*Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science Tdpntifitrs ESFA Title III

Total Page:16

File Type:pdf, Size:1020Kb

*Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science Tdpntifitrs ESFA Title III DOCUMENT RESUME ED 043 501 SE 009 343 TTTLE High School Oceanography. INSTITUTION Falmouth Public Schools, Mass. SPONS AGPNCY Bureau of Elementary and Secondary Education (DHFW/OF) ,Washington, D.C. PUB DATE Jul 70 NOTE 240p. EDRS PRICt FDRS Price MP -81.00 HC-$12.10 DESCRIPTORS *Course Content, *Curriculum, Geology, *Instructional Materials, Marine Rioloov, *Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science TDPNTIFItRS ESFA Title III ABSTRACT This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twel7p papers, with references, covering each of the following: (1) Introduction to Oceanography.(2) Geology of the Ocean, (3) The Continental Shelves, (ft) Physical Properties of Sea Water,(e) Waves and Tides, (f) Oceanic Circulation,(7) Air-Sea Interaction, (P) Sea Ice, (9) Chemical Oceanography, (10) Marine Biology,(11) The Origin and Development of Life in the Sea, and (12) Aquaculture, Its Status and Potential. The topics sugoeste0 are intended to give a balanced ,:overage to the sublect matter of oceanography and provide for a one semester course. It is suggested that the topics be presented with as much laboratory and field work as possible. This work was prepared under an PSt% Title III contract. (NB) Title III Public Law 89-10 ESEA Project 1 HIGH SCHOOL OCEANOGRAPHY I S 111119411 Of Mittm. 11K111011Witt 010 OfItutirCm ImStOCum111 PAS 11t1 t10100ocli WC lit IS MIMI 110mMt MS01 01 Wit It1)01 *Ms lit6 il. P) Of Vim 01 C1stiOtS SIM 10 1011HISSI11t t#ItiS111 OMR 011C CO Mita 10k1)01 tot MKT. Oceanographic Education Center Box 585 Falmouth, Nassachueetti 02541 , , James C. Kinney, Director July, 1970 The Oceanographic Education Center ie a Title III Public Law 89-10 ESEA Projaat-iireoted by the Town of Falmouth Public Schools in cooperation with the Woods Hole Oceanographic Institution, the U. S. Bureau of Commercial Fisheries, and the Marine Flulostcra Laboratory. The work presented or reported herein was performed pursuant to a Grant from the U. S. Office or Education, Department of Health, Educationl'and Welfare, Powover, the opinions expressed herein do not necessarily refleot the position or yoliey.of the U. S. Office'of Education, and no official endorsement by the U. S. Office of Educa- tion 6houle be infokrid. ' PREFACE. The Oceanographic Education Conner has ccmpiled this sories of papers to aid teachers in organising a course in oceanography for high school students. The topics included are intended to give a balanced coverage of the subject matter of oceanography and, used in connection with the references, the book contains enough material for a one semester course.Topics have been salootod fron those listed in Oceanographic Curriculum Sor digh Scloolas 9p.14int, written by R. V. Taber, L. R. LaPorte, and E. C. Scith of tho National Oceanographic, Data Center and published by the U. S. Naval Oceanograltio Office in 1968, and the content of eueh paper is based on the outline given therein. In presenting the course, to high school students, the teacher should make every attempt to include as much laboratory and field work as possible. Although we know of no high school oceanography laboratory manual, we have found that exercises from courses in biology, phys!.cs, chemistry, and earth science can often be adapted to the purpooes An idea of how this can be done might be obtained from reading the ex- ercises contained in jakteggupljamktComm. La ihfii,gbn,ShAdo. which is also published by the Oceanographic Education Center. iii CONTENTS PRE `ACE iii I. INTRODdCTION T1 OCEANOGRAPHY - Susan Hubbard Definition of Oceanography: Its Ea'rly Beginnings, 1 Phases in Oceanography, 5 Present Status of Oceanography in the United States, 10 Conolueiont :review of Course Material, 