CS100: Introduction to Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

CS100: Introduction to Computer Science In-class Exercise: CS100: Introduction to n What is a flip-flop? n What are the properties of flip-flops? Computer Science n Draw a simple flip-flop circuit? Lecture 3: Data Storage -- Mass storage & representing information Review: bits, their storage and main memory Mass Storage or Secondary Storage n Bits n Magnetic disks n Boolean operations n CDs n Gates n DVDs n Flip-flops (store a single bit) n Magnetic tapes n Main memory (RAM) n Flash drives q Cell, Byte, Address Mass Storage or Secondary Storage Mass Storage Systems n On-line versus off-line n Magnetic Systems q Online - connected and readily available to the q Hard Disk machine q Floppy Disk q Offline - human intervention required q Tape n Typically larger than main memory n Optical Systems n Typically less volatile than main memory q CD n Typically slower than main memory q DVD n Flash Drives 1 Figure 1.9 A magnetic disk storage Magnetic Disks system n Floppy disk q Low capacity n 3.5 inch diskettes 1.44MB q A single plastic disk n Hard Disk system q High capacity systems q Multiple disks mounted on a spindle, multiple read/write heads move in unison n Cylinder: a set of tracks n Platter : a flat circular disk q Heads do not tough the surface of disks Measuring the Performance of Hard Disk Capacity of Hard Disk Systems Systems n (1) seek time n 5MB (1956 by IBM) q The time to move heads from one track to another n 20MB (1980s) n (2) rotation delay n 1 GB (1990s) q Half the time required for the disk to make a complete rotation n 20 GB – 768 GB (3/4) (2006) n (3) access time q the lowest-capacity - the highest-capacity desktop q Seek time + rotation delay q On 4 platters n (4) transfer rate n 1 TB (2007) q The rate at which data can be transferred to or q 5 platters from the disk Figure 1.10 Magnetic tape storage Magnetic Tapes n High capacity q Many GBs n A big disadvantage q Very time-consuming, much longer data access times n Good for archival storage q High capacity q Reliability q Cost efficiency 2 Figure 1.11 CD storage- Optical Systems Compact Disks n A spiral approach: q one long track that spirals around a CD from inside out. n Capacity in the ranges of 600 - 700 MB n Good for long continuous strings of data q music DVDs (Digital Versatile Disks) or (Digital Flash Drives Video Disks) n Same size as CDs (5 inches in diameter) n Flash memory technology n Encoded in in a different format at a much q Bits are stored by sending electronic signals higher density directly to the storage medium where they cause electrons to be trapped in tiny chambers of silicon n Multiple layers dioxide. n High capacity of several GBs n Capacity of up to a few GB n Good for lengthy multimedia presentations, n Portable, small size, easy to connect to a movies with high video and sound quality computer Flash Drives Questions: n Storing and retrieving data faster than optical n 1. When recording data on a multiple-disk storage system, should we fill a complete disk surface and magnetic systems before starting on another surface, or should we first fill an entire cylinder before starting on another n Digital cameras, cellular telephones, hand- cylinder? held PDAs n Vulnerable, repeated erasing slowly damages n Why should the data in a reservation system that is constantly being updated be stored o a magnetic the chambers disk instead of a CD or DVD? q Not suitable for general main memory applications q Not good for long term applications n What advantage do flash drives have over the other mass storage systems? 3 Files Files n File: A unit of data stored in mass storage n Logical records system q Correspond to natural divisions with data q A complete text documents n Physical Records q A photograph q Correspond to the size of a sector q A program q A music recording n Buffer: A memory area used for the q A collection of data about the students in a temporary storage of data (usually as a step college in transferring the data) Figure 1.12 Logical records versus Representing Information as bit Patterns physical records on a disk n Representing text n Representing numeric values n Representing Images n Representing sounds Representing Text Figure 1.13 The message “Hello.” in ASCII n Each character (letter, punctuation, etc.) is assigned a unique bit pattern. q ASCII: Uses patterns of 7-bits to represent most symbols used in written English text Find the meaning of the following text which is q Unicode: Uses patterns of 16-bits to represent encoded in ASCII: the major symbols used in languages world side 01000011 01101111 01101101 