These De Doctorat De
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression of Membrane Proteins in Escherichia Coli
From Biogenesis to Over- expression of Membrane Proteins in Escherichia coli Samuel Wagner Stockholm University © Samuel Wagner, Stockholm 2008 ISBN 978-91-7155-594-6, Pages i-81 Printed in Sweden by Universitetsservice AB, Stockholm 2008 Distributor: Department of Biochemistry and Biophysics, Stockholm University To Claudia. Abstract In both pro- and eukaryotes 20-30% of all genes encode α-helical transmem- brane domain proteins, which act in various and often essential capacities. Notably, membrane proteins play key roles in disease and they constitute more than half of all known drug targets. The natural abundance of membrane proteins is in general too low to con- veniently isolate sufficient material for functional and structural studies. Therefore, most membrane proteins have to be obtained through overexpres- sion. Escherichia coli is one of the most successful hosts for overexpression of recombinant proteins, and T7 RNA polymerase-based expression is the major approach to produce recombinant proteins in E. coli. While the pro- duction of soluble proteins is comparably straightforward, overexpression of membrane proteins remains a challenging task. The yield of membrane lo- calized recombinant membrane protein is usually low and inclusion body formation is a serious problem. Furthermore, membrane protein overexpres- sion is often toxic to the host cell. Although several reasons can be postu- lated, the basis of these difficulties is not completely understood. It is gener- ally believed, that the complex requirements of membrane protein biogenesis significantly contribute to the difficulty of membrane protein overexpres- sion. Therefore, an understanding of membrane protein biogenesis is a pre- requisite for understanding membrane protein overexpression and for de- signing rational strategies to improve overexpression yields. -
Role of Regulated Proteolysis in the Communication of Bacteria with the Environment
fmolb-07-586497 October 11, 2020 Time: 10:35 # 1 REVIEW published: 15 October 2020 doi: 10.3389/fmolb.2020.586497 Role of Regulated Proteolysis in the Communication of Bacteria With the Environment Sarah Wettstadt and María A. Llamas* Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this Edited by: process allows for an immediate response to a given signal, which facilitates adaptation Chew Chieng Yeo, to the surrounding environment and bacterial survival. Moreover, regulated proteolysis Sultan Zainal Abidin University, Malaysia is a fundamental process for the transmission of extracellular signals to the cytosol Reviewed by: through the bacterial membranes. By a proteolytic mechanism known as regulated Iain Lamont, intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of University of Otago, New Zealand the membrane to liberate a cytosolic domain or protein able to modify gene transcription. -
France Historical AFV Register
France Historical AFV Register Armored Fighting Vehicles Preserved in France Updated 24 July 2016 Pierre-Olivier Buan Neil Baumgardner For the AFV Association 1 TABLE OF CONTENTS INTRODUCTION....................................................................................................4 ALSACE.................................................................................................................5 Bas-Rhin / Lower Rhine (67)........................................................5 Haut-Rhin / Upper Rhine (68)......................................................10 AQUITAINE...........................................................................................................12 Dordogne (24) .............................................................................12 Gironde (33) ................................................................................13 Lot-et-Garonne (47).....................................................................14 AUVERGNE............................................................................................................15 Puy-de-Dôme (63)........................................................................15 BASSE-NORMANDIE / LOWER NORMANDY............................................................16 Calvados (14)...............................................................................16 Manche (50).................................................................................19 Orne (61).....................................................................................21 -
Invariant Chain Complexes and Clusters As Platforms for MIF Signaling
