Tesis Doctoral Alejandro Piñeiro Ugalde Oviedo 2011

Total Page:16

File Type:pdf, Size:1020Kb

Tesis Doctoral Alejandro Piñeiro Ugalde Oviedo 2011 Universidad de Oviedo Departamento de Bioquímica y Biología Molecular Identificación de nuevos componentes del degradoma y estudio de la regulación biológica por miRNAs en un modelo animal deficiente en la metaloproteasa Face-1 Tesis Doctoral Alejandro Piñeiro Ugalde Oviedo 2011 Director de la Tesis Carlos López-Otín ABREVIATURAS, SIGLAS Y SÍMBOLOS ADAM metaloproteasa y desintegrina ADAMTS ADAM con dominios trombospondina cDNA DNA copia Ci curio dCTP desoxicitidina trifosfato DNA ácido desoxirribonucleico dNTPs desoxinucleósidos trifosfato GH hormona de crecimiento HGPS síndrome de Hutchinson-Gilford IGF-1 factor de crecimiento similar a insulina 1 kb kilobase MBS sitio de unión de microRNAs MMP metaloproteasa de matriz miRNA microRNA mRNA RNA mensajero pb pares de bases PCR reacción en cadena de la polimerasa RNA ácido ribonucleico ROS especie reactiva del oxígeno RISC complejo de silenciamiento inducido por RNA SSC tampón citrato sódico TAE tampón Tris/acetato con EDTA TBE tampón Tris/borato con EDTA TE tampón Tris con EDTA TIMP inhibidor tisular de metaloproteasa Tris tris(hidroximetil)-aminometano ÍNDICE Introducción ................................................................................................. 1 Los sistemas proteolíticos .................................................................................................. 4 Metaloproteasas ................................................................................................. 6 Aminopeptidasas ................................................................................................ 9 Metzinquinas ..................................................................................................... 12 Envejecimiento ................................................................................................................. 15 Síndromes progeroides .................................................................................... 19 Laminopatías .................................................................................................... 21 Eje somatotrofo ................................................................................................. 25 microRNAs ....................................................................................................................... 28 Biogénesis y mecanismos de acción de los miRNAs ....................................... 29 Relevancia funcional de los miRNAs ................................................................. 33 Objetivos .................................................................................................... 37 Material y métodos .................................................................................... 41 Material ............................................................................................................................. 43 Técnicas de Biología Molecular ....................................................................................... 45 Técnicas de Biología Celular ........................................................................................... 52 Ensayos en animales de experimentación ...................................................................... 56 Técnicas bioinformáticas .................................................................................................. 57 Resultados .................................................................................................. 59 I. Metaloproteasas y el degradoma .......................................................................... 61 II. Identificación y caracterización de la aminopeptidasa O humana ......................... 91 III. Aminopeptidasa O ............................................................................................... 101 IV. Identificación y caracterización de las arqueometzinquinas 1 y 2 humanas ....... 113 V. Señalización del eje somatotrofo y contribución de los miRNAs a su regulación en el envejecimiento acelerado .......................................................... 125 VI. Efecto rejuvenecedor de la señalización somatotrofa en el envejecimiento acelerado ............................................................................................................. 135 VII. Análisis de la función de los miRNAs en el envejecimiento ................................ 143 VIII. Otros trabajos relacionados con la Tesis ............................................................. 163 Discusión ................................................................................................. 165 Conclusiones ........................................................................................... 189 Bibliografía ............................................................................................... 193 INTRODUCCIÓN Introducción Los elementos reguladores de la actividad celular son responsables del desarrollo, la homeostasis, la plasticidad e incluso el envejecimiento de los organismos y han sido señalados como principal vehículo de la evolución de las especies. Estos elementos constituyen una proporción considerable del genoma de los organismos y se encargan de coordinar la información contenida en el DNA para adaptar el comportamiento celular a las distintas circunstancias exigidas en el espacio y en el tiempo. Este año se cumple el cincuenta aniversario del modelo del operón publicado por François Jacob y Jacques Monod en el que se introducía por primera el concepto de los genes reguladores y se definía un modelo plausible de control de la expresión génica (Jacob y Monod, 1961). La elaboración de este modelo se considera uno de los grandes hitos de la biología molecular de la segunda mitad del siglo XX al señalar el camino que dio lugar al actual conocimiento sobre los sistemas reguladores de la expresión génica. Desde entonces, el modelo originalmente propuesto para bacterias se ha refinado sucesivamente y se han añadido numerosos niveles adicionales de regulación en organismos eucariotas. Así, además del