A Review and Inventory of Fixed Autonomous Recorders for Passive Acoustic Monitoring of Marine Mammals Renata S

Total Page:16

File Type:pdf, Size:1020Kb

A Review and Inventory of Fixed Autonomous Recorders for Passive Acoustic Monitoring of Marine Mammals Renata S Aquatic Mammals 2013, 39(1), 23-53, DOI 10.1578/AM.39.1.2013.23 A Review and Inventory of Fixed Autonomous Recorders for Passive Acoustic Monitoring of Marine Mammals Renata S. Sousa-Lima,1, 2, 5 Thomas F. Norris,3 Julie N. Oswald,3, 4 and Deborah P. Fernandes5 1Bioacoustics Research Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA E-mail: [email protected] 2Programa de Pós-Graduação em Ecologia, Conservação e Manejo de Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270, Brasil 3Bio-Waves, Inc., 144 W. D Street, Suite #205, Encinitas, CA 92024, USA 4Oceanwide Science Institute, PO Box 61692, Honolulu, HI 96839, USA 5Laboratório de Bioacústica e Programa de Pós Graduação em Psicobiologia, Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Caixa Postal 1511, Campus Universitário, Natal, RN 59078-970, Brasil Abstract sounds produced by marine mammals to more effectively study them. Fixed autonomous acoustic recording devices In 1880, Pierre and Jacques Curie (1880a, (autonomous recorders [ARs]) are defined as 1880b) discovered that when mechanical pressure any electronic recording system that acquires was exerted on a quartz crystal, an electric poten- and stores acoustic data internally (i.e., without a tial is produced. This finding enabled the devel- cable or radio link to transmit data to a receiving opment of the first device capable of listening to station), is deployed semi-permanently underwa- sounds underwater—passive acoustic monitoring ter (via a mooring, buoy, or attached to the sea (PAM), which was utilized during World War I. floor), and must be retrieved to access the data. Since then, the development of PAM technology More than 30 ARs were reviewed. They varied has made it possible for researchers to listen to, greatly in capabilities and costs, from small, record, store, and analyze marine mammal sounds. hand-deployable units for detecting dolphin and However, up until the turn of the century, limita- porpoise clicks in shallow water to larger units tions in PAM technologies and methods available, that can be deployed in deep water and can record as well as high costs, inhibited the development at high-frequency bandwidths for over a year, but and application of passive acoustics for marine must be deployed from a large vessel. The capa- mammal monitoring. In addition, the technical bilities and limitations of the systems reviewed expertise required to develop and apply these herein are discussed in terms of their effectiveness technologies was typically beyond that of most in monitoring and studying marine mammals. field biologists. The development of fixed autono- mous underwater sound recorders (ARs) in the Key Words: passive acoustic monitoring, fixed early 1990s greatly reduced the costs and exper- systems, marine mammals, acoustic monitoring, tise required to monitor marine mammal sounds mitigation, autonomous recorders for extended time periods. An AR is defined as any electronic recording device or system that Introduction acquires and stores acoustic data internally (i.e., without cable or radio links to a fixed platform or Marine mammals live most of their lives under the receiving station) on its own, without the need of ocean surface, out of view of humans. The diffi- a person to run it; is deployed semipermanently culties inherent in studying the effects of human underwater (i.e., usually via a mooring, buoy, or activities on these animals can be overcome only attached to the sea floor); and is archival (i.e., through the application of technology (Samuels must be retrieved after the deployment period to & Tyack, 1999). Most species of marine mam- access the data). mals are acoustic specialists that rely on sounds Today, ARs can be easily deployed on the for communication and navigational purposes. ocean bottom to record acoustic data for days, Scientists and engineers have developed passive weeks, or even months at a time. These archival acoustic-based technologies to detect and record ARs must then be retrieved to download data 24 Sousa-Lima et al. for post-processing and analysis. This approach in relation to oil and gas exploration and produc- allows ARs to be deployed and retrieved by tion (E&P) activities. field personnel with a relatively limited amount of training or expertise, which frees up valuable Historical Overview of the Development of time, resources, and funding. Autonomous Recorders ARs are most cost effective when used in During the late 1960s, a change in spatial scale extreme or remote locations where access is lim- occurred in marine geophysical research when ited or difficult—for example, polar regions, the scientists focused their studies on earthquakes in deep sea, and locations where travel distances are smaller areas of the sea floor. This shift