01110000 q ISO standard: Uses patterns of 32-bits to represent most symbols used in languages world 01110101 01110100 01100101 01110010 wide 4 Representing Numeric Values Hexadecimal Notation n Binary notation: Uses bits to represent a n Hexadecimal notation: A shorthand notation number in base two for long bit patterns q Divides a pattern into groups of four bits each n Hexadecimal notation: Uses bits to represent q Represents each group by a single symbol a number in base 16 n Example: 10100011 becomes A3 Figure 1.6 The hexadecimal Representing Numeric Values coding system n Binary notation: Uses bits to represent a number in base two n Hexadecimal notation: Uses bits to represent a number in base 16 n Limitations of computer representations of numeric values q Overflow – happens when a value is too big to be represented q Truncation – happens when a value is between two representable values Question: Representing Images n 1. What is the largest numeric value that n Bit map techniques could be represented with three bytes if each n Pixel: short for “picture element” digit were encoded using one ASCII pattern q 1 bit for 1 pixel n A black and white image is encoded as a long string of bits per byte? representing rows of pixels in the image. n The bit is 1 if the corresponding pixel is black, 0 otherwise. n What if binary notation were used? n What if hexadecimal notation were used? q 8 bit for 1 pixel n For white and black photos, allows a variety of shades of n Covert binary representations to its grayness to be represented. equivalent base ten form q 3 bytes for 1 pixel n For color images. RGB encoding, 1 byte for the intensity of q 0101 each color q Other approach: Luminance and chrominance q 10011 5 Representing Images Representing Sound n Bit map techniques n Sampling techniques n Vector techniques q Sample the amplitude of the sound waves at regular intervals and record the series of values q Scalable obtains. q Word processing systems use vector techniques to provide flexibility in character size. q 8000 samples per second n used in long-distance telephone communication q PostScript q Also popular in Computer-aided design systems q 44,100 samples per second for high quality recordings (each sample represented in 16 or 32 bits) a million bits for a second of music Figure 1.14 The sound wave represented by Representing Sound the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0 n Sampling techniques n MIDI q Used in music synthesizers in electronic keyboards q Contains individual instructions for playing each individual note of each individual instrument. q Encoding directions for producing music on a synthesizer rather than encoding the sound itself. Homework Assignment1: Next Lecture: (Due in-class next Monday) n Page 71, 1b, 2b, 3b n The binary system, storing integers and n Page 72, 5, 6, 9,11, 12, 19 fractions n Reading assignments: Chapter 1.5, 1.6,1.7 6.
Recommended publications
  • Chapter 12: Mass-Storage Systems
    Chapter 12: Mass-Storage Systems Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space Management RAID Structure Disk Attachment Stable-Storage Implementation Tertiary Storage Devices Operating System Issues Performance Issues Objectives Describe the physical structure of secondary and tertiary storage devices and the resulting effects on the uses of the devices Explain the performance characteristics of mass-storage devices Discuss operating-system services provided for mass storage, including RAID and HSM Overview of Mass Storage Structure Magnetic disks provide bulk of secondary storage of modern computers Drives rotate at 60 to 200 times per second Transfer rate is rate at which data flow between drive and computer Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency) Head crash results from disk head making contact with the disk surface That’s bad Disks can be removable Drive attached to computer via I/O bus Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI Host controller in computer uses bus to talk to disk controller built into drive or storage array Moving-head Disk Mechanism Overview of Mass Storage Structure (Cont.) Magnetic tape Was early secondary-storage medium Relatively permanent and holds large quantities of data Access time slow Random access ~1000 times slower than disk Mainly used for backup, storage of infrequently-used data, transfer medium between systems Kept in spool and wound or rewound past read-write head Once data under head, transfer rates comparable to disk 20-200GB typical storage Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT Disk Structure Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer.
