Comparative Analysis Science and Technology: Ocean Floor Mapping and Exploration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Transcript
SCIENTIFIC AMERICAN FRONTIERS PROGRAM #1503 "Going Deep" AIRDATE: February 2, 2005 ALAN ALDA Hello and welcome to Scientific American Frontiers. I'm Alan Alda. It's said that the oceans, which cover more than two thirds of the earth's surface, are less familiar to us than the surface of the moon. If you consider the volume of the oceans, it's actually more than ninety percent of the habitable part of the earth that we don't know too much about. The main reason for our relative ignorance is simply that the deep ocean is an absolutely forbidding environment. It's pitch dark, extremely cold and with pressures that are like having a 3,000-foot column of lead pressing down on every square inch -- which does sound pretty uncomfortable. In this program we're going to see how people finally made it to the ocean floor, and we'll find out about the scientific revolutions they brought back with them. We're going to go diving in the Alvin, the little submarine that did so much of the work. And we're going to glimpse the future, as Alvin's successor takes shape in a small seaside town on Cape Cod. That's coming up in tonight's episode, Going Deep. INTO THE DEEP ALAN ALDA (NARRATION) Woods Hole, Massachusetts. It's one of the picturesque seaside towns that draw the tourists to Cape Cod each year. But few seaside towns have what Woods Hole has. For 70 years it's been home to the Woods Hole Oceanographic Institution — an organization that does nothing but study the world's oceans. -
Hyperbaric Physiology the Rouse Story Arrival at Recompression
Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen -
The Mississippi River Find
The Journal of Diving History, Volume 23, Issue 1 (Number 82), 2015 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 04/10/2021 06:15:15 Link to Item http://hdl.handle.net/1834/32902 First Quarter 2015 • Volume 23 • Number 82 • 23 Quarter 2015 • Volume First Diving History The Journal of The Mississippi River Find Find River Mississippi The The Journal of Diving History First Quarter 2015, Volume 23, Number 82 THE MISSISSIPPI RIVER FIND This issue is dedicated to the memory of HDS Advisory Board member Lotte Hass 1928 - 2015 HISTORICAL DIVING SOCIETY USA A PUBLIC BENEFIT NONPROFIT CORPORATION PO BOX 2837, SANTA MARIA, CA 93457 USA TEL. 805-934-1660 FAX 805-934-3855 e-mail: [email protected] or on the web at www.hds.org PATRONS OF THE SOCIETY HDS USA BOARD OF DIRECTORS Ernie Brooks II Carl Roessler Dan Orr, Chairman James Forte, Director Leslie Leaney Lee Selisky Sid Macken, President Janice Raber, Director Bev Morgan Greg Platt, Treasurer Ryan Spence, Director Steve Struble, Secretary Ed Uditis, Director ADVISORY BOARD Dan Vasey, Director Bob Barth Jack Lavanchy Dr. George Bass Clement Lee Tim Beaver Dick Long WE ACKNOWLEDGE THE CONTINUED Dr. Peter B. Bennett Krov Menuhin SUPPORT OF THE FOLLOWING: Dick Bonin Daniel Mercier FOUNDING CORPORATIONS Ernest H. Brooks II Joseph MacInnis, M.D. Texas, Inc. Jim Caldwell J. Thomas Millington, M.D. Best Publishing Mid Atlantic Dive & Swim Svcs James Cameron Bev Morgan DESCO Midwest Scuba Jean-Michel Cousteau Phil Newsum Kirby Morgan Diving Systems NJScuba.net David Doubilet Phil Nuytten Dr. -
Scuba Diving History
Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions. -
History of Scuba Diving About 500 BC: (Informa on Originally From
History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship. -
Side Scanning Sonar - a Theoretical Study