required great or environmental conditions exist that are higher accuracy and more precise geophysical too harsh to conduct surveys from aboard research instrumentation and led to the development of vessels (Mellinger & Barlow, 2003; Munger et al., autonomous instruments called Ocean Bottom 2005; Sirovic et al., 2009). ARs are also useful Seismometers (OBSs) for monitoring underwater for detecting marine mammals in areas where earthquakes. OBSs were able to measure move- the occurrence of animals is infrequent, or where ments of the Earth’s crust (Loncarevic, 1977). An ship-based surveys have a very high cost per OBS is designed to rest on the ocean floor and detection (Mellinger & Barlow, 2003). The cost uses a sensor called a seismometer to take mea- savings in the use of ARs is achieved because of surements. The seismometer is comprised of a their autonomous nature—that is, their operation heavy mass suspended on a spring between two is independent of the presence of a human opera- magnets. Seismometers use the principle of iner- tor. The disadvantage is that these instruments tia: the resistance of an object to a change in its must be recovered to access the data; therefore, state of motion. When the earth’s crust shifts, the real-time monitoring is not possible. If archival seismometer and its magnets move concurrently, data are useful, such as for acoustic prospecting but the heavy mass momentarily remains in its efforts (i.e., during pilot studies), ARs should be original position. The relative movements of the considered as a cost-effective approach. In gen- mass through the magnetic field produce elec- eral, set-up and infrastructure costs are lower for trical currents that are then measured by instru- ARs than they are for other types of PAM systems mentation in the OBS (Dorman, 2001; Ocean (e.g., fixed-cabled hydrophones, towed-hydro- Instruments, n.d.). phone arrays, and real-time radio- or satellite- A typical OBS consists of a seismometer, a linked hydrophones; Mellinger et al., 2007a). In data logger, batteries to power the device, weight addition, ARs are more flexible in their configu- to sink it to the sea floor, a remotely activated ration, timing, and location of deployment, and (or timed) release mechanism, and flotation to they are less obtrusive to both animals and vessel buoy the instrument back to the surface (Dorman, traffic when compared to other types of PAM 2001; Ocean Instruments, n.d.). By 1975, the systems. Still, acoustic data bandwidth and col- OBS became an operational tool used by a dozen lection capabilities are usually higher for these or so research groups in at least seven countries other types of PAM systems than they are for ARs (Loncarevic, 1977). Since then, OBSs developed (Mellinger et al., 2007a; Van Parijs et al., 2009). by researchers from France, Japan, Australia, These trade-offs must be considered when decid- Germany, Russia, and the U.S. have been used ing which type of PAM system to use to reach a extensively in geophysical research efforts. particular goal. Small ground motions caused by earthquakes A critical view of state-of-the-industry AR tech- have relatively higher frequencies, so monitor- nology is provided herein, including both “tradi- ing them requires special short-period OBSs that tional” autonomous recording devices (i.e., those can record motions up to hundreds of times per designed specifically for recording geophysical second (Ocean Instruments, n.d.). These higher events, underwater noise, and marine animal frequency OBSs, originally intended to pick sounds) and “nontraditional” recording devices up the motion of the crust via the motion of the (e.g., electronic animal tags such as acoustic data- substrate upon which they rest, typically record loggers). A review of the history of AR develop- up to 100 Hz and are also capable of recording ment; their capabilities and constraints with respect low-frequency sounds produced by large baleen to different application requirements (monitoring whales (e.g., blue whale [Balaenoptera musculus] vs mitigation); specific environments in which they and fin whale [B. physalus])—sounds that con- can be used, and, perhaps most importantly, the tain frequencies below 100 Hz. McDonald et al. species to be monitored; and the biological ques- (1995) were the first to use OBS data to study tions that are to be addressed are presented herein. marine mammals: blue and fin whale calls were AR capabilities and constraints are discussed with detected and localized in deep waters during a respect to their use in monitoring marine mammals seismic study on the southern Juan de Fuca Ridge Fixed Autonomous Recorders 25 off the coast of Oregon. These data were recorded and engineers from these two areas of expertise, incidentally during a seismology experiment. and from two different institutions (SIO and BRP), A similar device called an Ocean Bottom exchanging technology and knowledge to help Hydrophone (OBH) is also used by geologists to create the initial design of that instrument (C.