12 GEOLOGY OF THE OCEANS - Geoffre:t Thompson 15 Introduction, 15 Surface Features of the Ocean Floor, 17 Rocks of the Sea Floor, 21 The Earth's Crust Beneath the Sea, 30 The Origin and Permanency of Ocean Basins, 31 Tools and Techniques of the Marine Geologist, 34 3. THE CONTINErTAL SHELVD3 . Or EMERY 47 4. PHYSICAL PROPERTIES or SEA WATER - Redwood Wright 63 5. WAVES AND TIDES - Andrew Vasteno 77 Waves, 77 Tides, 03 6. OCEANIC CIRCULATION - Lynn Forbes 93 Causes and General Description, 93 Strface Currents, 96 Measuring Currents, 102 7. AIRCLA INTERACTION Peter H. Saunders 109 Heat Balance of Planet Earth, 109 Heat Exchange at the Ocean Surface, 110 The Water Balance of the Ocean°, 112 Exohnre of Clasen, 113 Wave Breaking and Bubble Bursting, 114 Hurricanes, 115 Methoda Employed in Invoatigation, 116 8. SEA ICE - William G. Metcalf 119 Forward, 119 Sea Ica, 122 9. CHEMICAL OGEANO0aAPHY Palph T. Vawaro 135 :rr.troduction; 135 Tho Omieral Importance of Water, 136 Geochentoal Origins of SoaWater, 137 Theron]. Proportiou of Vetter and Seawater, 138 The Major Constitrenta of Seawater, 140 Colligative Properties of Seawater, 142 The Latent Beate of Molting and Evaporation, 143 Pressure in the Sea; 144 Color, Tranopareacy, and Light Pecetrat!.11,40, The Minor Constituents of Seawater, 145 10. FAMINE BIOLOOY Ridhatd t. Barber 149 rood Chain or Energy *epics of the Sea) 149 Verticol Migration and Bioluminescence, 159 Marino Microbiology, 163 11. THE anon AND DEVELOkiNT OF LIFE IN TH3 SEA Richard T. Barber 169 11;o Origin of Life, 169 The Development of Life in the Seas, 173 vi 12. AQUACULTURE, ITS STATUS AND POTENTIAL J. 11. Ryther and Cb C. Hatthiessen 183 Production in Aquatic Areas, 186 Constraints upon Aquaculture, 187 Problems in Culturing,188 Milkfish, 189 Lobsters, 190 Sythetio Food, 190 The Future of Aquaculture, 192 Neu Program, 196 APPENDIX 199 Suppleuentary Films, 199 Distributors' Addresses, 2U7 vii 1. INTRODUCTION TO OCHANOGRAPHY by Susan Hubbard Ycoda Hole, Massachusetts I. Every advance in our knowledge of the sea sakes the in- teiddiiiidencemors and more apparent. It is not likely that . weshall soon see any general abandonment of this concept of oceanography as a mother seisms, the branches of whiob, 'though necessarily attacked by different dieoiplines, are intertwined too closely to be ,torn apart. HenryB. Bigelow Definition of Oceanography Its Rarly Beginnings In its broadest sense oceanography ielhe scientific 'Audi of the ooeano and of the 71 percent of the earth's surface that lion beneath them. It is composed of several disoiplines including physics, chemistry, geology, and biology which, in close cooperation with one another, seek to describe, interpret, and predict the complex processes that occur- within the Doane.' Oceanography does not have the characteristics of a universal- scion°e at'does physics, whose laws are true in all places at all times. Rafti, it is more olOaeltallied to the earth sciences; and.its lewi like generalities apply to a specific body of water at a particular tine. The interconnecting body of water, or World Ooean, that covers so much of the earth has been divided, for convenience' sake, into three, four, or five oceans, depending on the system of names popular at the went. to addition to these open-ooeaftareas, which Latitude the $tlantio, Pacific, Indian, Arctic, and Antarctic, oceanography fa also concerned with smaller, adjoining bodies of water such as seas, gulf*, 'Ws, straits, fjords, and estuaries. In the study of this vast amount of water, covering 120 million square miles, biological oceanographers concern themselves with plant and animal life in the sea; geological oceanographers consider the structure and formation of ocean basins and sediments; physical oceano- graphers study the physical proportiea of sea water, waves, tides, the distribution and oiroulation of witer:aaaS0001 and chemical oceanographers study the sea as a solution