SIDE SCANNING SONAR - A THEORETICAL STUDY by Olivier L e e n h a r d t , Institut für Geophysik der Universitàt, Kiel ABSTRACT The principle of operation in side scanning sonars is here studied. After briefly describing the various existing equipments, the influence of different design factors on the range is first examined, and then the resolution in both the horizontal and the vertical plane. Next distortions are analysed. Firstly there are those inherent in the principle adopted for tïîèuistruinent : these distortions are due either to the obliquity of the acoustic waves, or to the ratio between recording scales, or again to the slope of the sea bottom. Secondly, accidental distortions are discussed : these result from the pitch, roll or yawing of the fish carrying the transducer, from the crabwise motions of the vessel due to cross winds or currents, and from variations in the velocity of sound in water. Finally acoustic interferences are discussed : those attributable to the recording paper, to several instruments being operated simultaneously, or to shoals of fish, the Deep Scattering Layer, or to airbubbles in the water. Some indications as to how to achieve satisfactory results with a side scanning sonar for specified purposes are given in a brief conclusion. For illustrated examples the reader is referred to various earlier issues of the International Hydrographic Review. GENERAL It was to geologists in Great Britain towards the end of the 1950s that the idea of applying side scan soilar methods first came — and it is the British who have contributed the most to the development of this equipment. -
Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of Sixty-One Dictabelt Recordings in the Robert Sinclair Dietz Papers, 1905-1994
Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of sixty-one dictabelt recordings in the Robert Sinclair Dietz Papers, 1905-1994 from Manuscript Collection MC28 Archives of the Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093-0219: September 2000 This transcription was made possible with support from the U.S. Naval Undersea Museum 2 TABLE OF CONTENTS INTRODUCTION ...........................................................................................................................4 CASSETTE TAPE 1 (Dietz Dictabelts #1-5) .................................................................................6 #1-5: The Big Dive to 37,800. Piccard dictating, n.d. CASSETTE TAPE 2 (Dietz Dictabelts #6-10) ..............................................................................21 #6: Comments on the Big Dive by Dr. R. Dietz to complete Piccard's description, n.d. #7: On Big Dive, J.P. #2, 4 Mar., n.d. #8: Dive to 37,000 ft., #1, 14 Jan 60 #9-10: Tape just before Big Dive from NGD first part has pieces from Rex and Drew, Jan. 1960 CASSETTE TAPE 3 (Dietz Dictabelts #11-14) ............................................................................30 #11-14: Dietz, n.d. CASSETTE TAPE 4 (Dietz Dictabelts #15-18) ............................................................................39 #15-16: Dive #61 J. Piccard and Dr. A. Rechnitzer, depth of 18,000 ft., Piccard dictating, n.d. #17-18: Dive #64, 24,000 ft., Piccard, n.d. CASSETTE TAPE 5 (Dietz Dictabelts #19-22) ............................................................................48 #19-20: Dive Log, n.d. #21: Dr. Dietz on the bathysonde, n.d. #22: from J. Piccard, 14 July 1960 CASSETTE TAPE 6 (Dietz Dictabelts #23-25) ............................................................................57 #23-25: Italian Dive, Dietz, Mar 8, n.d. CASSETTE TAPE 7 (Dietz Dictabelts #26-29) ............................................................................64 #26-28: Italian Dive, Dietz, n.d. -
Idstori Diver