Recommended publications
  • Instrumentation for Monitoring Around Marine Renewable Energy Converters: Workshop Final Report
    PNNL-23100 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report B Polagye A Copping R Suryan S Kramer J Brown-Saracino C Smith January 2014 PNNL-23100 Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report B Polagye1 A Copping R Suryan2 S Kramer3 J Brown-Saracino4 C Smith4 January 2014 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 1 University of Washington, Northwest National Marine Renewable Energy Center, Seattle, Washington 2 Oregon State University, Newport, Oregon 3 HT Harvey and Associates, Arcata, California 4 US Department of Energy, Wind and Waterpower Technologies Office, Washington, DC Recommended citation: Polagye, B., A. Copping, R. Suryan, S. Kramer, J. Brown-Saracino, and C. Smith. 2014. Instrumentation for Monitoring Around Marine Renewable Energy Converters: Workshop Final Report. PNNL-23110 Pacific Northwest National Laboratory, Seattle, Washington. Summary As the marine energy industry explores the potential for generating significant power from waves and tidal currents, there is a need to ensure that energy converters do not cause harm to the marine environment, including marine animals that may interact with these new technologies in their native habitats. The challenge of deploying, operating, and maintaining marine energy converters in the ocean is coupled with the difficulty of monitoring for potentially deleterious outcomes between the converters, anchors, mooring lines, power cables and other gear, and marine mammals, sea turtles, fish, and seabirds. To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S.
    [Show full text]
  • Prestudy on Sonar Transponder
    Prestudy on Sonar Transponder Dag Lindahl & Leigh Boyd, Avalon Innovation September 2018, Västerås, Sweden External consultant: Avalon Innovation AB Dag Lindahl, Business Manager Project North, +4670 454 37 08, [email protected] Leigh Boyd, System Development Engineer +4670 454 43 44, [email protected] Avalon Innovation AB, Skivfilargränd 2 721 30 Västerås, Sweden Org nr: 556546-4525, www.avaloninnovation.com Contractor Marine Center, Municipality of Simrishamn Coordination and editing Vesa Tschernij, Marine Center MARELITT Baltic Lead Partner Municipality of Simrishamn Marine Center, 272 80 Simrishamn, Sweden Contact Vesa Tschernij, Project Leader [email protected] +4673-433 82 87 www.marelittbaltic.eu The project is co-financed by the Interreg Baltic Sea Region Programme 2014-2020. The information and views set out in this report are those of the authors only and do not reflect the official opinion of the INTERREG BSR Programme, nor do they commit the Programme in any way. Cover photo: P-Dyk Table of Contents Introduction 1 Background 3 Sonars and fish finders 3 Active - Beacons 4 Active - Transponders 5 Passive - Reflectors 5 Transmitter power and frequencies 6 Chirp vs. Ping 7 Beam characteristics 7 Propagation in water 7 Returned signal from underwater targets 8 Receiver sensitivity 9 Link- and power budget calculations 9 Transmitter output power 9 Transmitter output efficiency 10 Transmitter lobe directivity and spreading losses. 10 Propagation loss through water to target (and back) 10 Noise 10 Ideas 11 Resonators as energy storage elements or harvesters 11 Conclusions 12 Recommendations for further work 13 Ghost Net Hotline 13 Transponders - to help retrieve nets lost in the future 13 Improving the Sonar Data at the source 14 Computerized Post Processing 14 Map/Database 15 Dispatching algorithm 15 Remotely Operated Vehicles 16 References 17 Introduction Avalon Innovation has been asked to investigate the potential for making a sonar responder, driven by the energy in the sonar pulse.
    [Show full text]
  • Yet2 – NOAA Buoyless Gear Location Marking Pivot Report
    NOAA Topic Specific Scouting yet2 Buoyless Gear Location Marking Project Pivot Report October 21, 2020 Contents • Executive Summary • Description of Targets • Appendices 2 Executive Summary Project Objective • Identification of technologies/companies that have the potential/expertise to develop and commercialize a Buoyless Underwater Object Location Marking System. • Assessment of the most promising potential solution providers and interviews with potential partners. Results to Date • yet2 has sent 41 relevant targets to NOAA to be reviewed. o Looked at Ropeless Fishing Systems, commercially available technologies/systems and novel academic research of Underwater Communication, Positioning, and Networking systems, and its individual components. o Reviewed acoustic, optical, and electromagnetic systems, novel methods, modems, and power transfer techniques. • NOAA reviewed and provided feedback on all 41 targets and has identified 39 companies with relevant expertise developing and commercializing underwater Communication & Positioning Systems. • Important results to date: o NOAA contacted and invited all in scope and relevant targets to the Ropeless Consortium Annual meeting. o yet2 gained insights on the state of the art of Underwater Communication And Location Systems to inform NOAA, who will use this information to work on the specifications for a Bouyless Gear Location Marking System. 3 General Observations and Next Steps General Observations Pricing While there are many companies with capabilities and existing products around NOAA’s desired system, most are not within the desired cost range. • A traditional system for monitoring high-value assets such as underwater autonomous vehicles, cost upwards of $15,000. • Some researchers have built low cost devices ($100-1000) from raw materials, but it does not appear that these devices are being manufactured on a commercial scale.