containing traces of all naturally ocourrring elements. The relationships between there disciplines are not static and their changing patternS refleot the wide variety of problems considered by oceanographers. What combina4ong of talents tomorrow's problems will encourage are hard to predict, but it seems probable that some form of cooperation will continue as long ae'the study of the changing sea con- tinues. Our understanding of the oceans has usually been acquired by a long and costly procedure which begins with a cruise on which a (Teat deal of date are collected. Later this information is processed and analysed and certain regularities may become apparent, as well as certain notable exceptions. It is interesting to note that the time and effort involved in publishing scientific reports are great in proportion to that expended on the cruise itself. The results from the well-known ghsllenger Expe dition (9810-1816) were not completed until 1895 and studies are still being made on the collections. As analysis of the data collected at sea proceeds, hypotheses are advanced that try to explain why things exist as they do, Host often the learning process stops here and the tentative hypothesis decided upon stands until another expedition brings back data which suggest eh alter' nate explanation.' -theories concerning coral reefs, for example, have had a particularly oolorfol, and at tiles unstable, history.Charles Darwin's theory of subsidence,. or of slowly sinking volcanic islands around Whose periphery coral reefs grow, was proposed in the mid-1800's and based on observations made by Darwin aboard the surveying ship Beagle. Several decades later, . 2 " scientists aboard the'Challenger, expressed doubt that all the reefs they had observed could be explained by Darwin's theory.Further investigations by the noted American naturalist Alexander Agassis led him to propound a very different theory which involved the elevation rathpr than the sinking of &eland areas. Opinion seesawed back and forth between conflicting theories until the 1940's when deep holes drilled into Einiwetok in the Marshall Islanaa (in conjunction with nuclear weapons teats there) penetrated a coral capping more than'4f,000 feet thick before hitting volcanic rock.
Recommended publications
  • 100 Magic Water Words
    WaterCards.(WebFinal).qxp 6/15/06 8:10 AM Page 1 estuary ocean backwater canal ice flood torrent snowflake iceberg wastewater 10 0 ripple tributary pond aquifer icicle waterfall foam creek igloo cove Water inlet fish ladder snowpack reservoir sleet Words slough shower gulf rivulet salt lake groundwater sea puddle swamp blizzard mist eddy spillway wetland harbor steam Narcissus surf dew white water headwaters tide whirlpool rapids brook 100 Water Words abyssal runoff snow swell vapor EFFECT: Lay 10 cards out blue side up. Ask a participant to mentally select a word and turn the card with the word on it over. You turn all marsh aqueduct river channel saltwater the other cards over and mix them up. Ask the participant to point to the card with his/her water table spray cloud sound haze word on it. You magically tell the word selected. KEY: The second word from the top on the riptide lake glacier fountain spring white side is a code word for a number from one to ten. Here is the code key: Ocean = one (ocean/one) watershed bay stream lock pool Torrent = two (torrent/two) Tributary = three (tributary/three) Foam = four (foam/four) precipitation lagoon wave crest bayou Fish ladder = five (fish ladder/five) Shower = six (shower/six) current trough hail well sluice Sea = seven (sea/seven) Eddy = eight (eddy/eight) Narcissus = nine (Narcissus/nine) salt marsh bog rain breaker deluge Tide = ten (tide/ten) Notice the code word on the card that is first frost downpour fog strait snowstorm turned over. When the second card is selected the chosen word will be the secret number inundation cloudburst effluent wake rainbow from the top.
