3 Affected Environment and Environmental Consequences

Total Page:16

File Type:pdf, Size:1020Kb

3 Affected Environment and Environmental Consequences Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Draft Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing TABLE OF CONTENTS 3 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES ....................................... 3.0-1 3.0 Introduction ........................................................................................................... 3.0-1 3.0.1 Navy Compiled and Generated Data .................................................................. 3.0-1 3.0.1.1 Marine Species Monitoring and Research Programs ......................... 3.0-1 3.0.1.2 Marine Species Density Database....................................................... 3.0-2 3.0.1.3 Developing Acoustic and Explosive Criteria and Thresholds .............. 3.0-3 3.0.1.4 Aquatic Habitats Database ................................................................. 3.0-4 3.0.2 Ecological Characterization of the Study Area .................................................... 3.0-4 3.0.2.1 Biogeographic Classifications.............................................................. 3.0-4 3.0.2.2 Bathymetry ....................................................................................... 3.0-12 3.0.2.3 Currents, Circulation Patterns, and Water Masses .......................... 3.0-14 3.0.2.4 Ocean Fronts ..................................................................................... 3.0-27 3.0.2.5 Abiotic Substrate .............................................................................. 3.0-27 3.0.3 Overall Approach to Analysis ............................................................................ 3.0-28 3.0.3.1 Resources and Issues Evaluated ....................................................... 3.0-31 3.0.3.2 Resources and Issues Eliminated from Further Consideration ......... 3.0-31 3.0.3.3 Identifying Stressors for Analysis ...................................................... 3.0-31 3.0.3.4 Resource-Specific Impacts Analysis for Individual Stressors .......... 3.0-104 3.0.3.5 Resource-Specific Impacts Analysis for Multiple Stressors ............ 3.0-105 3.0.3.6 Biological Resource Methods ......................................................... 3.0-106 List of Figures Figure 3.0-1: The Study Area with Large Marine Ecosystems and Open Ocean Areas ........................... 3.0-7 Figure 3.0-2: Three-Dimensional Representation of the Intertidal Zone (shoreline), Continental Margin, Abyssal Zone, and Water Column Zones ........................................ 3.0-13 Figure 3.0-3: Bathymetry of the Entire Study Area............................................................................... 3.0-15 Figure 3.0-4: Bathymetry of the Northeast Portion of the Study Area................................................. 3.0-17 Figure 3.0-5: Bathymetry of the Southeast and Caribbean Portions of the Study Area....................... 3.0-19 Figure 3.0-6: Bathymetry of the Gulf of Mexico and Caribbean Sea Portions of the Study Area .................................................................................................................................. 3.0-21 Figure 3.0-7: Major Currents in the Study Area .................................................................................... 3.0-25 Figure 3.0-8: Average Sea Surface Temperature in the Study Area (2011–2015) ................................ 3.0-29 i Table of Contents Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Figure 3.0-9: Traffic and Broadband Radiated Noise During a Composite Training Unit Exercise in the Southern California Range Complex ........................................................ 3.0-47 Figure 3.0-10: Relative Distribution of Commercial Vessel Traffic in Atlantic Fleet Training and Testing Study Areas .................................................................................................. 3.0-49 Figure 3.0-11: Relative Distribution of U.S. Navy Vessel Traffic in Atlantic Fleet Training and Testing Study Areas ......................................................................................................... 3.0-50 Figure 3.0-12: Gun Blast and Projectile from a 5-in./54 Navy Gun....................................................... 3.0-55 Figure 3.0-13: Sonobuoy Launch Depicting the Relative Size of a Parachute ...................................... 3.0-97 Figure 3.0-14: Flow Chart of the Evaluation Process of Sound-Producing Activities ......................... 3.0-109 Figure 3.0-15: Two Hypothetical Threshold Shifts .............................................................................. 3.0-112 List of Tables Table 3.0-1: Summary of Current Patterns in Areas Located Outside the Range Complexes .............. 3.0-23 Table 3.0-2: Sonar and Transducer Sources Quantitatively Analyzed .................................................. 3.0-36 Table 3.0-3: Training and Testing Air Gun Sources Quantitatively Analyzed in the Study Area ........... 3.0-43 Table 3.0-4: Sonar and Transducers Qualitatively Analyzed................................................................. 3.0-44 Table 3.0-5: Elevated Causeway System Pile Driving and Removal Underwater Sound Levels ........... 3.0-45 Table 3.0-6: Summary of Pile Driving and Removal Activities per 24-Hour Period .............................. 3.0-46 Table 3.0-7: Estimated Vessel Presence (Hours) in Study Area ............................................................ 3.0-46 Table 3.0-8: Representative Aircraft Sound Characteristics ................................................................. 