    [Show full text]
  • Research Article Nonstationary System Analysis Methods for Underwater Acoustic Communications
    Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2011, Article ID 807472, 14 pages doi:10.1155/2011/807472 Research Article Nonstationary System Analysis Methods for Underwater Acoustic Communications Nicolas F. Josso,1 Jun Jason Zhang,2 Antonia Papandreou-Suppappola,2 Cornel Ioana,1 and Tolga M. Duman2 1 GIPSA-Lab/DIS, Grenoble Institute of Technology (GIT), 38402 Grenoble, France 2 School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-9309, USA Correspondence should be addressed to Antonia Papandreou-Suppappola, [email protected] Received 3 August 2010; Accepted 26 December 2010 Academic Editor: Antonio Napolitano Copyright © 2011 Nicolas F. Josso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The underwater environment can be considered a system with time-varying impulse response, causing time-dependent spectral changes to a transmitted acoustic signal. This is the result of the interaction of the signal with the water column and ocean boundaries or the presence of fast moving object scatterers in the ocean. In underwater acoustic communications using medium- to-high frequencies (0.3–20 kHz), the nonstationary transformation on the transmitted signals can be modeled as multiple time- delay and Doppler-scaling paths. When estimating the channel, a higher processing performance is thus expected if the techniques used employ a matched channel model compared to those that only compensate for wideband effects. Following a matched linear time-varying wideband system representation, we propose two different methods for estimating the underwater acoustic communication environment.
    [Show full text]
  • 3 Affected Environment and Environmental Consequences
    Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Draft Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing TABLE OF CONTENTS 3 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES ....................................... 3.0-1 3.0 Introduction ........................................................................................................... 3.0-1 3.0.1 Navy Compiled and Generated Data .................................................................. 3.0-1 3.0.1.1 Marine Species Monitoring and Research Programs ......................... 3.0-1 3.0.1.2 Marine Species Density Database....................................................... 3.0-2 3.0.1.3 Developing Acoustic and Explosive Criteria and Thresholds .............. 3.0-3 3.0.1.4 Aquatic Habitats Database ................................................................. 3.0-4 3.0.2 Ecological Characterization of the Study Area .................................................... 3.0-4 3.0.2.1 Biogeographic Classifications.............................................................. 3.0-4 3.0.2.2 Bathymetry ....................................................................................... 3.0-12 3.0.2.3 Currents, Circulation Patterns, and Water Masses .......................... 3.0-14 3.0.2.4 Ocean Fronts ..................................................................................... 3.0-27 3.0.2.5 Abiotic Substrate .............................................................................. 3.0-27
    [Show full text]
  • Long-Term Autonomous Hydrophones for Large-Scale Hydroacoustic Monitoring of the Oceans Jean-François D’Eu, Jean-Yves Royer, Julie Perrot
    Long-term autonomous hydrophones for large-scale hydroacoustic monitoring of the oceans Jean-François d’Eu, Jean-Yves Royer, Julie Perrot To cite this version: Jean-François d’Eu, Jean-Yves Royer, Julie Perrot. Long-term autonomous hydrophones for large- scale hydroacoustic monitoring of the oceans. Yeosu 2012, May 2012, Yeosu, North Korea. pp.1-6, 10.1109/OCEANS-Yeosu.2012.6263519. insu-00817948 HAL Id: insu-00817948 https://hal-insu.archives-ouvertes.fr/insu-00817948 Submitted on 22 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Long-term autonomous hydrophones for large-scale hydroacoustic monitoring of the oceans Jean-François D’Eu, Jean-Yves Royer, Julie Perrot Laboratoire Domaines Océaniques CNRS and University of Brest Plouzané, France [email protected] Abstract—We have developed a set of long-term autonomous hydrophones dedicated to long-term monitoring of low-frequency A. Monitoring ocean seismicity at a broad scale sounds in the ocean (<120Hz). Deploying arrays of such Seismicity in the ocean is usually recorded with the help of hydrophones (at least 4 instruments) proves a very efficient seismometers, such as Ocean Bottom Seismometers (OBS), approach to monitor acoustic events of geological origin placed in the proximity of active areas.