Historical Diver, Number 15, 1998 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 23/09/2021 19:54:03 Link to Item http://hdl.handle.net/1834/30858 IDSTORI DIVER "elf[[[! aik of each "ad" i> thii ~don't die without ha<>ing Conowed, >tofw, pmcha>ed o< made a fzefmd of >o<t>, to gfimf»< fo< youudf thi> n£w wo<td." CWJfiam 'Bufn, "23weath 'Jwpia ~ea>" 1928 Number 15 Spring 1998 Cousteau and Hass An early time line • Dr. Peter B. Bennett • O.S.S. Commemorative Stone • Jerri Lee Cross • • Evolution of the Australian Porpoise Regulator • Rouquayrol Denayrouze in Germany • • General Electric Closed Circuit Deep Diving System • • Bibliophiles • Nick lcom • Gahanna Italian Diving Helmet • HISTORICAL DIVING SOCIETY USA HISTORICAL DIVER MAGAZINE A PUBLIC BENEFIT NONPROFIT CORPORATION ISSN 1094-4516 2022 CLIFF DRIVE #119 THE OFFICIAL PUBLICATION OF SANTA BARBARA, CALIFORNIA 93109 U.S.A. THE HISTORICAL DIVING SOCIETY U.S.A. PHONE: 805-692-0072 FAX: 805-692-0042 DIVING HISTORICAL SOCIETY OF e-mail: [email protected] or HTTP://WWW.hds.org/ AUSTRALIA, S.E. ASIA EDITORS ADVISORY BOARD Leslie Leaney, Editor Dr. Sylvia Earle Dick Long Andy Lentz, Production Editor Dr. Peter B. Bennett 1. Thomas Millington, M.D. CONTRIBUTING EDITORS Dick Bonin Bob & Bill Meistrell Bonnie Cardone E.R. Cross Nick Icorn Scott Carpenter Bev Morgan Peter Jackson Nyle Monday Jeff Dennis John Kane Jim Boyd Dr. Sam Miller Jean-Michel Cousteau Phil Nuytten OVERSEAS EDITORS E.R. Cross Sir John Rawlins Michael Jung (Germany) Andre Galeme Andreas B. Rechnitzer Ph.D. -
3 Affected Environment and Environmental Consequences
Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Draft Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing TABLE OF CONTENTS 3 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES ....................................... 3.0-1 3.0 Introduction ........................................................................................................... 3.0-1 3.0.1 Navy Compiled and Generated Data .................................................................. 3.0-1 3.0.1.1 Marine Species Monitoring and Research Programs ......................... 3.0-1 3.0.1.2 Marine Species Density Database....................................................... 3.0-2 3.0.1.3 Developing Acoustic and Explosive Criteria and Thresholds .............. 3.0-3 3.0.1.4 Aquatic Habitats Database ................................................................. 3.0-4 3.0.2 Ecological Characterization of the Study Area .................................................... 3.0-4 3.0.2.1 Biogeographic Classifications.............................................................. 3.0-4 3.0.2.2 Bathymetry ....................................................................................... 3.0-12 3.0.2.3 Currents, Circulation Patterns, and Water Masses .......................... 3.0-14 3.0.2.4 Ocean Fronts ..................................................................................... 3.0-27 3.0.2.5 Abiotic Substrate .............................................................................. 3.0-27 -
Challenger Deep Pdf, Epub, Ebook
CHALLENGER DEEP PDF, EPUB, EBOOK Neal Shusterman,Brendan Shusterman | 320 pages | 21 May 2015 | HarperCollins Publishers Inc | 9780062413093 | English | New York, United States Challenger Deep PDF Book January It was the first solo dive and the first to spend a significant amount of time three hours exploring the bottom. Raid on Alexandria Sinking of the Rainbow Warrior. The report by the HMS Challenger expedition reported two species of radiolarian when they discovered in the Challenger Deep. I kept thinking - am I going to spiral down one day? Enlarge cover. Other than that, the rest of the story kind of clicked and made sense. They are. The parrot is no better; he is malevolent, too, but funny. Each decade has its own civil rights fight, and I truly hope we tackle this next. In many mental-health books mental hospitals are demonized and described as prisons and mental torture houses run by cruel doctors and orderlies. The system was so new that JHOD had to develop their own software for drawing bathymetric charts based on the SeaBeam digital data. Marine Geophysical Research. Lin joined VictorVescovo to become, not only the first person born in Taiwan to go to the bottom of the Mariana Trench, but also the first from the Asian continent to do so. In , researchers on RV Kilo Moana doing sonar mapping determined that it was 35,ft deep with a 72ft error. Underwater vents cause liquid sulfur and carbon dioxide to bubble up from the crescent-shaped vent. I will admit that this book was a little confusing at the beginning but when the parallels made themselves more evident, I really started enjoying the book. -
