Impacts of Anthropogenic Sound
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Mammals Around Marine Renewable Energy Devices Using Active Sonar
TRACKING MARINE MAMMALS AROUND MARINE RENEWABLE ENERGY DEVICES USING ACTIVE SONAR GORDON HASTIE URN: 12D/328: 31 JULY 2013 This document was produced as part of the UK Department of Energy and Climate Change's offshore energy Strategic Environmental Assessment programme © Crown Copyright, all rights reserved. 1 SMRU Limited New Technology Centre North Haugh ST ANDREWS Fife KY16 9SR www.smru.co.uk Switch: +44 (0)1334 479100 Fax: +44 (0)1334 477878 Lead Scientist: Gordon Hastie Scientific QA: Carol Sparling Date: Wednesday, 31 July 2013 Report code: SMRUL-DEC-2012-002.v2 This report is to be cited as: Hastie, G.D. (2012). Tracking marine mammals around marine renewable energy devices using active sonar. SMRU Ltd report URN:12D/328 to the Department of Energy and Climate Change. September 2012 (unpublished). Approved by: Jared Wilson Operations Manager1 1 Photo credit (front page): R Shucksmith (www.rshucksmith.co.uk) 2 TABLE OF CONTENTS Table of Contents ----------------------------------------------------------------------------------------------------------------------------------------- 3 Table of Figures ------------------------------------------------------------------------------------------------------------------------------------------- 5 1. Non technical summary --------------------------------------------------------------------------------------------------------------------- 9 2. Introduction ----------------------------------------------------------------------------------------------------------------------------------- 12 -
Depth Measuring Techniques
EM 1110-2-1003 1 Jan 02 Chapter 9 Single Beam Acoustic Depth Measurement Techniques 9-1. General Scope and Applications Single beam acoustic depth sounding is by far the most widely used depth measurement technique in USACE for surveying river and harbor navigation projects. Acoustic depth sounding was first used in the Corps back in the 1930s but did not replace reliance on lead line depth measurement until the 1950s or 1960s. A variety of acoustic depth systems are used throughout the Corps, depending on project conditions and depths. These include single beam transducer systems, multiple transducer channel sweep systems, and multibeam sweep systems. Although multibeam systems are increasingly being used for surveys of deep-draft projects, single beam systems are still used by the vast majority of districts. This chapter covers the principles of acoustic depth measurement for traditional vertically mounted, single beam systems. Many of these principles are also applicable to multiple transducer sweep systems and multibeam systems. This chapter especially focuses on the critical calibrations required to maintain quality control in single beam echo sounding equipment. These criteria are summarized in Table 9-6 at the end of this chapter. 9-2. Principles of Acoustic Depth Measurement Reference water surface Transducer Outgoing signal VVeeloclocityty Transmitted and returned acoustic pulse Time Velocity X Time Draft d M e a s ure 2d depth is function of: Indexndex D • pulse travel time (t) • pulse velocity in water (v) D = 1/2 * v * t Reflected signal Figure 9-1. Acoustic depth measurement 9-1 EM 1110-2-1003 1 Jan 02 a. -
Cetacean Population Density Estimation from Single Fixed Sensors Using Passive Acoustics
Cetacean population density estimation from single fixed sensors using passive acoustics Elizabeth T. Ku¨sela) and David K. Mellinger Cooperative Institute for Marine Resources Studies (CIMRS), Oregon State University, Hatfield Marine Science Center, Newport, Oregon 97365 Len Thomas Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, Scotland Tiago A. Marques Centro de Estatı´stica e Aplicac¸o˜es da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal David Moretti and Jessica Ward Naval Undersea Warfare Center Division, Newport, Rhode Island 02841 (Received 17 December 2010; revised 18 March 2011; accepted 30 March 2011) Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a func- tion of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville’s beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Baha- mas. -
Assessment of Natural and Anthropogenic Sound Sources and Acoustic Propagation in the North Sea