    [Show full text]
  • Passive Acoustic Monitoring Projects and Sound Sources in the Gulf of Mexico
    OCS Study BOEM 2020-009 Literature Synthesis: Passive Acoustic Monitoring Projects and Sound Sources in the Gulf of Mexico U.S. Department of the Interior Bureau of Ocean Energy Management New Orleans Office OCS Study BOEM 2020-009 Literature Synthesis: Passive Acoustic Monitoring Projects and Sounds Sources in the Gulf of Mexico Authors Jennifer N. Latusek-Nabholz Amy D. Whitt Dagmar Fertl Dennis R. Gallien Anwar A. Khan Natalia Sidorovskaia Prepared under BOEM Contract M17PC00001 by HDR, Inc. 300 N. Madison Street Athens, Georgia 35611 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management January 2020 New Orleans Office DISCLAIMER Study concept, oversight, and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program, Washington, DC, under Contract Number M17PC00001, Task Order No. M17PD00011. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2020-009. The report is also available at the National Technical Reports Library at https://ntrl.ntis.gov/NTRL/.
    [Show full text]
  • DELIVERABLE 2.1 Monitoring Plans for Noise, Electromagnetic Fields and Seabed Integrity
    WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity DELIVERABLE 2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity 1 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity 2 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity WP 2 Environmental Monitoring Deliverable 2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity PROJECT COORDINATOR AZTI TASK LEADER AZTI AUTHORS Pedro Vinagre, WavEC Erica Cruz, WavEC Paulo Chainho, WavEC Pablo Ruiz, CTN Ivan Felis, CTN Iñigo Muxika, AZTI Juan Bald, AZTI SUBMISSION DATE 28 | February| 2019 CITATION Vinagre P.A., Cruz E., Chainho P., Ruiz P., Felis I., Muxika I., Bald J., 2019. Deliverable 2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity. Corporate deliverable of the Wave Energy in the Southern Europe (WESE) Project funded by the European Commission. Agreement number EASME/EMFF/2017/1.2.1.1/02/SI2.787640. 60 pp. 3 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity WESE Wave Energy in the Southern Europe D2.1 Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity 4 WAVE ENERGY IN SOUTHERN EUROPE | Deliverable 2.1. Monitoring plans for Noise, Electromagnetic Fields and Seabed Integrity CONTENTS 1. WESE PROJECT SYNOPSIS ......................................................................................................................
    [Show full text]
  • Report of the NABOS/CABOS 2010-2011 Arctic Ocean Mooring Recovery
    IARC Technical Report # 8 Report of the NABOS/CABOS 2010-2011 Arctic Ocean mooring recovery Summary of NABOS/CABOS mooring operations With support from: NSF 1 TABLE OF CONTENTS PREFACE ( I.Polyalov )…….………………………………..………………………..….………....... 5 I. NABOS MOORING RECOVERY DURING ICE CRUISE 2010, R/V LANCE …………….……… 7 I.1. INTRODUCTION (I.Polyakov)………………………………………..…………………………… 8 I.2. RESEARCH VESSEL …………..………………………………………………………….......... 8 I.3. OUTLINE FOR MOORING OPERATIONS ……………..……….................................................. 9 I.3.1. Attempt to recover SAMS mooring (I. Waddington) ....………………………………………….… 9 I.3.2. Recovery of M4c mooring (I. Waddington)……………………………………………………. 11 I.3.3. Downloading M4c mooring data (I. Waddington)………………………………………………………... 14 I.3.4. Preliminary look at M4c mooring data …............................................................................. 14 I.4. ACKNOWLEDGEMENTS ……………..………........................................................................... 16 II. NABOS MOORINGS RECOVERY DURING ARK-XXVI/3 CRUISE 2011, R/V POLARSTERN 19 II.1. INTRODUCTION (I.Polyakov)……………………………………..…..………………………… 20 II.2. RESEARCH VESSEL ………..……………………………………..…………………….......... 21 II.3. OUTLINE FOR MOORING OPERATIONS …………..………..................................................... 21 II.3.1. M11a mooring ....………………………………………………..…………………………….… 21 II.3.1.1. Recovery of M11a mooring (I. Waddington)……………………….…………………… 21 II.3.1.2. Preliminary look at M11a mooring data ….............................................................. 24
    [Show full text]
  • Damocle Ss D8.2-06