    [Show full text]
  • It Is Quite Common for Confusion to Arise About the Process Used During a Hydrographic Survey When GPS-Derived Water Surface
    It is quite common for confusion to arise about the process used during a hydrographic survey when GPS-derived water surface elevation is incorporated into the data as an RTK Tide correction. This article explains a little about the process. What we are discussing here might be a tide-related correction to a chart datum for coastal surveying – maybe to update navigational charts, or it might be nothing to do with tides at all. For example, surveying a river with the need to express bathymetry results as a bottom elevation on the desired vertical datum – not simply as “depth” results. Whether it is anything to do with tidal forces or not, the term “RTK Tide” is ubiquitous in hydrographic-speak to refer to vertical corrections of echo sounding data using RTK GPS. Although there is some confusing terminology, it’s a simple idea so let’s try to keep it that way. First keep in mind any GPS receiver will give the user basically two things in terms of vertical positioning: height above the GPS reference ellipsoid surface and height above Mean Sea Level (MSL) where ever he or she is on the Earth. How is MSL defined? Well, a geoid surface is a measure of the strength of gravity which in turn mostly controls the height of the sea; it is logical to say that MSL height equals the geoid height and vice versa. Using RTK techniques to obtain tide information is a logical extension of this basic principle. We are measuring the GPS receiver height above a geoid.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • 25. PELAGIC Sedimentsi
    ^ 25. PELAGIC SEDIMENTSi G. Arrhenius 1. Concept of Pelagic Sedimentation The term pelagic sediment is often rather loosely defined. It is generally applied to marine sediments in which the fraction derived from the continents indicates deposition from a dilute mineral suspension distributed throughout deep-ocean water. It appears logical to base a precise definition of pelagic sediments on some limiting property of this suspension, such as concentration or rate of removal. Further, the property chosen should, if possible, be reflected in the ensuing deposit, so that the criterion in question can be applied to ancient sediments. Extensive measurements of the concentration of particulate matter in sea- water have been carried out by Jerlov (1953); however, these measurements reflect the sum of both the terrigenous mineral sol and particles of organic (biotic) origin. Aluminosilicates form a major part of the inorganic mineral suspension; aluminum is useful as an indicator of these, since this element forms 7 to 9% of the total inorganic component, 2 and can be quantitatively determined at concentration levels down to 3 x lO^i^ (Sackett and Arrhenius, 1962). Measurements of the amount of particulate aluminum in North Pacific deep water indicate an average concentration of 23 [xg/1. of mineral suspensoid, or 10 mg in a vertical sea-water column with a 1 cm^ cross-section at oceanic depth. The mass of mineral particles larger than 0.5 [x constitutes 60%, or less, of the total. From the concentration of the suspensoid and the rate of fallout of terrigenous minerals on the ocean floor, an average passage time (Barth, 1952) of less than 100 years is obtained for the fraction of particles larger than 0.5 [i.
    [Show full text]
  • School of Ocean and Earth Science and Technology
    School of Ocean and Earth Science and Technology Administration established in SOEST under the U.S.- Japan Common Pacific Ocean Science and Technology 802 Agenda. The center is jointly supported by the state, Japanese, 1680 East-West Road and federal funds. Honolulu, HI 96822 Although the Department of Ocean and Resources Engi- Tel: (808) 956-6182 neering offers several undergraduate courses, baccalaureate Fax: (808) 956-9152 degrees are not offered in this area. The Department of Web: www.soest.hawaii.edu/ Oceanography offers the BS in global environmental science. Baccalaureate degree programs are offered in the Department of Dean: C. Barry Raleigh Geology and Geophysics and the Department of Meteorology. E-mail: [email protected] Those with long-range plans for graduate work in oceanogra- phy or ocean and resources engineering should prepare Interim Associate Dean: Patricia A. Cooper themselves with an undergraduate course of study that will E-mail: [email protected] satisfy the entry requirements for admission to these graduate programs. Information on entrance and degree or certificate requirements for all SOEST graduate programs (MS and PhD General Information in geology and geophysics, meteorology, ocean and resources The School of Ocean and Earth Science and Technology engineering, and oceanography, and a certificate in Graduate (SOEST) was established in 1988. It combines and integrates Ocean policy) is in this Catalog. Candidates for advanced the Departments of Geology and Geophysics, Meteorology, degrees and the graduate certificate program apply through the Ocean and Resources Engineering, and Oceanography, as well Graduate Division of the University. The school has developed as the Hawai‘i Institute of Geophysics and Planetology, the a number of interdisciplinary courses at both the undergradu- Hawai‘i Institute of Marine Biology, and the Hawai‘i Natural ate and the graduate levels, which are listed under OEST Energy Institute.