    [Show full text]
  • Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage
    Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage - Databases are stored as files of records stored on disks - Physical database file structures - Physical levels of three schema architecture 1 - The collection of data in a DB must be stored on some storage medium. The DBMS software can retrieve, update, and process this data as needed - Storage media forms a hierarchy 2 -primary, secondary, tertiary, etc.. - offline storage, archiving databases (larger capacity, less cost, slower access, not directly accessible by CPU) Memory Hierarchies and Storage Devices - Cache, static RAM (Prefetch, Pipeline) - Dynamic RAM (main memory( Secondary and Tertiary Storage -mass storage (magnetic disks, CD, DVD (measured in KB, MB, TB, PB - programs are in main memory (DRAM) -permanent databases reside in secondary storage - main memory buffers are used to read and write to secondary storage - Flash memory: non volatile, NAND and NOR flash based - Optical disks: CDs (700MB) and DVDs (4.5 – 15GB), Blue Ray (54GB) - Magnetic Tapes and Juke Boxes Depending upon the intended use and application requirements, data is kept in one or more levels of hierarchy 3 Storage Organization of Database -Large amount of data that must persist for a long period of time (called persistent data) - parts of this data are accessed and processed repeatedly during the storage period - transient data during the period of execution - most DBs are stored on secondary storage (magnetic disks) - DB is too large to fit in main memory - permanent loss on disk is less likely - less cost on disk than primary storage 4 5 6 - A range of cylinders have the same number of sectors per arc.
    [Show full text]
  • Use External Storage Devices Like Pen Drives, Cds, and Dvds
    External Intel® Learn Easy Steps Activity Card Storage Devices Using external storage devices like Pen Drives, CDs, and DVDs loading Videos Since the advent of computers, there has been a need to transfer data between devices and/or store them permanently. You may want to look at a file that you have created or an image that you have taken today one year later. For this it has to be stored somewhere securely. Similarly, you may want to give a document you have created or a digital picture you have taken to someone you know. There are many ways of doing this – online and offline. While online data transfer or storage requires the use of Internet, offline storage can be managed with minimum resources. The only requirement in this case would be a storage device. Earlier data storage devices used to mainly be Floppy drives which had a small storage space. However, with the development of computer technology, we today have pen drives, CD/DVD devices and other removable media to store and transfer data. With these, you store/save/copy files and folders containing data, pictures, videos, audio, etc. from your computer and even transfer them to another computer. They are called secondary storage devices. To access the data stored in these devices, you have to attach them to a computer and access the stored data. Some of the examples of external storage devices are- Pen drives, CDs, and DVDs. Introduction to Pen Drive/CD/DVD A pen drive is a small self-powered drive that connects to a computer directly through a USB port.
    [Show full text]
  • Olympus Optical Disc Archiving Systems & Discstor 900 Optical
    Olympus Optical Disc Archiving Systems & DiscStor 900 Optical Disc Storage System Solution Overview All Pro Solutions, Inc. | 1351 E. Black Street, Rock Hill, SC 29730 USA | Tel: +1.803.980.4141 | Web: www.allprosolutions.com | Email: [email protected] The Company – All Pro Solutions, Inc. – Leading manufacturer of automated disc duplicating, printing & publishing systems. – Started in 1996 manufacturing floppy disk duplication systems. – Family-owned and operated. – In South Carolina since 2009. – Provides services like document scanning, imaging, converting. – Expanded into data storage and archiving industry. – Whatever the problem, we find a solution. All Pro Solutions, Inc. | 1351 E. Black Street, Rock Hill, SC 29730 USA | Tel: +1.803.980.4141 | Web: www.allprosolutions.com | Email: [email protected] The Challenge Worldwide Corporate Data Growth Unstructured text Structured data Source: IDC The Digital Universe 2010 80% of Corporate Data is Unstructured File Data Active Less Active Inactive Hot Cold 10% Warm 20% 70% All Pro Solutions, Inc. | 1351 E. Black Street, Rock Hill, SC 29730 USA | Tel: +1.803.980.4141 | Web: www.allprosolutions.com | Email: [email protected] The Solution Blu-Ray Disc – The ideal media for long-term archival • Longevity • Capacity - Extendable • Security • Removability • Data Migration • Accessibility • Compliance • Compatibility • Green Technology • Power Consumption Networked Client Workstations LAN Primary Network Servers All Pro Solutions, Inc. | 1351 E. Black Street, Rock Hill, SC 29730 USA | Tel: +1.803.980.4141 | Web: www.allprosolutions.com | Email: [email protected] The Solution Blu-Ray Disc – The ideal media for long-term archival • Longevity • Capacity - Extendable • Security • Removability • Data Migration • Accessibility • Compliance • Compatibility • Green Technology • Power Consumption Networked Client Workstations Olympus Archiving System LAN DiscStor 900 Storage System Primary Network Servers All Pro Solutions, Inc.