3.0-51 Table 3.0-9: Sonic Boom Underwater Sound Levels Modeled for F/A-18 Hornet Supersonic Flight ................................................................................................................................ 3.0-53 Table 3.0-10: Examples of Weapons Noise ........................................................................................... 3.0-54 Table 3.0-11: Explosive Sources Quantitatively Analyzed that Could Be Used Underwater or at the Water Surface ........................................................................................................ 3.0-58 Table 3.0-12: Typical Air Explosive Munitions During Navy Activities .................................................. 3.0-59 Table 3.0-13: Number and Location of Activities Including In-Water Electromagnetic Devices .......... 3.0-60 Table 3.0-14: Number and Location of Activities in Inland Waters Including In-Water Electromagnetic Devices .................................................................................................. 3.0-61 Table 3.0-15: Activities Including High-Energy Lasers .......................................................................... 3.0-64 Table 3.0-16: Representative Vessel Types, Lengths, and Speeds ....................................................... 3.0-65 Table 3.0-17: Number and Location of Activities Including Vessels ..................................................... 3.0-66 Table 3.0-18: Number and Location of Activities in Inland Waters Including Vessels .......................... 3.0-67 Table 3.0-19: Number of High Speed Vessel Hours for Small Crafts Associated with Training Activities in Inland Waters of the Study Area .................................................................. 3.0-68 Table 3.0-20: Representative Types, Sizes, and Speeds of In-Water Devices....................................... 3.0-69 Table 3.0-21: Number and Location of Activities Including In-Water Devices ..................................... 3.0-69 ii Table of Contents Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Table 3.0-22: Number and Location of Activities in Inland Waters Including In-Water Devices ............................................................................................................................. 3.0-70 Table 3.0-23: Number and Location of Non-Explosive Practice Munitions Expended During Training Activities............................................................................................................. 3.0-71 Table 3.0-24: Number and Location of Non-Explosive Practice Munitions Expended During Training Activities in Inland Waters ................................................................................. 3.0-72 Table 3.0-25: Number and Location of Non-Explosive Practice Munitions Expended During Testing Activities .............................................................................................................. 3.0-73 Table 3.0-26: Number and Location of Explosives that May Result in Fragments Used During Training Activities............................................................................................................. 3.0-75 Table 3.0-27: Number and Location of Explosives that May Result in Fragments Used During Testing Activities .............................................................................................................. 3.0-77 Table 3.0-28: Number and Location of Targets Used or Expended During Training Activities ............ 3.0-79 Table 3.0-29: Number and Location of Targets Used or Expended During Training Activities in Inland Waters ............................................................................................................... 3.0-80 Table 3.0-30: Number and Location of Targets Used or Expended During Testing Activities .............. 3.0-80 Table 3.0-31: Number and Location of Other Military Materials Used or Expended During Training Activities............................................................................................................
Recommended publications
  • Instrumentation for Monitoring Around Marine Renewable Energy Converters: Workshop Final Report
    PNNL-23100 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report B Polagye A Copping R Suryan S Kramer J Brown-Saracino C Smith January 2014 PNNL-23100 Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report B Polagye1 A Copping R Suryan2 S Kramer3 J Brown-Saracino4 C Smith4 January 2014 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 1 University of Washington, Northwest National Marine Renewable Energy Center, Seattle, Washington 2 Oregon State University, Newport, Oregon 3 HT Harvey and Associates, Arcata, California 4 US Department of Energy, Wind and Waterpower Technologies Office, Washington, DC Recommended citation: Polagye, B., A. Copping, R. Suryan, S. Kramer, J. Brown-Saracino, and C. Smith. 2014. Instrumentation for Monitoring Around Marine Renewable Energy Converters: Workshop Final Report. PNNL-23110 Pacific Northwest National Laboratory, Seattle, Washington. Summary As the marine energy industry explores the potential for generating significant power from waves and tidal currents, there is a need to ensure that energy converters do not cause harm to the marine environment, including marine animals that may interact with these new technologies in their native habitats. The challenge of deploying, operating, and maintaining marine energy converters in the ocean is coupled with the difficulty of monitoring for potentially deleterious outcomes between the converters, anchors, mooring lines, power cables and other gear, and marine mammals, sea turtles, fish, and seabirds. To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S.