    Project no. 018509 DAMOCLES Developing Arctic Modelling and Observing Capabilities for Long-term Environment Studies Instrument: Integrated Project Thematic Priority: 6.3 “Global Change and Ecosystems” D8.2-06 - Results from the Fram Strait acoustic tomography experiment and system evaluation Due date of deliverable: 30/05/2010 Actual submission date: 20/06/2010 Used Person/months: 9.75 Start date of project: 1 December 2005 Duration: 54 months Organisation name of lead contractor for this deliverable: NERSC Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) X RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) D8.2-06 - Results from the Fram Strait acoustic tomography experiment and system evaluation TITLE: D8.2-06 - Results from the Fram Strait acoustic REPORT IDENTIFICATION tomography experiment and system evaluation DAMOCLES Deliverable D8.2 CLIENT : CONTRACT DAMOCLES Contract Instrument: Integrated Project Grant agreement no.: 018509 Thematic Priority: 6.3 “Global Change and Ecosystems” CLIENT REFERENCE AVAILABILITY Open report within the DAMOCLES consortium. INVESTIGATORS AUTHORISATION Svein Arild Haugen, NERSC, Norway Hanne Sagen, NERSC, Norway Stein Sandven, NERSC, Norway Bergen, 20 June 2010 Matthew Dzieciuch, SIO, USA Peter Worcester, SIO, USA Emmanuel
    [Show full text]
  • A Vector Sensor-Based Acoustic Characterization System for Marine Renewable Energy
    Journal of Marine Science and Engineering Article A Vector Sensor-Based Acoustic Characterization System for Marine Renewable Energy Kaustubha Raghukumar *, Grace Chang , Frank Spada and Craig Jones Integral Consulting Inc, Santa Cruz, CA 95062, USA; [email protected] (G.C.); [email protected] (F.S.); [email protected] (C.J.) * Correspondence: [email protected]; Tel.: +1-831 466 9630 Received: 9 January 2020; Accepted: 6 March 2020; Published: 10 March 2020 Abstract: NoiseSpotter is a passive acoustic monitoring system that characterizes, classifies, and geo-locates anthropogenic and natural sounds in near real time. It was developed with the primary goal of supporting the evaluation of potential acoustic effects of offshore renewable energy projects. The system consists of a compact array of three acoustic vector sensors, which measures acoustic pressure and the three-dimensional particle velocity vector associated with the propagation of an acoustic wave, thereby inherently providing bearing information to an underwater source of sound. By utilizing an array of three vector sensors, the application of beamforming techniques can provide sound source localization, allowing for characterization of the acoustic signature of specific underwater acoustic sources. Here, performance characteristics of the system are presented, using data from controlled acoustic transmissions in a quiet environment and ambient noise measurements in an energetic tidal channel in the presence of non-acoustic flow noise. Data quality is demonstrated by the ability to reduce non-acoustic flow noise contamination, while system utility is shown by the ability to characterize and localize sources of sound in the underwater environment. Keywords: marine renewable energy; acoustics; environmental characterization 1.
    [Show full text]
  • 'RAFOS Fish Tags' for Studying Fish Movement. ICES CM 2006/Q:16
    INTERNATIONAL COUNCIL FOR THE ICES CM 2006/Q:16 EXPLORATION OF THE SEA Use of data storage tags to reveal aspects of fish behaviour important for fisheries management Development and Application of ‘RAFOS Fish Tags’ for Studying Fish Movement by Conrad W. Recksiek, Godi Fischer, H. Thomas Rossby, Steven X. Cadrin, and Prasan Kasturi Abstract The newly developed ‘RAFOS fish tag’ reverses the tracking process of conventional acoustic tags by receiving acoustic signals from moored sound sources, allowing triangulation of geographic position during deployment on fish. We report progress in developing this archival tag for geolocating juvenile and adult demersal shelf fishes. The tag and navigation system are similar in concept to those of isopycnal RAFOS floats, in which arrival times of low frequency tones broadcast from anchored sources are archived and later retrieved for retrospective positioning. The principal differences between the RAFOS fish tag and RAFOS floats is that the tag is small enough to be attached to or implanted in fish about 50 cm or larger, and the tags must be recovered from the tagged fish to download data. Prototype RAFOS fish tags are being deployed on adult yellowtail flounder, Limanda ferruginea, on Georges Bank to study movement in the vicinity of an offshore area that is closed to fishing. Deployment of sound sources will be on or along the edge of the continental shelf where detection ranges appear to be on the order of 100 to 120 km for sources generating a sound pressure of 180 dB re 1 μP. The size of the prototype is governed by dimensions of a cylindrical housing which functions as the hydrophone.
    [Show full text]