Improved Modelling of the Messinian Salinity Crisis and Conceptual Implications

Total Page:16

File Type:pdf, Size:1020Kb

Improved Modelling of the Messinian Salinity Crisis and Conceptual Implications Palaeogeography, Palaeoclimatology, Palaeoecology 238 (2006) 349–372 www.elsevier.com/locate/palaeo Improved modelling of the Messinian Salinity Crisis and conceptual implications Paul-Louis Blanc Institut de Radioprotection et de Sûreté Nucléaire, Boîte Postale 17, 92262 Fontenay-aux-roses Cedex, France Received 17 April 2003; accepted 7 March 2006 Abstract This paper presents the last developments of a simple oceanographic modelling of the water and salt budgets of the Mediterranean Sea during the late Miocene Salinity Crisis. The Messinian Mediterranean is treated as analogous to the present one, i.e. divided into two main basins separated by a sill at shallow or intermediate depth. When the supply of marine water from the Atlantic is progressively reduced, both basins undergo a rise in salinity, until saturation is reached: this is when the true evaporitic sedimentation begins, before the level drawdown. The partition of the Mediterranean into two mains basins causes a shift in the evaporitic sedimentation from the distal (eastern) basin to the proximal (western) basin, so that the evaporitic deposits are not fully contemporaneous in the western and the eastern basin. The drawdown is limited by the equilibrium of the evaporation and chemical activity of the brines at the surface, against the surface area and evaporation. Attempts at adjusting the model both to an accurate stratigraphic frame and to a rough budget of the evaporites shows that the Upper Evaporites and brackish-water Lago-mare series must have been deposited as secondary deposits, after the closure of the Atlantic passages was completed. The present evaporitic potentialities of the Mediterranean Sea remains quite as strong as during the Miocene, so that climatic change cannot be inferred from the MSC itself. © 2006 Elsevier B.V. All rights reserved. Keywords: Messinian; Evaporites; Hydrology; Budget model 1. The Messinian evaporites and Salinity Crisis in its upper course, is buried below Pliocene marine and Quaternary fluvial sediments. Mayer-Eymar (1867) included Sicilian evaporites in The first cruise in the Mediterranean by the M.S. his equivocal type for the Messinian stage, the last one Glomar Challenger within the frame of the Deep Sea in the Miocene series. In a different geological domain, Drilling Project (1970) showed that the evaporitic Fontannes (1882) described, under the name fjord, the deposits actually spread over the whole deep Mediter- Pliocene ria (originally a drowned valley) of the river ranean. Such deposits, to which geophysical investiga- Rhône. This palæovalley, now also recognized by tions attribute 2000m of average thickness, must result boreholes and geophysical methods in its lower from severe restraints on the exchange of water between course, supplemented by morphological observations the Mediterranean and the Atlantic Ocean. The Mediterranean Sea had already lost any communication to the east, with the possible exception of the Paratethys Sea, ancestor to the Black Sea, and itself a hydrological E-mail address: [email protected]. dead-end. 0031-0182/$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.palaeo.2006.03.033 350 P.-L. Blanc / Palaeogeography, Palaeoclimatology, Palaeoecology 238 (2006) 349–372 During the 1970s, two geological schools happened the modelling process, the comprehensive duration of to be confronted. the MSC (i.e. including the time-lapse covering the Lago-mare facies) is now estimated to be 0.63Ma – For the French school of the time (1950–1975), the (Benson et al., 1995; Clauzon et al., 1996; Krijgsman et basins would have not been deeper than some tens to al., 1999). 300m at most during the Messinian Salinity Crisis The relative duration of the peculiar final phase (MSC). The Mediterranean Sea could only have within the MSC, the Lago-mare facies on top of the acquired its present oceanic characters at the evaporitic series, remained unclear. It is now accepted beginning of the Pliocene (Bourcart, 1960). that it results from the hydrological isolation of the – For the Italo–American school, the Mediterranean Mediterranean basins rather than from flooding by Sea results from the closure of an ancient ocean freshwater from the Parathetys Sea (Orszag-Sperber et called the Tethys by geologists and already encom- al., 2000). These facies are recognized as extending to passed basins several kilometres deep. The level both the eastern and the western Mediterranean drawdown could then have reached anything from domains. The continuous and contemporaneous charac- 1000 to 3000m (Hsü et al., 1973). A gigantic salt ter of the deposits in the different sites may still be desert should have extended between Africa and questioned. Europe. Nothing now opposes a global understanding of the phenomenon. Blanc (2000) synthesized the climatic Initially, the observation, done essentially on the observation that the area has been prone to xeric