    [Show full text]
  • Improved Modelling of the Messinian Salinity Crisis and Conceptual Implications
    Palaeogeography, Palaeoclimatology, Palaeoecology 238 (2006) 349–372 www.elsevier.com/locate/palaeo Improved modelling of the Messinian Salinity Crisis and conceptual implications Paul-Louis Blanc Institut de Radioprotection et de Sûreté Nucléaire, Boîte Postale 17, 92262 Fontenay-aux-roses Cedex, France Received 17 April 2003; accepted 7 March 2006 Abstract This paper presents the last developments of a simple oceanographic modelling of the water and salt budgets of the Mediterranean Sea during the late Miocene Salinity Crisis. The Messinian Mediterranean is treated as analogous to the present one, i.e. divided into two main basins separated by a sill at shallow or intermediate depth. When the supply of marine water from the Atlantic is progressively reduced, both basins undergo a rise in salinity, until saturation is reached: this is when the true evaporitic sedimentation begins, before the level drawdown. The partition of the Mediterranean into two mains basins causes a shift in the evaporitic sedimentation from the distal (eastern) basin to the proximal (western) basin, so that the evaporitic deposits are not fully contemporaneous in the western and the eastern basin. The drawdown is limited by the equilibrium of the evaporation and chemical activity of the brines at the surface, against the surface area and evaporation. Attempts at adjusting the model both to an accurate stratigraphic frame and to a rough budget of the evaporites shows that the Upper Evaporites and brackish-water Lago-mare series must have been deposited as secondary deposits, after the closure of the Atlantic passages was completed. The present evaporitic potentialities of the Mediterranean Sea remains quite as strong as during the Miocene, so that climatic change cannot be inferred from the MSC itself.
    [Show full text]
  • Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
    Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • NPP) A) Global Patterns B) Fate of NPP
    OCN 401 Biogeochemical Systems (11.1.11) (Schlesinger: Chapter 9) Oceanic Production, Carbon Regeneration, Sediment Carbon Burial Lecture Outline 1. Net Primary Production (NPP) a) Global Patterns b) Fate of NPP 2. Sediment Diagenesis a) Diagenesis of Organic Matter (OM) b) Biogenic Carbonates Net Primary Production: Global Patterns • Oceanic photosynthesis is ≈ 50% of total photosynthesis on Earth - mostly as phytoplankton (microscopic plants) in surface mixed layer - seaweed accounts for only ≈ 0.1%. • NPP ranges from 130 - 420 gC/m2/yr, lowest in open ocean, highest in coastal zones • Terrestrial forests range from 400-800 gC/m2/yr, while deserts average 80 gC/m2/yr. Net Primary Production: Global Patterns (cont’d.) • O2 distribution is an indirect measure of photosynthesis: CO2 + H2O = CH2O + O2 14 • NPP is usually measured using O2-bottle or C-uptake techniques. 14 • O2 bottle measurements tend to exceed C-uptake rates in the same waters. Net Primary Production: Global Patterns (cont’d.) • Controversy over magnitude of global NPP arises from discrepancies in methods for measuring NPP: estimates range from 27 to 51 x 1015 gC/yr. 14 • O2 bottle measurements tend to exceed C-uptake rates because: - large biomass of picoplankton, only recently observed, which pass through the filters used in the 14C technique. - picoplankton may account for up to 50% of oceanic production. - DOC produced by phytoplankton, a component of NPP, passes through filters. - Problems with contamination of 14C-incubated samples with toxic trace elements depress NPP. Net Primary Production: Global Patterns (cont’d.) Despite disagreement on absolute magnitude of global NPP, there is consensus on the global distribution of NPP.