cells Review Invariant Chain Complexes and Clusters as Platforms for MIF Signaling Robert Lindner Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; [email protected]; Tel.: +49-511-532-2918 Academic Editor: Ritva Tikkanen Received: 8 December 2016; Accepted: 7 February 2017; Published: 10 February 2017 Abstract: Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking. -
Autonomous Transport Systems Strong Ambition
Autonomous Transport Systems Strong ambition ecause moving is essential to meet, work... or simply to live, at Transdev we empower freedom to move every day with confidence thanks to safe, reliable and innovative solutions that serve the common good. We are actively involved in the energy transition and A pillar of Transdev’s bridging the social divide. strategy is the We connect and reconnect people & communities, development of the rural to the urban, providing solutions tailored to the needs of our autonomous transport customers and passengers. systems, one of the major We are proud to make 11 million people travel daily across 5 continents. disruptive innovations in We are people serving people. And mobility is what we do. the future of mobility.” Transdev, The Mobility Company. Thierry Mallet, Chairman and CEO The Transdev Autonomous Transport Systems team has been created of Transdev Group to prepare transportation networks to operate fleets of Autonomous Vehicles (AV) in the upcoming years. New services for all, everywhere and anytime: we aim to keep developing inclusive, efficient and sustainable mobility solutions by gradually accompanying our clients for the introduction of shared autonomous vehicles into transport networks. We want to harness autonomous technology for shared transport. Transdev Autonomous Transport Systems is an integrator of autonomous transport systems, including AV Supervision, autonomous vehicles and connected infrastructure. Transdev Autonomous Transport SystemsLES BNFICESprovides technologies and services to local operators and cities for autonomous mobility services day-to-day operations on a large scale. For that we combine the best of human and artificialDU TRANSPORT intelligence. AUTONOME Therefore, we offer turnkey shared POURautonomous TOUS transport solutions: from helping to choose the right services/routes to rolling out and operating services, including authorisations management and tracking customer satisfaction. -
Grand Paris Express, Europe's Biggest Building Project
02 Grand Paris Express, 03 Le Mesnil-Amelot Start-up schedule 17 2019 Mairie de Saint-Ouen 14 H Aéroport Charles de Gaulle T4 Europe's biggest BARREAU Saint-Lazare DE GONESSE B Aéroport H RER C Charles de Gaulle T2 H RER D RER B CDG EXPRESS buildingA RER project J Triangle de Gonesse 2022 L H J B Noisy – T13 Parc des Expositions J 17 Champs T11 Aulnay Pont de Sèvres 200 KM EXPRESS K of new lines T11 Le Bourget Aéroport Aulnay 15 RER A - E 16 T11 13 Sevran – Beaudottes J EXPRESS Le Blanc-Mesnil 2023-2024 T11 Sevran – Livry 17 CDG (T2) Bois-Colombes Les Grésillons La Courneuve A J - L “Six Routes” 16 17 RER B 4 RER A - E 13 Saint-Denis Saint-Denis Pleyel Le Bourget RER Colombes Pleyel T4 16 additionalEXPRESS T13 Mairie Mairie de Saint-Ouen 14 d’Aubervilliers Drancy – Bobigny lines La Garenne-Colombes Les Agnettes Stade de 12 Olympiades Noisy – France 7 Bobigny Pablo Picasso T4 Saint-Ouen Mairie 15 Clichy – Montfermeil Champs Nanterre La Folie de Saint-Ouen Fort 5 Pont de Bondy Bécon- T4 CEA RER A les-Bruyères Saint-Ouen RER C d’Aubervilliers T13 15 T11 T4 RER E Saint-Aubin 18 A Porte de Clichy L Bondy 1 Aéroport d’Orly Rueil La Défense 3 Pont 90 % U LIGNE 11 16 Cardinet Villemomble Seine L 14 underground Nanterre 2025 La Boule U Rosny Bois-Perrier Saint-Lazare E Chelles P Saint-Denis A Rueil - Neuilly Rosny Pleyel L Suresnes Les Fauvettes Châtelet Les Halles 3 Marne Nanterre Rosny “Mont- Neuilly Bois-Perrier 68 Valérien” RER C Val de Fontenay Hôpitaux 15 9 15 RER A RER A stations T13 EXPRESS 15 11 Gare de Lyon 11 Pont de Sèvres Saint-Cloud -
The Role of Proteases in Plant Development