French Riviera, that the coastal streams were followed at conditions since the early Miocene (Suc and Bessais, sea by canyons with a very steep slope, appeared to 1990), the rough quantitative estimates of the evaporitic favour the French school. These canyons shew a sub- deposits, the present hydrology and the improved aerial erosive morphology and their slope increased chronology, into an oceanographic budget model of from the shore towards the abyssal plains: according to the Mediterranean during the MSC. This article aims at Bourcart (1962), they had been created above sea level, detailing the last developments in the model and at with a “normal” slope. Later, during the collapse of the contributing to the description of the possible evolution bottom that had marked the oceanization of the Plio- of hypersaline deep oceanic basins. Quaternary Mediterranean, they had been submitted to a tilt towards the sea. 2. The exchanges at the western straits This interpretation was torn to pieces by the morphologic study of more powerful rivers. The best- 2.1. Present water and salt balance known Messinian valley, that of the river Rhône, indeed encompasses a deep canyon, but its palæovalley extends Physical oceanographers define the Mediterranean very far upstream. It remains below the present sea level Sea as a basin with a sill and a negative budget. as far as the town of Lyon (Clauzon, 1973, 1982), much Rainfall, runoff and rivers from the surrounding further in the continental domain than any flexure which continents (including the Danube and the Russian the supposed collapse of the bottom of the Mediterra- rivers, through the Black Sea) do not balance the nean basins could have caused. The consequence is that evaporation there. this palæovalley results from in situ sub-aerial excava- The level drawdown which the evaporation should tion, without any change in the relative elevation of the cause is not observed, because a continuous influx of continents and marine basins. This could only occur North Atlantic Surface Water (NASW) through the when the Mediterranean water level was deeply Strait of Gibraltar compensates the deficit. At any time, depressed with reference to the present level. the net input (δV) is equal to the evaporation (e) less the The reason why such controversy developed between freshwater budget (f): these schools is, up to a point, the want of any present case of evaporitic sedimentation in a deep basin and ðyV ¼je−f jÞ: below a high water-column. It was also the lack of an accurate time scale to calibrate the phenomenon, and However, a continuous salt–water input at the finally the want of applying to it the basic principles of Gibraltar Strait should cause a regular increase in physical oceanography. salinity. This is not observed either, so that some During the last 15years, much improvement has been mechanism must evacuate the excess salt. No increase in obtained in the field of stratigraphy. Most important for salinity is presently observed, because the exchange of P.-L. Blanc / Palaeogeography, Palaeoclimatology, Palaeoecology 238 (2006) 349–372 351 water between the Mediterranean Sea and the Atlantic The configuration of the Miocene Portals, especially Ocean at Gibraltar involves volumes far beyond the net towards their final closure, remains poorly documented. balance of the water budget. An outflow of saltwater This is not surprising, as thresholds are not proper places must carry away the salt. It must be noted that the for sedimentation: actually, the Miocene terminal phase exchanges at the Strait of Sicily, between the two major of the Atlantic–Mediterranean exchanges cannot be basins of the Mediterranean, have to follow the same recorded at all. rules. It is now clear that the Miocene northern strait closed Accordingly, the NASW admitted at the Gibraltar first. The Betic Straits, along the Iberian block, were Strait shows a salinity of 36.18gl− 1, while the originally a series of shallow neritic basins (100m deep Mediterranean Sea Overflow Water (MSOW), denser ?), alternating with half emergent structural or coralline due to its higher salinity (37.9gl− 1), flows back at depth sills (20m deep ?). When the evaporitic sedimentation to the Atlantic Ocean. In a stationary regime, the law is occurred, they cannot have been any longer the route by simple, the volumes of water exchanged (V) are in which Atlantic water reached the Mediterranean: an inverse ratio to the salinities (S): influx of normal seawater should have rinsed them of any excess salt, to the benefit of the Mediterranean. The Vout Sin evaporitic deposits in the marginal basins show that this ¼ or VoutSout ¼ VinSin Vin Sout was not the case. These basins can only have been dead- end diverticula of the Alboran Sea. As the salt is transferred back to the world ocean, the The Rifian Corridor appears narrower than the Betic average salinity of the Mediterranean remains constant Straits, but it must have remained deeper during the pre- at our scale of observation. It has not always been such evaporitic Messinian. No sedimentary record of the very during geological times.