    [Show full text]
  • Secure Data Storage – White Paper Storage Technologies 2008
    1 Secure Data Storage – White Paper Storage Technologies 2008 Secure Data Storage - An overview of storage technology - Long time archiving from extensive data supplies requires more then only big storage capacity to be economical. Different requirements need different solutions! A technology comparison repays. Author: Dr. Klaus Engelhardt Dr. K. Engelhardt 2 Secure Data Storage – White Paper Storage Technologies 2008 Secure Data Storage - An overview of storage technology - Author: Dr. Klaus Engelhardt Audit-compliant storage of large amounts of data is a key task in the modern business world. It is a mistake to see this task merely as a matter of storage technology. Instead, companies must take account of essential strategic and economic parameters as well as legal regulations. Often one single technology alone is not sufficient to cover all needs. Thus storage management is seldom a question of one solution verses another, but a combination of solutions to achieve the best possible result. This can frequently be seen in the overly narrow emphasis in many projects on hard disk-based solutions, an approach that is heavily promoted in advertising, and one that imprudently neglects the considerable application benefits of optical storage media (as well as those of tape-based solutions). This overly simplistic perspective has caused many professional users, particularly in the field of long-term archiving, to encounter unnecessary technical difficulties and economic consequences. Even a simple energy efficiency analysis would provide many users with helpful insights. Within the ongoing energy debate there is a simple truth: it is one thing to talk about ‘green IT’, but finding and implementing a solution is a completely different matter.
    [Show full text]
  • Perfect Devices: the Amazing Endurance of Hard Disk Drives Giora J
    T TarnoTek Perfect Devices: The Amazing Endurance of Hard Disk Drives Giora J. Tarnopolsky TARNOTEK & INSIC - Information Storage Industry Consortium www.tarnotek.com [email protected] www.insic.org 2004 - Mass Storage Systems & Technologies Outline z Perfect Inventions z Hard Disk Drives & other consumer products z Hard Disk Drives: Developments 1990 - 2004 z Marketplace z How the technology advances have affected the product offerings z Technology z How market opportunities propelled basic research forward z Disk Drives at the Boundaries z INSIC and Data Storage Systems Research z Closing Remarks: Hard Disk Drive Endurance Giora J. Tarnopolsky HDD - Perfect Devices © 2002-2004\14 April 2004\2 TARNOTEK 2004 - Mass Storage Systems & Technologies PERFECT INVENTIONS Giora J. Tarnopolsky HDD - Perfect Devices © 2002-2004\14 April 2004\3 TARNOTEK 2004 - Mass Storage Systems & Technologies Nearly Perfect Inventions z Certain inventions are created “perfect:” their operation relies on a fundamental principle that cannot be improved, or does not merit improvement z This assures their endurance … z … and defines their domain of development, the limits of applicability of the invention z Examples of perfect inventions are the bicycle, the umbrella, the book, and the disk drive Giora J. Tarnopolsky HDD - Perfect Devices © 2002-2004\14 April 2004\4 TARNOTEK 2004 - Mass Storage Systems & Technologies Bicycle z Gyroscope effect assures stability of the rider z Under torque T, the bike turns but does not fall z Low ratio of vehicle mass to rider mass z ~ 15 % (as compared to ~2,200% for car) z Efficient r T z Rugged r dL z Mass-produced r dt L z Affordable Giora J.