    [Show full text]
  • ECHO SOUNDING CORRECTIONS (Article Handed to the I
    ECHO SOUNDING CORRECTIONS (Article handed to the I. H. B. by the U .S.S.R. Delegation of Observers at the Vllth International Hydrographic Conference) In the Soviet Union frequent use is made of echo sounders in routine hydrographic surveying, and all important surveys are carried out with the help of echo sounding apparatus. Depths recorded on echograms as well as depths entered in the sounding log must be corrected for a value which is the result of the algebraic addition of two partial corrections as follows : A Z f : correction for (( level error » A Z : conection of echo À When the value of the total correction is less than half the sounding accuracy, it is disregarded. The maximum tolerance figures allowed in sounding are shown below : From 0 to 20 m. : 0.4 m 21 to 50 m. : 0.7 m 51 to 100 m. : 1.5 m 101 and over :2 % of sounding depth Correction for level error. — The correction for the « error in level » is computed according to the following formula : A Z f = n _ f (1) n : reading of nearest tide gauge, corresponding to datum level determined; f : reading of tide gauge at time of taking soundings. Echo correction. — The depths determined by echo sounding must be subjected to corrections which are obtained as follows : (a) Immediately determined by calibration, or (b) According to the hydrological data available. I. — D etermination o f corrections b y calibration When determining echo corrections by calibration, the soundings are corrected as follows : (1) Determination of total correction A Z T in sounding area by calibration of echo sounding machine ; (2) A Z n correction for difference in speed of rotation of indicator disk with respect to speed determined during calibration ; The A Z q correction is applied when the number of revolutions of the indicator disk differs by more than 1 % during sounding operations from the value obtained during the initial calibration.
    [Show full text]
  • GIS Best Practices GIS for Nautical Organizations
    GIS Best Practices GIS for Nautical Organizations September 2010 Table of Contents What Is GIS? 1 GIS for Nautical Organizations 3 NOAA Modernizes Nautical Chart Production 5 Shifting Shorelines 11 A Geospatial Foundation 19 Making Standards Shipshape—Esri's Rafael Ponce Discusses Working with International Hydrographic Organizations 27 Remote Communities Prevail with GIS 33 Enterprise Product on Demand Services 43 Keeping Nature and Man in Balance 47 RAN Directorate of Oceanography and Meteorology 53 Taking NEXRAD Weather Radar to the Next Level in GIS 57 Maritime and Coastguard Agency Case Study toward a More Effi cient Tendering Process 65 NATO Maritime Component Command HQ Northwood, UK, Supporting Maritime Situational Awareness 71 i What Is GIS? Making decisions based on geography is basic to human thinking. Where shall we go, what will it be like, and what shall we do when we get there are applied to the simple event of going to the store or to the major event of launching a bathysphere into the ocean's depths. By understanding geography and people's relationship to location, we can make informed decisions about the way we live on our planet. A geographic information system (GIS) is a technological tool for comprehending geography and making intelligent decisions. GIS organizes geographic data so that a person reading a map can select data necessary for a specifi c project or task. A thematic map has a table of contents that allows the reader to add layers of information to a basemap of real-world locations. For example, a social analyst might use the basemap of Eugene, Oregon, and select datasets from the U.S.
    [Show full text]
  • Article Is Available On- 2012
    The Cryosphere, 14, 2673–2686, 2020 https://doi.org/10.5194/tc-14-2673-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Clouds damp the radiative impacts of polar sea ice loss Ramdane Alkama1, Patrick C. Taylor2, Lorea Garcia-San Martin1, Herve Douville3, Gregory Duveiller1, Giovanni Forzieri1, Didier Swingedouw4, and Alessandro Cescatti1 1European Commission – Joint Research Centre, Via Enrico Fermi, 2749, 21027 Ispra (VA), Italy 2NASA Langley Research Center, Hampton, Virginia, USA 3Centre National de Recherches Météorologiques, Météo-France/CNRS, Toulouse, France 4EPOC, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, Pessac 33615, France Correspondence: Ramdane Alkama ([email protected]) and Patrick C. Taylor ([email protected]) Received: 19 November 2019 – Discussion started: 19 December 2019 Revised: 19 June 2020 – Accepted: 6 July 202 – Published: 21 August 2020 Abstract. Clouds play an important role in the climate sys- 1 Introduction tem: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important Solar radiation is the primary energy source for the Earth in polar regions and have the potential to significantly alter system and provides the energy driving motions in the atmo- the impact of sea ice decline on the surface radiation budget. sphere and ocean, the energy behind water phase changes, Using CERES (Clouds and the Earth’s Radiant Energy Sys- and the energy stored in fossil fuels. Only a fraction (Loeb tem) data and 32 CMIP5 (Coupled Model Intercomparison et al., 2018) of the solar energy arriving to the top of the Project) climate models, we quantify the influence of polar Earth atmosphere (short-wave radiation; SW) is absorbed at clouds on the radiative impact of polar sea ice variability.
    [Show full text]