Recommended publications
  • Modelling Global-Scale Climate Impacts of the Late Miocene Messinian Salinity Crisis
    This is a repository copy of Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80166/ Version: Published Version Article: Ivanovic, RF, Valdes, PJ, Flecker, R et al. (1 more author) (2014) Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis. Climate of the Past, 10 (2). 607 - 622. ISSN 1814-9324 https://doi.org/10.5194/cp-10-607-2014 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Clim. Past, 10, 607–622, 2014 Open Access www.clim-past.net/10/607/2014/ Climate doi:10.5194/cp-10-607-2014 © Author(s) 2014. CC Attribution 3.0 License.
    [Show full text]
  • The Mediterranean Outflow Water: Transformations and Pathways Into the Gulf of Cádiz
    The Mediterranean Outflow Water: Transformations and Pathways into the Gulf of Cádiz Marc Gasser i Rubinat Doctoral thesis as a compilation of publications September 2018 Advisor: Josep Lluís Pelegrí Llopart Thesis submitted to the Civil and Environmental Engineering Department, Marine Sciences Program, Universitat Politècnica de Catalunya in partial fulfillment of the requirements for the degree of Doctor of Philosophy Marc Gasser i Rubinat When anxious, uneasy and bad thoughts come, I go to the sea, and the sea drowns them out with its great wide sounds, cleanses me with its noise, and imposes a rhythm upon everything in me that is bewildered and confused". Rainer Maria Rilke III The Mediterranean Outflow Water IV Marc Gasser i Rubinat Abstract The Mediterranean Outflow Water (MOW) is La sortida d'aigua mediterrània (MOW) és un a dense ( r>1028.5 kg/m 3), saline (38.5 g/kg) corrent oceànic dens ( r>1028.5 kg/m3) i salí ocean stream originated in the evaporative (38.5 lg/m3) originat en la conca evaporativa Mediterranean basin flowing westward past de la Mar Mediterrània que flueix passant la Espartel Sill as a fast (>1 m/s) and often baixa d'Espartel en forma d'un corrent de unstable (as indicated by its gradient gravetat molt ràpid (>1 m/s) i sovint inestable Richardson number) gravity current. During (tal i com indica el número de gradient de its descense into the Gulf of Cadiz, the MOW Richardson). Durant el seu descens al Golf entrains the overlying North Atlantic Central de Cadis, la MOW incorpora les aigües Water (NACW), until the density difference atlàntiques (NACW) suprajacents fins que la between both water masses vanishes, and diferència de densitat entre ambdues masses reaches its equilibrium depth.