UNCLASSIFIED Oude Waalsdorperweg 63 P.O. Box 96864 2509 JG The Hague The Netherlands TNO report www.tno.nl TNO-DV 2009 C085 T +31 70 374 00 00 F +31 70 328 09 61 [email protected] Assessment of natural and anthropogenic sound sources and acoustic propagation in the North Sea Date February 2009 Author(s) Dr. M.A. Ainslie, Dr. C.A.F. de Jong, Dr. H.S. Dol, Dr. G. Blacquière, Dr. C. Marasini Assignor The Netherlands Ministry of Transport, Public Works and Water Affairs; Directorate-General for Water Affairs Project number 032.16228 Classification report Unclassified Title Unclassified Abstract Unclassified Report text Unclassified Appendices Unclassified Number of pages 110 (incl. appendices) Number of appendices 1 All rights reserved. No part of this report may be reproduced and/or published in any form by print, photoprint, microfilm or any other means without the previous written permission from TNO. All information which is classified according to Dutch regulations shall be treated by the recipient in the same way as classified information of corresponding value in his own country. No part of this information will be disclosed to any third party. In case this report was drafted on instructions, the rights and obligations of contracting parties are subject to either the Standard Conditions for Research Instructions given to TNO, or the relevant agreement concluded between the contracting parties. Submitting the report for inspection to parties who have a direct interest is permitted. © 2009 TNO Summary Title : Assessment of natural and anthropogenic sound sources and acoustic propagation in the North Sea Author(s) : Dr. -
Hydrographic Surveys Specifications and Deliverables
HYDROGRAPHIC SURVEYS SPECIFICATIONS AND DELIVERABLES March 2019 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service Contents 1 Introduction ......................................................................................................................................1 1.1 Change Management ............................................................................................................................................. 2 1.2 Changes from April 2018 ...................................................................................................................................... 2 1.3 Definitions ............................................................................................................................................................... 4 1.3.1 Hydrographer ................................................................................................................................................. 4 1.3.2 Navigable Area Survey .................................................................................................................................. 4 1.4 Pre-Survey Assessment ......................................................................................................................................... 5 1.5 Environmental Compliance .................................................................................................................................. 5 1.6 Dangers to Navigation .......................................................................................................................................... -
So, How Deep Is the Mariana Trench?
Marine Geodesy, 37:1–13, 2014 Copyright © Taylor & Francis Group, LLC ISSN: 0149-0419 print / 1521-060X online DOI: 10.1080/01490419.2013.837849 So, How Deep Is the Mariana Trench? JAMES V. GARDNER, ANDREW A. ARMSTRONG, BRIAN R. CALDER, AND JONATHAN BEAUDOIN Center for Coastal & Ocean Mapping-Joint Hydrographic Center, Chase Ocean Engineering Laboratory, University of New Hampshire, Durham, New Hampshire, USA HMS Challenger made the first sounding of Challenger Deep in 1875 of 8184 m. Many have since claimed depths deeper than Challenger’s 8184 m, but few have provided details of how the determination was made. In 2010, the Mariana Trench was mapped with a Kongsberg Maritime EM122 multibeam echosounder and recorded the deepest sounding of 10,984 ± 25 m (95%) at 11.329903◦N/142.199305◦E. The depth was determined with an update of the HGM uncertainty model combined with the Lomb- Scargle periodogram technique and a modal estimate of depth. Position uncertainty was determined from multiple DGPS receivers and a POS/MV motion sensor. Keywords multibeam bathymetry, Challenger Deep, Mariana Trench Introduction The quest to determine the deepest depth of Earth’s oceans has been ongoing since 1521 when Ferdinand Magellan made the first attempt with a few hundred meters of sounding line (Theberge 2008). Although the area Magellan measured is much deeper than a few hundred meters, Magellan concluded that the lack of feeling the bottom with the sounding line was evidence that he had located the deepest depth of the ocean. Three and a half centuries later, HMS Challenger sounded the Mariana Trench in an area that they initially called Swire Deep and determined on March 23, 1875, that the deepest depth was 8184 m (Murray 1895). -
Sonar: Empire, Media, and the Politics of Underwater Sound