    [Show full text]
  • Prestudy on Sonar Transponder
    Prestudy on Sonar Transponder Dag Lindahl & Leigh Boyd, Avalon Innovation September 2018, Västerås, Sweden External consultant: Avalon Innovation AB Dag Lindahl, Business Manager Project North, +4670 454 37 08, [email protected] Leigh Boyd, System Development Engineer +4670 454 43 44, [email protected] Avalon Innovation AB, Skivfilargränd 2 721 30 Västerås, Sweden Org nr: 556546-4525, www.avaloninnovation.com Contractor Marine Center, Municipality of Simrishamn Coordination and editing Vesa Tschernij, Marine Center MARELITT Baltic Lead Partner Municipality of Simrishamn Marine Center, 272 80 Simrishamn, Sweden Contact Vesa Tschernij, Project Leader [email protected] +4673-433 82 87 www.marelittbaltic.eu The project is co-financed by the Interreg Baltic Sea Region Programme 2014-2020. The information and views set out in this report are those of the authors only and do not reflect the official opinion of the INTERREG BSR Programme, nor do they commit the Programme in any way. Cover photo: P-Dyk Table of Contents Introduction 1 Background 3 Sonars and fish finders 3 Active - Beacons 4 Active - Transponders 5 Passive - Reflectors 5 Transmitter power and frequencies 6 Chirp vs. Ping 7 Beam characteristics 7 Propagation in water 7 Returned signal from underwater targets 8 Receiver sensitivity 9 Link- and power budget calculations 9 Transmitter output power 9 Transmitter output efficiency 10 Transmitter lobe directivity and spreading losses. 10 Propagation loss through water to target (and back) 10 Noise 10 Ideas 11 Resonators as energy storage elements or harvesters 11 Conclusions 12 Recommendations for further work 13 Ghost Net Hotline 13 Transponders - to help retrieve nets lost in the future 13 Improving the Sonar Data at the source 14 Computerized Post Processing 14 Map/Database 15 Dispatching algorithm 15 Remotely Operated Vehicles 16 References 17 Introduction Avalon Innovation has been asked to investigate the potential for making a sonar responder, driven by the energy in the sonar pulse.
    [Show full text]
  • A Review and Inventory of Fixed Autonomous Recorders for Passive Acoustic Monitoring of Marine Mammals Renata S
    Aquatic Mammals 2013, 39(1), 23-53, DOI 10.1578/AM.39.1.2013.23 A Review and Inventory of Fixed Autonomous Recorders for Passive Acoustic Monitoring of Marine Mammals Renata S. Sousa-Lima,1, 2, 5 Thomas F. Norris,3 Julie N. Oswald,3, 4 and Deborah P. Fernandes5 1Bioacoustics Research Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA E-mail: [email protected] 2Programa de Pós-Graduação em Ecologia, Conservação e Manejo de Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270, Brasil 3Bio-Waves, Inc., 144 W. D Street, Suite #205, Encinitas, CA 92024, USA 4Oceanwide Science Institute, PO Box 61692, Honolulu, HI 96839, USA 5Laboratório de Bioacústica e Programa de Pós Graduação em Psicobiologia, Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Caixa Postal 1511, Campus Universitário, Natal, RN 59078-970, Brasil Abstract sounds produced by marine mammals to more effectively study them. Fixed autonomous acoustic recording devices In 1880, Pierre and Jacques Curie (1880a, (autonomous recorders [ARs]) are defined as 1880b) discovered that when mechanical pressure any electronic recording system that acquires was exerted on a quartz crystal, an electric poten- and stores acoustic data internally (i.e., without a tial is produced. This finding enabled the devel- cable or radio link to transmit data to a receiving opment of the first device capable of listening to station), is deployed semi-permanently underwa- sounds underwater—passive acoustic monitoring ter (via a mooring, buoy, or attached to the sea (PAM), which was utilized during World War I.