The Role of Proteases in Plant Development Maribel García-Lorenzo Department of Chemistry, Umeå University Umeå 2007 i Department of Chemistry Umeå University SE - 901 87 Umeå, Sweden Copyright © 2007 by Maribel García-Lorenzo ISBN: 978-91-7264-422-9 Printed in Sweden by VMC-KBC Umeå University, Umeå 2007 ii Organization Document name UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Chemistry SE - 901 87 Umeå, Sweden Date of issue October 2007 Author Maribel García-Lorenzo Title The Role of Proteases in Plant Development. Abstract Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Systematic comparative analysis of the available sequenced genomes of two model organisms led to the identification of an increasing number of protease genes, giving insights about protein sequences that are conserved in the different species, and thus are likely to have common functions in them and the acquisition of new genes, elucidate issues concerning non-functionalization, neofunctionalization and subfunctionalization. The involvement of proteases in senescence and PCD was investigated. While PCD in woody tissues shows the importance of vacuole proteases in the process, the senescence in leaves demonstrate to be a slower and more ordered mechanism starting in the chloroplast where the proteases there localized become important. The light-harvesting complex of Photosystem II is very susceptible to protease attack during leaf senescence. We were able to show that a metallo-protease belonging to the FtsH family is involved on the process in vitro. -
Observatory of the Grand Paris Express Network (RGPE) Station Districts
Observatory of the Grand Paris Express Network (RGPE) station districts Le Mesnil-Amelot Aéroport Charles de Gaulle THE STATION DISTRICTS (T4) Aéroport Charles de Gaulle New metro lines, RER, Tangentielles, (T2) Barreau The Grand Paris metro Charles de Gaulle Express Radius of ^VV m de Gonesse 17 around the Existing metro and RER lines Triangle Vegetation Building de Gonesse CDG EXPRESS Parc des Expositions Tangentielle Nord 17 Le Blanc- Aulnay Le Bourget Mesnil Aéroport 16 Sevran — Beaudottes Tangentielle La Courneuve RER E Nord "Six Routes" Les Saint- Stade RER E Les Sevran — Livry Agnettes Denis de Grésillons 16 CDG EXPRESS Tangentielle Pleyel France 17 Le Bourget RER Ouest Colombes ] 15 Drancy — Bobigny La Garenne- 16 Colombes Bobigny P. Picasso Bois- 15 Colombes Nanterre Mairie WX de St-Ouen Fort Pont de Bondy Clichy — Montfermeil La Folie d'Aubervilliers St-Ouen RER C Rueil 15 Bécon- Mairie Les-Bruyères Porte de Clichy d'Aubervilliers Bondy Nanterre Pont Cardinet La Boule RER WW Rosny La Défense E 14 Bois Perrier WW Chelles Gare de l’Est Rueil — Suresnes Saint-Lazare WW "Mont-Valérien" _ 15 15 Châtelet- Les Halles W 16 Val de Fontenay WW Noisy — Champs Saint-Cloud WV Nogent Le Perreux Tangentielle Ouest Olympiades 15 Pont de Sèvres Châtillon WX WV Montrouge Maison Blanche Issy RER Z Paris XIIIe Bry — Villiers Champigny 15 Kremlin-Bicêtre Champigny Centre Fort d'Issy Hôpital Vanves Clamart 14 15 Bagneux M4 Vitry Centre Saint-Maur — Créteil 18 Versailles Chantiers Arcueil — Cachan Créteil l'Échat Villejuif Institut G. Roussy Satory Le Vert de Maisons Chevilly Villejuif "Trois Communes" L. -
Characterization of the Cpx Response in Vibrio Cholerae
Characterization of the Cpx Response in Vibrio cholerae by Paula Nicole Acosta Amador A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Biotechnology Department of Biological Sciences University of Alberta © Paula Nicole Acosta Amador, 2015 Abstract The gram negative bacterial cell envelope is composed of the outer membrane, the periplasm and the inner membrane. These compartments are exposed directly to changes in the environment that are sensed and adapted to through different signaling transduction pathways. This often occurs through two-component signal transduction systems (TCS), which are broadly distributed among different bacterial species. The Cpx pathway is a TCS that employs the sensor histidine kinase CpxA and the response regulator CpxR, and regulates crucial adaptations to envelope stress response that affects many functions, including antibiotic resistance, across bacterial species. This system has also been implicated in the regulation of a number of envelope localized virulence determinants across bacterial species. The first goal of this thesis was to characterize the Cpx regulon members in the human pathogen Vibrio cholerae when the Cpx pathway is activated. For this purpose I characterized the transcriptional profile of the pandemic V. cholerae El Tor strain C6706 upon overexpression of cpxR, and the inducing cues that lead to the activation of the Cpx pathway. My data shows that the Cpx regulon of V. cholerae is enriched for genes encoding membrane localized and transport proteins, including a large number of genes known or predicted to be iron-regulated. The V. cholerae Cpx regulon included three strongly Cpx-regulated, putative ferric reductases that are likely directly regulated by CpxR. -
SEMPAT SATORY Pacte Mai 2015