    [Show full text]
  • State and Pressures of the Marine and Coastal Mediterranean Environment
    1 Environmental issues series No 5 State and pressures of the marine and coastal Mediterranean environment UNEP 2 State and pressures of the marine and coastal Mediterranean environment NOTE The contents of this report do not necessarily reflect the official opinion of the European Communities or other European Communities institutions. Neither the European Environ- ment Agency nor any person or company acting on the behalf of the Agency is responsible for the use that may be made of the information contained in this report. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int). Cataloguing data can be found at the end of this publication. Luxembourg: Office for Official Publications of the European Communities, 1999 Cover: EEA Layout: Folkmann Design ISBN © European Communities, 1999 Printed in Printed on recycled chlorine-free paper European Environment Agency Kongens Nytorv 6 DK-1050 Copenhagen K Tel. (+45) 33 36 71 00 Fax (+45) 33 36 71 99 E-mail: [email protected] Home page: http://www.eea.eu.int 3 Contents List of contributors ........................................................................................................6 Foreword ......................................................................................................................7 Executive summary ........................................................................................................9 1. Introduction .........................................................................................................27
    [Show full text]
  • Modelling Study of Transformations of the Exchange Flows Along the Strait of Gibraltar
    Ocean Sci., 14, 1547–1566, 2018 https://doi.org/10.5194/os-14-1547-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Modelling study of transformations of the exchange flows along the Strait of Gibraltar Antonio Sanchez-Roman1, Gabriel Jorda1,3, Gianmaria Sannino2, and Damia Gomis1 1Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC), Mallorca, Spain 2ENEA – Climate Modelling Laboratory, Rome, Italy 3Instituto Español de Oceanografía, Centre Oceanogràfic de Balears (IEO-COB), Moll de Ponent s/n 07015, Palma, Spain Correspondence: Antonio Sánchez-Román ([email protected]) Received: 3 May 2018 – Discussion started: 4 June 2018 Revised: 30 October 2018 – Accepted: 21 November 2018 – Published: 18 December 2018 Abstract. Vertical transfers of heat, salt and mass between 1 Introduction the inflowing and outflowing layers at the Strait of Gibral- tar are explored basing on the outputs of a three-dimensional The Strait of Gibraltar is a narrow and shallow channel with fully nonlinear numerical model. The model covers the entire a length of about 60 km and a mean width of 20 km that Mediterranean basin and has a very high spatial resolution presents a complex system of contractions and submarine around the strait (1/200◦). Another distinctive feature of the sills (see Fig. 1). Between Gibraltar and Ceuta, the channel is model is that it includes a realistic barotropic tidal forcing about 25 km wide and 800–900 m deep; west of this section (diurnal and semi-diurnal), in addition to atmospheric pres- the strait narrows towards a minimum cross section of about sure and heat and water surface fluxes.
    [Show full text]
  • Sicily Channel/Tunisian Plateau: Topography, Circulation and Their Effects on Biological Component
    UNITED NATIONS UNEP(DEPI)/MED WG.408/Inf.23 UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN 8 May 2015 Original: English Twelfth Meeting of Focal Points for Specially Protected Areas Athens, Greece, 25-29 May 2015 Agenda item 10 : Marine and Coastal Protected Areas, including in the open seas and deep seas 10.2. Regional Working Programme for the Coastal and Marine Protected Areas in the Mediterranean Sea including the High Seas 10.2.1. Activities for the identification and creation of SPAMIs in the open seas, including the deep seas Sicily Channel/Tunisian Plateau: Topography, circulation and their effects on biological component For environmental and economy reasons, this document is printed in a limited number and will not be distributed at the meeting. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/MAP RAC/SPA - Tunis, 2015 Note: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of RAC/SPA and UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2015 United Nations Environment Programme / Mediterranean Action Plan (UNEP/MAP) Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du Leader Yasser Arafat B.P. 337 - 1080 Tunis Cedex - Tunisia E-mail: [email protected] The original version of this document was prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by M. Würtz and Artescienza s.a.s., RAC/SPA Consultants.