    [Show full text]
  • Yet2 – NOAA Buoyless Gear Location Marking Pivot Report
    NOAA Topic Specific Scouting yet2 Buoyless Gear Location Marking Project Pivot Report October 21, 2020 Contents • Executive Summary • Description of Targets • Appendices 2 Executive Summary Project Objective • Identification of technologies/companies that have the potential/expertise to develop and commercialize a Buoyless Underwater Object Location Marking System. • Assessment of the most promising potential solution providers and interviews with potential partners. Results to Date • yet2 has sent 41 relevant targets to NOAA to be reviewed. o Looked at Ropeless Fishing Systems, commercially available technologies/systems and novel academic research of Underwater Communication, Positioning, and Networking systems, and its individual components. o Reviewed acoustic, optical, and electromagnetic systems, novel methods, modems, and power transfer techniques. • NOAA reviewed and provided feedback on all 41 targets and has identified 39 companies with relevant expertise developing and commercializing underwater Communication & Positioning Systems. • Important results to date: o NOAA contacted and invited all in scope and relevant targets to the Ropeless Consortium Annual meeting. o yet2 gained insights on the state of the art of Underwater Communication And Location Systems to inform NOAA, who will use this information to work on the specifications for a Bouyless Gear Location Marking System. 3 General Observations and Next Steps General Observations Pricing While there are many companies with capabilities and existing products around NOAA’s desired system, most are not within the desired cost range. • A traditional system for monitoring high-value assets such as underwater autonomous vehicles, cost upwards of $15,000. • Some researchers have built low cost devices ($100-1000) from raw materials, but it does not appear that these devices are being manufactured on a commercial scale.
    [Show full text]
  • Research Article Nonstationary System Analysis Methods for Underwater Acoustic Communications
    Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2011, Article ID 807472, 14 pages doi:10.1155/2011/807472 Research Article Nonstationary System Analysis Methods for Underwater Acoustic Communications Nicolas F. Josso,1 Jun Jason Zhang,2 Antonia Papandreou-Suppappola,2 Cornel Ioana,1 and Tolga M. Duman2 1 GIPSA-Lab/DIS, Grenoble Institute of Technology (GIT), 38402 Grenoble, France 2 School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-9309, USA Correspondence should be addressed to Antonia Papandreou-Suppappola, [email protected] Received 3 August 2010; Accepted 26 December 2010 Academic Editor: Antonio Napolitano Copyright © 2011 Nicolas F. Josso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The underwater environment can be considered a system with time-varying impulse response, causing time-dependent spectral changes to a transmitted acoustic signal. This is the result of the interaction of the signal with the water column and ocean boundaries or the presence of fast moving object scatterers in the ocean. In underwater acoustic communications using medium- to-high frequencies (0.3–20 kHz), the nonstationary transformation on the transmitted signals can be modeled as multiple time- delay and Doppler-scaling paths. When estimating the channel, a higher processing performance is thus expected if the techniques used employ a matched channel model compared to those that only compensate for wideband effects. Following a matched linear time-varying wideband system representation, we propose two different methods for estimating the underwater acoustic communication environment.
    [Show full text]
  • Long-Term Autonomous Hydrophones for Large-Scale Hydroacoustic Monitoring of the Oceans Jean-François D’Eu, Jean-Yves Royer, Julie Perrot
    Long-term autonomous hydrophones for large-scale hydroacoustic monitoring of the oceans Jean-François d’Eu, Jean-Yves Royer, Julie Perrot To cite this version: Jean-François d’Eu, Jean-Yves Royer, Julie Perrot. Long-term autonomous hydrophones for large- scale hydroacoustic monitoring of the oceans. Yeosu 2012, May 2012, Yeosu, North Korea. pp.1-6, 10.1109/OCEANS-Yeosu.2012.6263519. insu-00817948 HAL Id: insu-00817948 https://hal-insu.archives-ouvertes.fr/insu-00817948 Submitted on 22 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Long-term autonomous hydrophones for large-scale hydroacoustic monitoring of the oceans Jean-François D’Eu, Jean-Yves Royer, Julie Perrot Laboratoire Domaines Océaniques CNRS and University of Brest Plouzané, France [email protected] Abstract—We have developed a set of long-term autonomous hydrophones dedicated to long-term monitoring of low-frequency A. Monitoring ocean seismicity at a broad scale sounds in the ocean (<120Hz). Deploying arrays of such Seismicity in the ocean is usually recorded with the help of hydrophones (at least 4 instruments) proves a very efficient seismometers, such as Ocean Bottom Seismometers (OBS), approach to monitor acoustic events of geological origin placed in the proximity of active areas.