Sonar: Empire, Media, and the Politics of Underwater Sound John Shiga Ryerson University ABSTRACT This article traces the development of acoustic navigation media, or “sonar,” in the first half of the twentieth century, focusing on the relationships forged between underwater sound, electric media, and new techniques of listening. The central argument is that sonar shaped, and was shaped by, the expansion of warfare and capital underwater, and that this expansion came to be conceptualized by nautical organizations as dependent upon the con - trol of underwater sound. Through analysis of key episodes in the conquest of subsea space, the author explores scientific, military, and commercial efforts to sense underwater objects and demonstrates how these efforts helped reconceptualize oceanic water as a component of undersea acoustic media and led to the material reorganization of the ocean’s acoustic field. KEYWORDS Sonar; Military communication; Materiality; Subjectivity RÉSUMÉ Cet article retrace le développement de médias acoustiques de navigation ou « sonars » dans la première moitié du vingtième siècle en mettant l’accent sur les rapports créés entre les sons sous-marins, les médias électriques et les nouvelles techniques d’écoute. L’argument central de l’article est qu’il y a eu une influence réciproque entre le sonar et l’expansion sous-marine de la guerre et du capital, et que les organisations nautiques ont commencé à concevoir cette expansion comme nécessitant le contrôle des sons sous-marins. Au moyen d’une analyse d’épisodes clés dans la conquête de l’espace sous-marin, l’auteur explore les efforts scientifiques, militaires et commerciaux pour repérer les objets sous l’eau et démontre comment ces efforts ont aidé à réaliser une nouvelle conception de l’eau océanique comme composante des médias acoustiques sous-marins, menant à une réorganisation matérielle du champ acoustique de l’océan. -
Underwater 3D Data Collection ______
Worcester Polytechnic Institute Electrical and Computer Engineering Program Mechanical Engineering Program Underwater 3D Data Collection __________________________________________________________ A Major Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by: Noah Budris, ME Tyler LaCroce, ECE Daniel Pelaez, ECE __________________________________________________________________ Project Advisor: Professor William Michalson Date: March 6, 2020 Abstract: Each year, thousands of pounds of marine litter are lost at sea. This litter consists primarily of lost cargo containers, lost fishing gear, and general garbage. This marine litter not only causes harm to the aquatic ecosystem, but makes up billions of dollars of lost revenue. With methods of 3D data collection becoming cheaper and more prevalent, a solution to recover lost items is more possible than ever. This report outlines our contribution to solving this problem by providing a detailed analysis of a constructed prototype that utilizes sonar in conjunction with a visualization program, an amplification circuit, and a mobile floatation platform to map the bottom of a water body. Ideally, man-made discrepancies discovered by this device will alert the end user, allowing for them to continually manage the amount of marine litter that ends up lost, and prevent it from getting larger. 1 Acknowledgements: This research was supported by Worcester Polytechnic Institute. We would like to thank our advisor, Professor William Michalson of Worcester Polytechnic Institute for his continued support and guidance throughout our research and the MQP process as a whole. We would like to thank Nicholas Pulsone, John Pietrzyk, and Paul Ryu from the Massachusetts Institute of Technology for providing us with one of the sonar devices used for initial testing and understanding of sonar functionality. -
Long-Term Autonomous Hydrophones for Large-Scale Hydroacoustic Monitoring of the Oceans Jean-François D’Eu, Jean-Yves Royer, Julie Perrot
Long-term autonomous hydrophones for large-scale hydroacoustic monitoring of the oceans Jean-François d’Eu, Jean-Yves Royer, Julie Perrot To cite this version: Jean-François d’Eu, Jean-Yves Royer, Julie Perrot. Long-term autonomous hydrophones for large- scale hydroacoustic monitoring of the oceans. Yeosu 2012, May 2012, Yeosu, North Korea. pp.1-6, 10.1109/OCEANS-Yeosu.2012.6263519. insu-00817948 HAL Id: insu-00817948 https://hal-insu.archives-ouvertes.fr/insu-00817948 Submitted on 22 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Long-term autonomous hydrophones for large-scale hydroacoustic monitoring of the oceans Jean-François D’Eu, Jean-Yves Royer, Julie Perrot Laboratoire Domaines Océaniques CNRS and University of Brest Plouzané, France [email protected] Abstract—We have developed a set of long-term autonomous hydrophones dedicated to long-term monitoring of low-frequency A. Monitoring ocean seismicity at a broad scale sounds in the ocean (<120Hz). Deploying arrays of such Seismicity in the ocean is usually recorded with the help of hydrophones (at least 4 instruments) proves a very efficient seismometers, such as Ocean Bottom Seismometers (OBS), approach to monitor acoustic events of geological origin placed in the proximity of active areas. -
TECHNICAL DEVELOPMENTS in DEPTH MEASUREMENT TECHNIQUES and POSITION DETERMINATION from 1960 to 1980 by Dave Wells and Steve Grant