    [Show full text]
  • The Mediterranean Outflow in the Strait of Gibraltar and Its Connection
    Ocean Sci., 13, 195–207, 2017 www.ocean-sci.net/13/195/2017/ doi:10.5194/os-13-195-2017 © Author(s) 2017. CC Attribution 3.0 License. The Mediterranean outflow in the Strait of Gibraltar and its connection with upstream conditions in the Alborán Sea Jesús García-Lafuente, Cristina Naranjo, Simone Sammartino, José C. Sánchez-Garrido, and Javier Delgado Physical Oceanography Group, Department of Applied Physics 2, University of Málaga, Málaga, Spain Correspondence to: Jesús García-Lafuente ([email protected]) Received: 23 November 2016 – Discussion started: 13 December 2016 Revised: 24 February 2017 – Accepted: 28 February 2017 – Published: 24 March 2017 Abstract. The present study addresses the hypothesis that the mediate and the Tyrrhenian Dense waters, both of interme- Western Alborán Gyre in the Alborán Sea (the westernmost diate nature. The Winter Intermediate Water is formed along Mediterranean basin adjacent to the Strait of Gibraltar) in- the continental shelf of the Liguro-Provençal sub-basin and fluences the composition of the outflow through the Strait Catalan Sea (Conan and Millot, 1995; Vargas-Yáñez et al., of Gibraltar. The process invoked is that strong and well- 2012), exhibits marked interannual fluctuations that include developed gyres help to evacuate the Western Mediterranean years of no formation (Pinot et al., 2002; Monserrat et al., Deep Water from the Alborán basin, thus increasing its pres- 2008), and is characterized by an absolute minimum of po- ence in the outflow, whereas weak gyres facilitate the outflow tential temperature. Its volume transport is much less than the of Levantine and other intermediate waters. To this aim, in Levantine Intermediate Water and it flows embedded inside situ observations collected at the Camarinal (the main) and this water mass at relatively shallow depths.
    [Show full text]
  • Modelling Global-Scale Climate Impacts of the Late Miocene Messinian Salinity Crisis
    Clim. Past, 10, 607–622, 2014 Open Access www.clim-past.net/10/607/2014/ Climate doi:10.5194/cp-10-607-2014 © Author(s) 2014. CC Attribution 3.0 License. of the Past Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis R. F. Ivanovic1,2, P. J. Valdes2, R. Flecker2, and M. Gutjahr3 1School of Earth & Environment, University of Leeds, Leeds, UK 2School of Geographical Sciences, University of Bristol, Bristol, UK 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany Correspondence to: R. F. Ivanovic ([email protected]) Received: 16 July 2013 – Published in Clim. Past Discuss.: 20 August 2013 Revised: 29 January 2014 – Accepted: 11 February 2014 – Published: 25 March 2014 Abstract. Late Miocene tectonic changes in Mediterranean– performance, (b) evaluating Mediterranean–Atlantic connec- Atlantic connectivity and climatic changes caused Mediter- tivity during the MSC and (c) establishing whether or not the ranean salinity to fluctuate dramatically, including a ten- MSC could ever have affected global-scale climate. fold increase and near-freshening. Recent proxy- and model- based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96–5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North At- 1 Introduction lantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, During the latest Miocene (the Messinian) a series of dra- sensitivity-type experiments with a fully coupled ocean– matic, basin-wide salinity fluctuations affected the Mediter- atmosphere general circulation model, we investigate the ranean (Fig. 1). These are thought to have been caused potential of these various MSC MOW scenarios to impact by progressive tectonic restriction of the Mediterranean– global-scale climate.
    [Show full text]
  • The Zanclean Megaflood of the Mediterranean
    Earth-Science Reviews 201 (2020) 103061 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The Zanclean megaflood of the Mediterranean – Searching for independent evidence T ⁎ Daniel Garcia-Castellanosa, , Aaron Micallefb,c, Ferran Estradad, Angelo Camerlenghie, Gemma Ercillad, Raúl Periáñezf, José María Abrilf a Instituto de Ciencias de la Tierra Jaume Almera, ICTJA-CSIC, Barcelona, Spain b Marine Geology and Seafloor Surveying, Department of Geosciences, University of Malta, Msida, MSD 2080, Malta c Helmholtz Centre for Ocean Research, GEOMAR, Kiel, Germany d Instituto de Ciencias del Mar, ICM-CSIC, Barcelona, Spain e Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy f University of Sevilla, Spain ABSTRACT About six million years ago, the Mediterranean Sea underwent a period of isolation from the ocean and widespread salt deposition known as the Messinian Salinity Crisis (MSC), allegedly leading to a kilometer-scale level drawdown by evaporation. One of the competing scenarios proposed for the termination of this en- vironmental crisis 5.3 million years ago consists of a megaflooding event refilling the Mediterranean Sea through the Strait of Gibraltar: the Zanclean flood. The main evidence supporting this hypothesis is a nearly 390 km long and several hundred meters deep erosion channel extending from the Gulf of Cádiz (Atlantic Ocean) to the Algerian Basin (Western Mediterranean), implying the excavation of ca. 1000 km3 of Miocene sediment and bedrock. Based on the understanding obtained from Pleistocene onshore megaflooding events and using ad-hoc hydrodynamic modeling, here we explore two predictions of the Zanclean outburst flood hypothesis: 1) The formation of similar erosion features at sills communicating sub-basins within the Mediterranean Sea, specifically at the Sicily Sill; and 2) the accumulation of the eroded materials as megaflood deposits in areas of low flow energy.