    [Show full text]
  • Passive Acoustic Monitoring Projects and Sound Sources in the Gulf of Mexico
    OCS Study BOEM 2020-009 Literature Synthesis: Passive Acoustic Monitoring Projects and Sound Sources in the Gulf of Mexico U.S. Department of the Interior Bureau of Ocean Energy Management New Orleans Office OCS Study BOEM 2020-009 Literature Synthesis: Passive Acoustic Monitoring Projects and Sounds Sources in the Gulf of Mexico Authors Jennifer N. Latusek-Nabholz Amy D. Whitt Dagmar Fertl Dennis R. Gallien Anwar A. Khan Natalia Sidorovskaia Prepared under BOEM Contract M17PC00001 by HDR, Inc. 300 N. Madison Street Athens, Georgia 35611 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management January 2020 New Orleans Office DISCLAIMER Study concept, oversight, and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program, Washington, DC, under Contract Number M17PC00001, Task Order No. M17PD00011. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2020-009. The report is also available at the National Technical Reports Library at https://ntrl.ntis.gov/NTRL/.
    [Show full text]
  • DELIVERABLE 2.1 Monitoring Plans for Noise, Electromagnetic Fields and Seabed Integrity
    WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity DELIVERABLE 2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity 1 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity 2 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity WP 2 Environmental Monitoring Deliverable 2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity PROJECT COORDINATOR AZTI TASK LEADER AZTI AUTHORS Pedro Vinagre, WavEC Erica Cruz, WavEC Paulo Chainho, WavEC Pablo Ruiz, CTN Ivan Felis, CTN Iñigo Muxika, AZTI Juan Bald, AZTI SUBMISSION DATE 28 | February| 2019 CITATION Vinagre P.A., Cruz E., Chainho P., Ruiz P., Felis I., Muxika I., Bald J., 2019. Deliverable 2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity. Corporate deliverable of the Wave Energy in the Southern Europe (WESE) Project funded by the European Commission. Agreement number EASME/EMFF/2017/1.2.1.1/02/SI2.787640. 60 pp. 3 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity WESE Wave Energy in the Southern Europe D2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity 4 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity CONTENTS 1. WESE PROJECT SYNOPSIS ......................................................................................................................
    [Show full text]
  • Report of the NABOS/CABOS 2010-2011 Arctic Ocean Mooring Recovery
    IARC Technical Report # 8 Report of the NABOS/CABOS 2010-2011 Arctic Ocean mooring recovery Summary of NABOS/CABOS mooring operations With support from: NSF 1 TABLE OF CONTENTS PREFACE ( I.Polyalov )…….………………………………..………………………..….………....... 5 I. NABOS MOORING RECOVERY DURING ICE CRUISE 2010, R/V LANCE …………….……… 7 I.1. INTRODUCTION (I.Polyakov)………………………………………..…………………………… 8 I.2. RESEARCH VESSEL …………..………………………………………………………….......... 8 I.3. OUTLINE FOR MOORING OPERATIONS ……………..……….................................................. 9 I.3.1. Attempt to recover SAMS mooring (I. Waddington) ....………………………………………….… 9 I.3.2. Recovery of M4c mooring (I. Waddington)……………………………………………………. 11 I.3.3. Downloading M4c mooring data (I. Waddington)………………………………………………………... 14 I.3.4. Preliminary look at M4c mooring data …............................................................................. 14 I.4. ACKNOWLEDGEMENTS ……………..………........................................................................... 16 II. NABOS MOORINGS RECOVERY DURING ARK-XXVI/3 CRUISE 2011, R/V POLARSTERN 19 II.1. INTRODUCTION (I.Polyakov)……………………………………..…..………………………… 20 II.2. RESEARCH VESSEL ………..……………………………………..…………………….......... 21 II.3. OUTLINE FOR MOORING OPERATIONS …………..………..................................................... 21 II.3.1. M11a mooring ....………………………………………………..…………………………….… 21 II.3.1.1. Recovery of M11a mooring (I. Waddington)……………………….…………………… 21 II.3.1.2. Preliminary look at M11a mooring data ….............................................................. 24
    [Show full text]
  • Damocle Ss D8.2-06