    [Show full text]
  • Archiving Online Data to Optical Disk
    ARCHIVING ONLINE DATA TO OPTICAL DISK By J. L. Porter, J. L. Kiesler, and D. A. Stedfast U.S. GEOLOGICAL SURVEY Open-File Report 90-575 Reston, Virginia 1990 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can be write to: purchased from: Chief, Distributed Information System U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section Mail Stop 445 Federal Center, Bldg. 810 12201 Sunrise Valley Drive Box 25425 Reston, Virginia 22092 Denver, Colorado 80225 CONTENTS Page Abstract ............................................................. 1 Introduction ......................................................... 2 Types of optical storage ............................................... 2 Storage media costs and alternative media used for data archival. ......... 3 Comparisons of storage media ......................................... 3 Magnetic compared to optical media ............................... 3 Compact disk read-only memory compared to write-once/read many media ................................... 6 Erasable compared to write-once/read many media ................. 7 Paper and microfiche compared to optical media .................... 8 Advantages of write-once/read-many optical storage ..................... 8 Archival procedure and results ........................................ 9 Summary ........................................................... 13 References ..........................................................
    [Show full text]
  • The Future of Data Storage Technologies
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on The Future of Data Storage Technologies Sadik C. Esener (Panel Co-Chair) Mark H. Kryder (Panel Co-Chair) William D. Doyle Marvin Keshner Masud Mansuripur David A. Thompson June 1999 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on the Future of Data Storage Technologies Sponsored by the National Science Foundation, Defense Advanced Research Projects Agency and National Institute of Standards and Technology of the United States government. Dr. Sadik C. Esener (Co-Chair) Dr. Marvin Keshner Dr. David A. Thompson Prof. of Electrical and Computer Director, Information Storage IBM Fellow Engineering & Material Sciences Laboratory Research Division Dept. of Electrical & Computer Hewlett-Packard Laboratories International Business Machines Engineering 1501 Page Mill Road Corporation University of California, San Diego Palo Alto, CA 94304-1126 Almaden Research Center 9500 Gilman Drive Mail Stop K01/802 La Jolla, CA 92093-0407 Dr. Masud Mansuripur 650 Harry Road Optical Science Center San Jose, CA 95120-6099 Dr. Mark H. Kryder (Co-Chair) University of Arizona Director, Data Storage Systems Center Tucson, AZ 85721 Carnegie Mellon University Roberts Engineering Hall, Rm. 348 Pittsburgh, PA 15213-3890 Dr. William D. Doyle Director, MINT Center University of Alabama Box 870209 Tuscaloosa, AL 35487-0209 INTERNATIONAL TECHNOLOGY RESEARCH INSTITUTE World Technology (WTEC) Division WTEC at Loyola College (previously known as the Japanese Technology Evaluation Center, JTEC) provides assessments of foreign research and development in selected technologies under a cooperative agreement with the National Science Foundation (NSF).
    [Show full text]
  • USB Mass Storage Device (MSD) Bootloader
    Freescale Semiconductor Document Number: AN4379 Application Note Rev. 0, October 2011 Freescale USB Mass Storage Device Bootloader by: Derek Snell Freescale Contents 1 Introduction 1 Introduction................................................................1 Freescale offers a broad selection of microcontrollers that 2 Functional description...............................................2 feature universal serial bus (USB) access. A product with a 3 Using the bootloader.................................................9 USB port allows very easy field updates of the firmware. This application note describes a mass storage device (MSD) USB 4 Porting USB MSD device bootloader to bootloader that has been written to work with several other platforms.........................................................13 Freescale USB families. A device with this bootloader is 5 Developing new applications..................................15 connected to a host computer, and the bootloader enumerates as a new drive. The new firmware is copied onto this drive, 6 Conclusion...............................................................20 and the device reprograms itself. Freescale does offer other bootloaders. For example, application note AN3561, "USB Bootloader for the MC9S08JM60," describes a USB bootloader that was written for the Flexis JM family. The MSD bootloader described in this application note is offered as another option, and has these advantages: • It does not require a driver to be installed on the host. • It does not require an application to run on the host. • Any user can use it with a little training. The only action required is to copy a file onto a drive. • It can be used with many different host operating systems since it requires no host software or driver This bootloader was specifically written for several families of Freescale microcontrollers that share similar USB peripherals. These families include, but are not limited to, the following: • Flexis JM family MCF51JM © 2011 Freescale Semiconductor, Inc.
