METALLURGY AND MATERIALS UNIVERSITY OF BIRMINGHAM October 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Polyhydroxyalkanoates (PHAs) are biodegradable, linear polyesters produced primarily by bacterial fermentation. PHAs have been found to possess similar properties to many non- biodegradable petrochemical plastics. The current cost of PHA production is far greater in comparison to petrochemical plastics. Recent research has focused on developing cost effective production of PHAs from various strains of bacteria. In this study Serratia sp. NCIMB 40259 and R. eutropha H16 were utilised for the accumulation of Polyhydroxybutyrate (PHB). Serratia sp. with high phosphatase activity (HPA) or low phosphatase activity (LPA) were fermented for 48, 120, 216 and 320 h and dosed daily with stock solutions in order to accumulate intracellular PHB and biomineralise hydroxyapatite (HA) on the cell surface. The optimum conditions for the accumulation of PHB, in this study, were found to be 216 h fermentation, producing a PHB yield of 14.6 %w/w and 3.3 %w/w for LPA and HPA respectively. -
Low Crystallinity of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina Sp
plants Article Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 Kittipat Chotchindakun 1 , Wasu Pathom-Aree 1, Kanchana Dumri 2, Jetsada Ruangsuriya 3,4, Chayakorn Pumas 1 and Jeeraporn Pekkoh 1,5,* 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (K.C.); [email protected] (W.P.-A.); [email protected] (C.P.) 2 Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 3 Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 4 Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand 5 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand * Correspondence: [email protected]; Tel.: +66-5394-1949 Abstract: The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cyanobacte- ria is an environmentally friendly biodegradable polymer. The low yield of PHBV’s production Citation: Chotchindakun, K.; is the main hindrance to its sustainable production, and the manipulation of PHBV production Pathom-Aree, W.; Dumri, K.; processes could potentially overcome this obstacle. The present research investigated evolution- Ruangsuriya, J.; Pumas, C.; Pekkoh, J. arily divergent cyanobacteria obtained from local environments of Thailand. Among the strains Low Crystallinity of tested, Cyanosarcina sp. AARL T020, a hot spring cyanobacterium, showed a high rate of PHBV Poly(3-Hydroxybutyrate-co-3- accumulation with a fascinating 3-hydroxyvalerate mole fraction.