    Project no. 018509 DAMOCLES Developing Arctic Modelling and Observing Capabilities for Long-term Environment Studies Instrument: Integrated Project Thematic Priority: 6.3 “Global Change and Ecosystems” D8.2-06 - Results from the Fram Strait acoustic tomography experiment and system evaluation Due date of deliverable: 30/05/2010 Actual submission date: 20/06/2010 Used Person/months: 9.75 Start date of project: 1 December 2005 Duration: 54 months Organisation name of lead contractor for this deliverable: NERSC Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) X RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) D8.2-06 - Results from the Fram Strait acoustic tomography experiment and system evaluation TITLE: D8.2-06 - Results from the Fram Strait acoustic REPORT IDENTIFICATION tomography experiment and system evaluation DAMOCLES Deliverable D8.2 CLIENT : CONTRACT DAMOCLES Contract Instrument: Integrated Project Grant agreement no.: 018509 Thematic Priority: 6.3 “Global Change and Ecosystems” CLIENT REFERENCE AVAILABILITY Open report within the DAMOCLES consortium. INVESTIGATORS AUTHORISATION Svein Arild Haugen, NERSC, Norway Hanne Sagen, NERSC, Norway Stein Sandven, NERSC, Norway Bergen, 20 June 2010 Matthew Dzieciuch, SIO, USA Peter Worcester, SIO, USA Emmanuel
    [Show full text]
  • Chapter 2: Ocean Station Data (Osd), Low-Resolution Ctd, Low-Resolution Expendable Xctd, and Plankton
    NOAA Atlas NESDIS 72 WORLD OCEAN DATABASE 2013 Timothy P. Boyer, John I. Antonov, Olga K. Baranova, Carla Coleman, Hernan E. Garcia, Alexandra Grodsky, Daphne R. Johnson, Ricardo A. Locarnini, Alexey V. Mishonov, Todd D. O'Brien, Christopher R. Paver, James R. Reagan, Dan Seidov, Igor V. Smolyar, Melissa M. Zweng Editor: Sydney Levitus Technical Editor: Alexey Mishonov National Oceanographic Data Center Ocean Climate Laboratory Silver Spring, MD September 2013 U.S. DEPARTMENT OF COMMERCE Penny S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. Sullivan, Acting Under Secretary of Commerce for Oceans and Atmosphere National Environmental Satellite, Data, and Information Service Mary E. Kicza, Assistant Administrator Additional copies of this publication, as well as information about NODC data holdings and services, are available upon request directly from NODC. National Oceanographic Data Center User Services Team NOAA/NESDIS E/OC1 SSMC-3, 4th Floor 1315 East-West Highway Silver Spring, MD 20910-3282 Telephone: (301) 713-3277 Fax: (301) 713-3302 E-mail: [email protected] NODC home page: http://www.nodc.noaa.gov/ For updates on the data, documentation and additional information about WOD13 please refer to: http://www.nodc.noaa.gov/OC5/indprod.html This publication should be cited as: Boyer, T.P., J.I. Antonov, O.K. Baranova, C. Coleman, H.E. Garcia, A. Grodsky, D.R. Johnson, R.A. Locarnini, A.V. Mishonov, T.D. O'Brien, C.R. Paver, J.R. Reagan, D. Seidov, I.V. Smolyar, M.M. Zweng, 2013, World Ocean Database 2013. Sydney Levitus, Ed.; Alexey Mishonov, Technical Ed.; NOAA Atlas NESDIS 72, 209 pp.
    [Show full text]
  • *Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science Tdpntifitrs ESFA Title III
    DOCUMENT RESUME ED 043 501 SE 009 343 TTTLE High School Oceanography. INSTITUTION Falmouth Public Schools, Mass. SPONS AGPNCY Bureau of Elementary and Secondary Education (DHFW/OF) ,Washington, D.C. PUB DATE Jul 70 NOTE 240p. EDRS PRICt FDRS Price MP -81.00 HC-$12.10 DESCRIPTORS *Course Content, *Curriculum, Geology, *Instructional Materials, Marine Rioloov, *Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science TDPNTIFItRS ESFA Title III ABSTRACT This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twel7p papers, with references, covering each of the following: (1) Introduction to Oceanography.(2) Geology of the Ocean, (3) The Continental Shelves, (ft) Physical Properties of Sea Water,(e) Waves and Tides, (f) Oceanic Circulation,(7) Air-Sea Interaction, (P) Sea Ice, (9) Chemical Oceanography, (10) Marine Biology,(11) The Origin and Development of Life in the Sea, and (12) Aquaculture, Its Status and Potential. The topics sugoeste0 are intended to give a balanced ,:overage to the sublect matter of oceanography and provide for a one semester course. It is suggested that the topics be presented with as much laboratory and field work as possible. This work was prepared under an PSt% Title III contract. (NB) Title III Public Law 89-10 ESEA Project 1 HIGH SCHOOL OCEANOGRAPHY I S 111119411 Of Mittm. 11K111011Witt 010 OfItutirCm ImStOCum111 PAS 11t1 t10100ocli WC lit IS MIMI 110mMt MS01 01 Wit It1)01 *Ms lit6 il. P) Of Vim 01 C1stiOtS SIM 10 1011HISSI11t t#ItiS111 OMR 011C CO Mita 10k1)01 tot MKT.
    [Show full text]