These De Doctorat De

These De Doctorat De

THESE DE DOCTORAT DE L'UNIVERSITE DE RENNES 1 COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 605 Biologie Santé Spécialité : Cancerology Par Dimitrios Doultsinos Targeting IRE1 activity in Glioblastoma Multiforme Thèse présentée et soutenue à Rennes, le 05.04.2019 Unité de recherche : INSERM U1242 Rapporteurs avant soutenance : Fabienne Foufelle DR1, INSERM UMRS1138, Paris, France. Stephane Rocchi DR2, INSERM U1065, Nice, France. Composition du Jury : Président : Nicolas Pallet Professor, Hôpital Européen Georges-Pompidou, Paris, France. Examinateurs : Sophie Janssens Professor, VIB-UGent Center for Inflammation Research, Gent, Belgium. Nicolas Pallet Professor, Hôpital Européen Georges-Pompidou, Paris, France. Dir. de thèse : Dr Eric Chevet DR1, INSERM U1242, Rennes, France. Invité(s) Leif A. Eriksson Professor, Department of chemistry and molecular biology, University of Göteborg, Göteborg, Sweden. Targeting IRE1 activity in Glioblastoma Multiforme D. Doultsinos For my mum and dad. You have shown me hard work and perseverance like no one ever will. You have always supported me through an absurd rollercoaster of a life so far whether I deserved it or not. This would not have been possible without you. Summary The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus linked to the maintenance of cellular homeostasis and the fine balance between health and disease. The unfolded protein response (UPR) is an integrated, adaptive biochemical process that controls cell homeostasis and maintains normal physiological function. Accumulation of improperly folded proteins in the ER leads to stress, which may push the UPR past beneficial functions such as reduced protein production and increased folding and clearance, to apoptotic signalling. The UPR and one of its major sensors IRE1 are thus contributory to the commencement, maintenance, and exacerbation of a multitude of disease states, including Glioblastoma multiforme (GBM) making it an attractive global target to tackle conditions sorely in need of novel therapeutic intervention. GBM is the commonest primary CNS tumour with an incidence of 3 per 100000. The disease has a dismal prognosis with patients succumbing to the tumour between 15 and 18 months post diagnosis, with a median 5 year survival at less than 6%. In this thesis, in silico, in vitro and in vivo approaches are utilised to assess whether IRE1 is a major pathophysiological mediator and valid pharmacological target in GBM and whether its modulation may provide novel therapeutic options as an adjuvant disease modifying treatment. It is here shown that IRE1 may play a differential role in GBM pathophysiology through angiogenesis and growth as well as adaptation to chemotherapy and maintenance of differentiated GBM cell phenotype through XBP1s and RIDD signalling. XBP1s signalling promotes macrophage infiltration to the tumour, angiogenesis, invasion and maintenance of a differentiated aggressive phenotype, whilst RIDD may attenuate angiogenetic and invasive properties as well control miRNA environment and cell re-differentiation. IRE1 is assessed as a therapeutic target, by generating translational cellular models of GBM carrying IRE1 modulated genetic variants and testing their sensitisation to Temozolomide in the presence of targeted IRE1 kinase inhibitors by establishing a novel drug discovery pipeline and producing six as yet unknown to impact IRE1 activity, inhibitors. This body of work shows that IRE1 is an integral part of GBM pathogenesis and progression and targeting it may prove beneficial in specific subsets of GBM patients. Résumé Le réticulum endoplasmique (RE) est un organite membranaire intracellulaire et le premier compartiment de la voie de sécrétion. En tant que tel, le RE contribue à la production et au repliement d’environ un tiers des protéines cellulaires et est donc lié au maintien de l’homéostasie cellulaire. L’UPR est un processus biochimique intégré et adaptatif activé en réponse au stress du RE qui contrôle l'homéostasie cellulaire et maintient une fonction physiologique normale. L'accumulation de protéines mal conformées dans le RE entraîne un stress qui peut pousser l'UPR à la signalisation apoptotique. L'UPR et l'un de ses principaux capteurs IRE1 contribuent ainsi au début, au maintien et à l'exacerbation d'une multitude d'états pathologiques, y compris le glioblastome multiforme (GBM), ce qui en fait une cible thérapeutique novatrice. La GBM est la tumeur primitive du système nerveux central la plus fréquente avec une incidence de 3 sur 100 000. Le pronostic est sombre avec des patients qui succombent à la tumeur entre 15 et 18 mois après le diagnostic, avec une survie médiane à 5 ans inférieure à 6%. Dans cette thèse, des approches in