“Charting the Secret World of the Ocean Floor : The GEBCO Project 1903-2003” 1 TECHNICAL DEVELOPMENTS IN DEPTH MEASUREMENT TECHNIQUES AND POSITION DETERMINATION FROM 1960 TO 1980 By Dave Wells and Steve Grant EXECUTIVE SUMMARY In this paper we describe the evolution during these two decades from simple single-beam echosounders using horizontal sextant fixing (near shore), and celestial sextant positioning interpolated by dead reckoning (offshore) to (a) (For depth measurement techniques) sidescan sonar, digital echosounders, the first (classified) SASS and Seabeam multibeam systems, and early satellite altimetry, and (b) (For positioning determination) a plethora of short and long range radio positioning systems, the Transit satellite positioning system, the early designs for GPS, long and short baseline acoustic systems, and (c) How these developments have since impacted the data available to GEBCO BIOGRAPHIES Dave Wells and Steve Grant worked together at the Bedford Institute of Oceanography for several years during the 1970s on some of the developments discussed in this paper, as part of the Canadian Hydrographic Service Navigation Group headed by Mike Eaton. Steve “retired” in 1996 but still works on a variety of hydrographic consulting and teaching projects. Dave “retired” in 1980 and again in 1998, but still teaches at three universities. INTRODUCTION During the period from 1960 to 1980, many remarkable advances were made in the technologies applicable to depth measurement and positioning at sea. Some of the initial technological developments dating from those two decades remain the basis for the most modern and effective bathymetric and positioning systems in use today. Others reached productive fruition earlier, and have since been supplanted. -
SETTING COURSE a History of Marine Navigation in Canada Sharon A
TRANSFORMATION SERIES 14 COLLECTION TRANSFORMATION SETTING COURSE A History of Marine Navigation in Canada Sharon A. Babaian Transformation Series Collection Transformation “Transformation”, an occasional series of scholarly La collection Transformation, publication en série papers published by the Collection and Research paraissant irrégulièrement de la Division de la collec- Division of the Canada Science and Technology Museum, tion et de la recherche du Musée des sciences et de la is intended to make current research available as technologie du Canada, a pour but de faire connaître, quickly and inexpensively as possible. The series le plus vite possible et au moindre coût, les recherches presents original research on science and technology en cours dans certains secteurs. Elle prend la forme history and issues in Canada through refereed mono- de monographies ou de recueils de courtes études graphs or collections of shorter studies, consistent with acceptés par un comité d’experts et s’alignant sur le the corporate framework, “The Transformation thème central de la Société, « La transformation du of Canada,” and curatorial subject priorities in agri- Canada ». Elle présente les travaux de recherche origi- culture and forestry, communications and space, naux en histoire des sciences et de la technologie au transportation, industry, physical sciences and energy. Canada et questions connexes réalisés en fonction des The Transformation series provides access to priorités du Musée, dans les secteurs de l’agriculture research undertaken by staff curators and researchers et des forêts, des communications et de l’espace, des for the development of collections, exhibitions and pro- transports, de l’industrie, des sciences physiques et grams. -
Ocean Acoustic Tomography
Radiating Wideband Sonar Pulses with Resonant Sandwich Transducers by Designing the Driving Voltage Waveform P. Cobo, C. Ranz, and M. Siguero Instituto de Acústica, CSIC. Serrano 144. 28006 Madrid. SPAIN A technique to radiate short length, high resolution, pulses with conventional piezoelectric transducers is described. It consists on designing the driving voltage waveform so that the radiated pulse has a zero-phase cosine-magnitude spectrum compatible with the natural frequency response of the transducer. According to Berkhout [1], zero-phase cosine-magnitude pulses have the minimum length, maximum resolution, within a prescribed frequency band. When applied to a 9 kHz sandwich transducer, this technique decreases the pulse length from 1 ms to 0.13 ms, increases the bandwidth from 1.4 kHz to 11.25 kHz, and lowers the Q factor from 6.2 to 1.23, at the cost of 33% of amplitude loss. INTRODUCTION H *( f ) X e ( f ) Ye ( f ) , (2) H( f ) 2 p 2 An underwater transducer is driven usually by a tone-burst. However, Winter et al. [2] and Mazzola 2 and Raff [3] showed that is possible to use Fourier where p is a regularisation constant, and * denotes techniques to find the electrical driving function so conjugate complex. Therefore, the electrical function that the transducer radiates a prescribed acoustic which must be synthesized is waveform. Holly et al. [4] reported that a transducer driven with a shaped function responded in two '$ '4 ]1 ]1 H *( f ) octaves, with an amplitude loss of 15 dB. xe (t) X e ( f ) %Ye ( f ) 5 (3) 2 2 Cobo [5] applied this technique to synthesize zero- &' H( f ) p 6' phase cosine-magnitude, gaussian, and bionic pulses, with a conventional sandwich transducer.