    [Show full text]
  • Digital Preservation Guide: 3.5-Inch Floppy Disks Caralie Heinrichs And
    DIGITAL PRESERVATION GUIDE: 3.5-Inch Floppy Disks Digital Preservation Guide: 3.5-Inch Floppy Disks Caralie Heinrichs and Emilie Vandal ISI 6354 University of Ottawa Jada Watson Friday, December 13, 2019 DIGITAL PRESERVATION GUIDE 2 Table of Contents Introduction ................................................................................................................................................. 3 History of the Floppy Disk ......................................................................................................................... 3 Where, when, and by whom was it developed? 3 Why was it developed? 4 How Does a 3.5-inch Floppy Disk Work? ................................................................................................. 5 Major parts of a floppy disk 5 Writing data on a floppy disk 7 Preservation and Digitization Challenges ................................................................................................. 8 Physical damage and degradation 8 Hardware and software obsolescence 9 Best Practices ............................................................................................................................................. 10 Storage conditions 10 Description and documentation 10 Creating a disk image 11 Ensuring authenticity: Write blockers 11 Ensuring reliability: Sustainability of the disk image file format 12 Metadata 12 Virus scanning 13 Ensuring integrity: checksums 13 Identifying personal or sensitive information 13 Best practices: Use of hardware and software 14 Hardware
    [Show full text]
  • Unit 5: Memory Organizations
    Memory Organizations Unit 5: Memory Organizations Introduction This unit considers the organization of a computer's memory system. The characteristics of the most important storage technologies are described in detail. Basically memories are classified as main memory and secondary memory. Main memory with many different categories are described in Lesson 1. Lesson 2 focuses the secondary memory including the details of floppy disks and hard disks. Lesson 1: Main Memory 1.1 Learning Objectives On completion of this lesson you will be able to : • describe the memory organization • distinguish between ROM, RAM, PROM, EEPROM and • other primary memory elements. 1.2 Organization Computer systems combine binary digits to form groups called words. The size of the word varies from system to system. Table 5.1 illustrates the current word sizes most commonly used with the various computer systems. Two decades ago, IBM introduced their 8-bit PC. This was Memory Organization followed a few years later by the 16-bit PC AT microcomputer, and already it has been replaced with 32- and 64-bit systems. The machine with increased word size is generally faster because it can process more bits of information in the same time span. The current trend is in the direction of the larger word size. Microcomputer main memories are generally made up of many individual chips and perform different functions. The ROM, RAM, Several types of semi- PROM, and EEPROM memories are used in connection with the conductor memories. primary memory of a microcomputers. The main memory generally store computer words as multiple of bytes; each byte consisting of eight bits.
    [Show full text]
  • Fitech Handheld User Manual Contents Introduction and Important Notes
    FiTech Handheld User Manual Contents Introduction and Important Notes ............................................................................................................... 2 Disconnect if Storing Vehicle .................................................................................................................... 2 Connecting to FiTech System ........................................................................................................................ 3 Buttons/Navigating ....................................................................................................................................... 3 Dashboard (View Live Data) .......................................................................................................................... 4 LARGE Gauges (View a Mini-Dash Panel) ..................................................................................................... 4 Showing Actual Dial Gauges! .................................................................................................................... 5 Making changes (Tuning) .............................................................................................................................. 5 PRO Tuning ................................................................................................................................................ 6 Reading and Clearing Faults (Fauld Code menu) .......................................................................................... 6 Writing Calibrations (Write Cal
    [Show full text]