    [Show full text]
  • *Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science Tdpntifitrs ESFA Title III
    DOCUMENT RESUME ED 043 501 SE 009 343 TTTLE High School Oceanography. INSTITUTION Falmouth Public Schools, Mass. SPONS AGPNCY Bureau of Elementary and Secondary Education (DHFW/OF) ,Washington, D.C. PUB DATE Jul 70 NOTE 240p. EDRS PRICt FDRS Price MP -81.00 HC-$12.10 DESCRIPTORS *Course Content, *Curriculum, Geology, *Instructional Materials, Marine Rioloov, *Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science TDPNTIFItRS ESFA Title III ABSTRACT This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twel7p papers, with references, covering each of the following: (1) Introduction to Oceanography.(2) Geology of the Ocean, (3) The Continental Shelves, (ft) Physical Properties of Sea Water,(e) Waves and Tides, (f) Oceanic Circulation,(7) Air-Sea Interaction, (P) Sea Ice, (9) Chemical Oceanography, (10) Marine Biology,(11) The Origin and Development of Life in the Sea, and (12) Aquaculture, Its Status and Potential. The topics sugoeste0 are intended to give a balanced ,:overage to the sublect matter of oceanography and provide for a one semester course. It is suggested that the topics be presented with as much laboratory and field work as possible. This work was prepared under an PSt% Title III contract. (NB) Title III Public Law 89-10 ESEA Project 1 HIGH SCHOOL OCEANOGRAPHY I S 111119411 Of Mittm. 11K111011Witt 010 OfItutirCm ImStOCum111 PAS 11t1 t10100ocli WC lit IS MIMI 110mMt MS01 01 Wit It1)01 *Ms lit6 il. P) Of Vim 01 C1stiOtS SIM 10 1011HISSI11t t#ItiS111 OMR 011C CO Mita 10k1)01 tot MKT.
    [Show full text]
  • Exchange Flow Through the Strait of Gibraltar As Simulated by a Σ-Coordinate Hydrostatic Model and a Z-Coordinate Nonhydrostatic Model
    3 Exchange Flow through the Strait of Gibraltar as Simulated by a σ-Coordinate Hydrostatic Model and a z-Coordinate Nonhydrostatic Model Gianmaria Sannino1, J. C. Sánchez Garrido2, L. Liberti3, and L. Pratt4 3.1. INTRODUCTION 2007; Sannino et al., 2009a]. The simultaneous presence in the SoG of at least two cross sections in which the The Mediterranean Sea is a semi-enclosed basin dis- exchange is controlled drives the strait dynamics toward playing an active thermohaline circulation (MTHC) that the so-called maximal regime [Bryden and Stommel, 1984; is sustained by the atmospheric forcing and controlled by Armi and Farmer, 1988]. If the exchange is subject to only the narrow and shallow Strait of Gibraltar (hereinafter one hydraulic control, the regime is called submaximal. SoG). The atmospheric forcing drives the Mediterranean The two regimes have different implications for property basin toward a negative budget of water and heat. Over fluxes, response time, and other physical characteristics the basin, evaporation exceeds the sum of precipitation of the coupled circulation in the SoG and Mediterranean and river discharge, while a net heat flux is transferred to Sea. The maximal regime can be expected to have larger the overlying atmosphere through the sea surface. These heat, salt, and mass fluxes and to respond more slowly to fluxes are balanced by the exchange flow that takes place changes in stratification and thermohaline forcing within in Gibraltar. Within the SoG, the MTHC takes the form the Mediterranean Sea and the North Atlantic Ocean of a two-way exchange: an upper layer of fresh and [Sannino et al., 2009a].