E D I T O R I Al
BOLETIM INFORMATIVO DA ASSOCIAÇÃO ABBM BRASILEIRA DE BIOLOGIA MARINHA ISSN 1983 -1889 Volume 5, Número 1 jan/fev/mar/abr 2012 E D I T O R I A L Associação Brasileira de Biologia Marinha CNPJ: 09.304.946/0001-16 Chegamos ao primeiro fascículo do Boletim Informativo da ABBM de 2012. Isto significa que Diretoria Nacional (2011-2013) estamos iniciando o quinto ano de existência do Presidente Boletim Informativo , um marco importante para a Elisabete Barbarino (UFF) Associação Brasileira de Biologia Marinha, digno de Vice-Presidente celebração. Esta é uma conquista de todos nós, Edson Pereira da Silva (UFF) membros da ABBM. Secretária O presente fascículo do Boletim Informativo Diana Negrão Cavalcanti (UFF) traz diversos destaques. Em Palavras da ABBM , Secretária-Executiva nossa nova presidente, Elisabete Barbarino, Bruna Christina Marques Tovar Faro (UFRJ/UFF) contempla diferentes assuntos: ela comenta a Editor-Chefe conjuntura nacional da C,T&I, aborda alguns fatos Sergio de Oliveira Lourenço (UFF) marcantes para a área de Ciências do Mar no primeiro quadrimestre de 2012 e relata progressos Tesoureira recentes da ABBM. Andyara do Nascimento Silva (SEEDUC-RJ) Quatro artigos compõem o presente fascículo do BI . Fernando F. Mendonça & Fausto Conselho Consultivo, Fiscal e Arbitral Foresti abordam a aplicação de técnicas genéticas Giuliano Buzá Jacobucci (UFU) para a identificação de tubarões e raias. Os autores Luiz Muri Bassani Costa (WINDIVE) explicam como utilizar informações genéticas como Paulo Cesar de Paiva (UFRJ) ferramentas poderosas para a análise de espécimes Antonia Cecília Zacargnini Amaral (UNICAMP) de elasmobrânquios apreendidos por órgãos de Fausto Foresti (UNESP) fiscalização. Pleno de exemplos do Brasil e do mundo, o artigo mostra brilhantemente como a Genética pode contribuir para a conservação de Secretaria da ABBM espécies marinhas. -
DEEPSEA CHALLENGE EXPEDITION (Part 1 of 2: the Landers)
EDITORIAL FOCUS By: Kevin Hardy, Global Ocean Design LLC; Bruce Sutphen, Sutphen Marine LLC; and James Cameron, Earthship Productions LLC TECHNOLOGY OF THE DEEPSEA CHALLENGE EXPEDITION (Part 1 of 2: The Landers) June 2014 Introduction Virtually all oceanography has been done in 36 the upper 6 km of the ocean, and very little in the 5 km below that in the deep region known as the “hadal zone.” Created by the titanic planetary forces of plate tectonics, earth- quakes, volcanoes, tsunamis, and countless unknown species are born there. A lack of access, not interest, has kept the hadal zone living in our common language as something “unfathomable.” On March 26, 2012, a day like only one other in the entire history of man’s reach into the sea, Explorer and Filmmaker James Cameron Ocean News & Technology resolutely piloted a one-man submersible to the bottom of the Challenger Deep in the Mariana Trench. Once there, he roamed freely for hours in the dark hallways of Neptune’s dungeon as no one had ever done before. To make that happen, the design limits of both manned submersible and unmanned landers were pushed to include the newest ideas and developments, with legacy technology forming a broad foundation. In his quest to reignite scientific interest and inspire world awareness of the forgotten lands of the ocean trenches, Cameron’s DEEPSEA CHALLENGE (DSC) Expedition developed a radically new submersible and twin unmanned “landers” as his primary vehi- cles of exploration. This two-part series will highlight the technologies, both new and The DEEPSEA CHALLENGE lander, DOV MIKE, is photographed heading for the bottom of the New Britain applied, used in the making of the manned and Trench near Papua New Guinea.