SEM PATRIMONIALE SATORY MOBILITE PROTOCOLE D’ACTIONNAIRES Entre les soussignés : 1° Le Département des Yvelines , 2 Place André Mignot 78000 Versailles, représenté par M. Pierre Bédier, Président du Conseil Départemental, habilité aux termes d’une délibération du Conseil Départemental en date du 19 juin 2015. 2 La Communauté d’agglomération de Versailles Grand Parc, 7ter Rue de la Porte de Buc, 78000 Versailles représentée par M. ....... habilité aux termes d’une délibération en date du ....... 3° Renault, société par actions simplifiée au capital de 533 941 113, dont le siège est sis 13-15 quai LE GALLO 92100 BOULOGNE-BILLANCOURT immatriculée au RCS de NANTERRE sous le numéro 780 129 987 représentée par M. Bertrand Hauet, habilité aux fins des présentes. 4° VALEO société …………………. au capital de ………………, dont le siège est sis 43 rue Bayen 75017 PARIS immatriculée au RCS de Paris sous le numéro 552 030 967 représentée par M. ....... habilité aux termes d’une délibération en date du ....... 5° COFIP représentée par M. ....... habilité aux termes d’une délibération en date du ....... 6° La Caisse des dépôts et consignations, établissement spécial créé par la loi du 28 avril 1816 codifiée aux articles L518-2 et suivants du code monétaire et financier, dont le siège est situé 56 rue de Lille, 75007 Paris, représentée par Madame Catherine Pèrenet Directrice Interrégionale Ile de France agissant en vertu d’un arrêté de délégation de signature du Directeur Général en date du 21 mai 2014 7° ARKEA Banque Entreprises et Institutionnels, filiale du Crédit Mutuel Arkéa, société …………………. au capital de ………………, dont le siège est sis 118 Avenue Des Champs Elysées 75008 Paris, immatriculée au RCS de …. -
Westerhausen, Geb
Development of highly sensitive tools to investigate the Salmonella Type III Secretion System Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Sibel Westerhausen, geb. Şeker aus Uşak/Türkei Tübingen 2020 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 28.01.2021 Stellvertretender Dekan: Prof. Dr. József Fortágh 1. Berichterstatter: Prof. Ph.D. Samuel Wagner 2. Berichterstatter: Prof. Dr. Ana J. Garcia-Saéz Table of Contents List of abbreviations .............................................................................................................................. IV Deutsche Zusammenfassung ................................................................................................................. VI Abstract ................................................................................................................................................ VII 1 Introduction ..................................................................................................................................... 1 1.1 General protein transport pathways through the inner membrane........................................... 1 1.1.1 Protein degradation system .............................................................................................. 3 1.2 The type III secretion system ................................................................................................. -
Dissertation Nicolette Mamant
Charakterisierung des Aktivierungsmechanismus der HtrA-Protease DegP von E. coli Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Biologie und Geografie an der Universität Duisburg-Essen vorgelegt von Nicolette Mamant aus Essen Gutachter: Prof. Dr. M. Ehrmann, Prof. Dr. B. Siebers, Prof. Dr. H. de Groot Datum der mündlichen Prüfung: 17.12.2009 Teile dieser Arbeit sind in folgenden Veröffentlichungen enthalten: Hauske, P., Mamant, N., Hasenbein, S., Nickel, S., Ottmann, C., Clausen, T., Ehrmann, M. und Kaiser, M. (2009) Peptidic small molecule activators of the stress sensor DegS. Mol. BioSyst. , 5(9): 980-985. Meltzer, M., Hasenbein, S., Mamant, N., Merdanovic, M., Poepsel, S., Hauske, P., Kaiser, M., Huber, R., Krojer, T., Clausen, T. und Ehrmann, M. (2009) Structure, function and regulation of the conserved serine proteases DegP and DegS of E. coli. Res. Microbiol., 2009. Meltzer, M., Hasenbein, S., Hauske, P., Kucz, N., Merdanovic, M., Grau, S., Beil, A., Jones, D., Krojer, T., Clausen, T., Ehrmann, M. und Kaiser, M. (2008) Allosteric activation of HtrA protease DegP by stress signals during bacterial protein quality control. Angew. Chem. Int. Ed. Engl., 47 : 1332-1334; Angew. Chem., 120 : 1352-1355. Kucz, N., Meltzer, M. und Ehrmann, M. (2006) Periplasmic proteases and protease inhibitors. The Periplasm , ASM Press, ed. M. Ehrmann: 150-170. In Vorbereitung: Merdanovic, M., Meltzer, M., Mamant, N., Pöpsel, S., Beil, A., Soerensen, R., Hauske, P., Kaiser, M., Nagel-Steger, L., Sickmann, A., Huber,