    [Show full text]
  • Vertical Structure of Tidal Currents Over Espartel and Camarinal Sills, Strait of Gibraltar ⁎ A
    Available online at www.sciencedirect.com Journal of Marine Systems 74 (2008) 120–133 www.elsevier.com/locate/jmarsys Vertical structure of tidal currents over Espartel and Camarinal sills, Strait of Gibraltar ⁎ A. Sánchez-Román a, , F. Criado-Aldeanueva a, J. García-Lafuente a, J.C. Sánchez a,b a Departamento de Física Aplicada II, Universidad de Málaga, Málaga, Spain b Grupo de Puertos y Costas, Universidad de Granada, Granada, Spain Received 23 July 2007; received in revised form 7 November 2007; accepted 19 November 2007 Available online 5 February 2008 Abstract ADCP velocity data collected in the two main sills of the Strait of Gibraltar (Camarinal and Espartel sills) have been used for analysing the vertical structure of main tidal constituents (M2,S2,O1 and K1) currents in this area. Two different periods (winter and summer) were considered in correspondence to seasonal variations in density profiles. Amplitudes and phases of the various tidal constituents have been compared for both periods and locations. Barotropic and baroclinic parts of the tidal currents have been extracted using the dynamical mode decomposition technique and the relative importance of each mode has been established in terms on the energy associated. In Espartel sill, the barotropic mode is more energetic in wintertime for all constituents except for K1. Baroclinic modes have smaller contribution to total energy. Second and third baroclinic modes tend to be more energetic than the first one, especially during winter, this indicating a relatively complex vertical structure of the tidal currents. Over Camarinal sill, barotropic mode accounts for more than 90% of total energy in all the tidal constituents, the highest value (97%) observed for M2.
    [Show full text]
  • Hydraulic Criticality of the Exchange Flow Through the Strait of Gibraltar
    NOVEMBER 2009 S A N N I N O E T A L . 2779 Hydraulic Criticality of the Exchange Flow through the Strait of Gibraltar GIANMARIA SANNINO Ocean Modelling Unit, ENEA, Rome, Italy LAWRENCE PRATT Woods Hole Oceanographic Institution, Woods Hole, Massachusetts ADRIANA CARILLO Ocean Modelling Unit, ENEA, Rome, Italy (Manuscript received 17 June 2008, in final form 9 January 2009) ABSTRACT The hydraulic state of the exchange circulation through the Strait of Gibraltar is defined using a recently developed critical condition that accounts for cross-channel variations in layer thickness and velocity, applied to the output of a high-resolution three-dimensional numerical model simulating the tidal exchange. The numerical model uses a coastal-following curvilinear orthogonal grid, which includes, in addition to the Strait of Gibraltar, the Gulf of Cadiz and the Alboran Sea. The model is forced at the open boundaries through the specification of the surface tidal elevation that is characterized by the two principal semidiurnal and two diurnal harmonics: M2, S2, O1, and K1. The simulation covers an entire tropical month. The hydraulic analysis is carried out approximating the continuous vertical stratification first as a two-layer system and then as a three-layer system. In the latter, the transition zone, generated by entrainment and mixing between the Atlantic and Mediterranean flows, is considered as an active layer in the hydraulic model. As result of these vertical approximations, two different hydraulic states have been found; however, the simulated behavior of the flow only supports the hydraulic state predicted by the three-layer case. Thus, analyzing the results obtained by means of the three-layer hydraulic model, the authors have found that the flow in the strait reaches maximal exchange about 76% of the tropical monthlong period.
    [Show full text]