silico, in vitro et in vivo sont utilisées pour déterminer si IRE1 est un médiateur physiopathologique majeur et une cible pharmacologique valide dans le GBM et si sa modulation peut fournir de nouvelles options thérapeutiques comme traitement adjuvant modifiant la maladie. Il est montré ici que IRE1 peut jouer un rôle différentiel dans la physiopathologie des GBM par le biais d'angiogenèse et de croissance, ainsi que dans l'adaptation à la chimiothérapie et le maintien du phénotype différencié des cellules GBM par le biais de XBP1 et de la signalisation RIDD. La signalisation XBP1 favorise l'infiltration des macrophages dans la tumeur, l'angiogenèse, l'invasion et le maintien d'un phénotype agressif différencié, tandis que le RIDD peut atténuer les propriétés angiogénétiques et invasives, ainsi que contrôler la ré-différenciation cellulaire et l'environnement. IRE1 est évalué en tant que cible thérapeutique en générant des modèles cellulaires traductionnels de GBM portant des variants génétiques modulés par IRE1 et en testant leur sensibilisation au témozolomide en présence d'inhibiteurs de la kinase IRE1 ciblés, en établissant un nouveau pipeline de découverte de médicaments et en produisant six médicaments non encore impactés. activité, inhibiteurs. L’ensemble de ces travaux montre que IRE1 fait partie intégrante de la pathogenèse et de la progression de la GBM. Son ciblage peut s'avérer bénéfique dans des sous-ensembles spécifiques de patients atteints de GBM. Table of Contents Preface ............................................................................................................................................ 8 Introduction ............................................................................................................................... 10 Chapter 1: Foreword……………………………………………………………….............…………………………………..13 Chapter 1: Article #1 – “Endoplasmic Reticulum Stress Signalling – from basic mechanisms to clinical applications” (2018) ....................................................................... 14 1.1 ER Structure ....................................................................................................................... 15 1.2 ER Functions ...................................................................................................................... 16 1.3 Perturbing ER functions .................................................................................................... 17 1.4 ER Stress Consequences .................................................................................................... 19 1.5 Physiological ER stress signalling .....................................................................................27 1.6 Pharmacological targeting of the UPR ............................................................................ 29 1.7 The UPR in the clinic ........................................................................................................ 32 Chapter 1: Conclusions and Contributions ................................................................................ 52 Chapter 2: Foreword ................................................................................................................. 54 Chapter 2: Article #2 – “Control of the Unfolded Protein Response in Health & Disease” (2017) ........................................................................................................................................... 55 2.1 Introduction ....................................................................................................................... 55 2.2 The UPR: Canonical and Noncanonical Signalling Pathways ........................................ 56 2.3 Control of ER Proteostasis in Diseases ............................................................................ 58 2.4 The UPR as a Therapeutic Target: From the Tools to the Small Molecules ................. 59 2.5 Molecules Targeting IRE1 and their Use in Disease Models .......................................... 62 Chapter 2: Conclusions and Contributions .............................................................................. 69 Chapter 3: Foreword ................................................................................................................... 71 Chapter 3: Glioblastoma multiforme and IRE1 – clinical implications of translational research .....................................................................................................................................72 3.1 History of GBM ..................................................................................................................72

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    269 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us