control de la expresión génica mediante factores de transcripción que se unen a secuencias reguladoras situadas en los promotores de los genes, existen sistemas remodeladores de la cromatina que añaden información heredable a la secuencia primaria del DNA en un proceso denominado modificación epigenética (Feinberg, 2007). De igual forma, en las últimas décadas se han identificado diversos grupos de genes que codifican importantes elementos reguladores que actúan a nivel post-transcripcional, ya sea sobre los mRNAs o sobre las proteínas. Entre estos sistemas de regulación post-transcripcional, las proteasas, al igual que las quinasas o fosfatasas, se han revelado como un importante grupo de enzimas que, además de participar en procesos biosintéticos o catabólicos, constituyen un nivel de regulación adicional al de la expresión génica al controlar numerosas propiedades de las proteínas (López-Otín y Hunter, 2010). Por último, el comienzo del siglo XXI ha supuesto una nueva revolución en el campo del control de la actividad génica, con el descubrimiento de miles de moléculas de RNA reguladoras, entre las que destacan los microRNAs y los lincRNAs (large intervening non-coding RNAs) (Lee y col., 1993; Guttman y col., 2009). 3 Introducción La interacción entre todos estos sistemas de regulación da lugar a una intrincada red de conexiones que permite que un mismo genoma sea capaz de generar y coordinar la notable variedad de tipos celulares especializados que conforman un organismo vivo, así como adaptar sus funciones a las distintas condiciones que se puedan presentar. Dada su importancia vital, en la presente Tesis Doctoral abordaremos el estudio de los sistemas de regulación biológica mediante una serie de objetivos dirigidos a la identificación de nuevas proteasas y al análisis de la función reguladora de los microRNAs en procesos de envejecimiento normal y patológico. Los Sistemas Proteolíticos Las proteasas constituyen un grupo de enzimas presente en todos los seres vivos, desde virus hasta mamíferos. La característica común de este conjunto de enzimas es la hidrólisis del enlace peptídico, un proceso históricamente asociado a la degradación inespecífica de proteínas, pero que en los últimos años se ha revelado como un evento clave en la regulación de múltiples procesos biológicos. Así, hoy sabemos que la proteólisis constituye un sistema altamente selectivo de modificación post-traduccional que condiciona numerosas propiedades de las proteínas, ofreciendo un amplio abanico de posibilidades de regulación. Este tipo de hidrólisis específica de determinados enlaces peptídicos de proteínas concretas se denomina procesamiento proteolítico y su impacto sobre las proteínas es muy diverso, permitiendo modular características tales como su localización subcelular, su estado de actividad, su interacción con otras proteínas o su vida media, entre otras (López-Otín y Overall, 2002). Consecuentemente, las proteasas influyen decisivamente en procesos tan importantes como la replicación del DNA, el control del ciclo celular, la proliferación y migración celulares, la diferenciación celular o la muerte celular programada. Asimismo, la proteólisis afecta a numerosas funciones del organismo, como la morfogénesis y remodelación tisulares, la cicatrización de tejidos, la ovulación y fertilización, la angiogénesis, la hemostasis o la inmunidad (López-Otín y Bond, 2008). 4 Introducción Dada su relevancia funcional, los sistemas proteolíticos requieren una estricta regulación que garantice su correcta actividad
Recommended publications
  • Expression of Membrane Proteins in Escherichia Coli
    From Biogenesis to Over- expression of Membrane Proteins in Escherichia coli Samuel Wagner Stockholm University © Samuel Wagner, Stockholm 2008 ISBN 978-91-7155-594-6, Pages i-81 Printed in Sweden by Universitetsservice AB, Stockholm 2008 Distributor: Department of Biochemistry and Biophysics, Stockholm University To Claudia. Abstract In both pro- and eukaryotes 20-30% of all genes encode α-helical transmem- brane domain proteins, which act in various and often essential capacities. Notably, membrane proteins play key roles in disease and they constitute more than half of all known drug targets. The natural abundance of membrane proteins is in general too low to con- veniently isolate sufficient material for functional and structural studies. Therefore, most membrane proteins have to be obtained through overexpres- sion. Escherichia coli is one of the most successful hosts for overexpression of recombinant proteins, and T7 RNA polymerase-based expression is the major approach to produce recombinant proteins in E. coli. While the pro- duction of soluble proteins is comparably straightforward, overexpression of membrane proteins remains a challenging task. The yield of membrane lo- calized recombinant membrane protein is usually low and inclusion body formation is a serious problem. Furthermore, membrane protein overexpres- sion is often toxic to the host cell. Although several reasons can be postu- lated, the basis of these difficulties is not completely understood. It is gener- ally believed, that the complex requirements of membrane protein biogenesis significantly contribute to the difficulty of membrane protein overexpres- sion. Therefore, an understanding of membrane protein biogenesis is a pre- requisite for understanding membrane protein overexpression and for de- signing rational strategies to improve overexpression yields.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Role of Regulated Proteolysis in the Communication of Bacteria with the Environment
    fmolb-07-586497 October 11, 2020 Time: 10:35 # 1 REVIEW published: 15 October 2020 doi: 10.3389/fmolb.2020.586497 Role of Regulated Proteolysis in the Communication of Bacteria With the Environment Sarah Wettstadt and María A. Llamas* Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this Edited by: process allows for an immediate response to a given signal, which facilitates adaptation Chew Chieng Yeo, to the surrounding environment and bacterial survival. Moreover, regulated proteolysis Sultan Zainal Abidin University, Malaysia is a fundamental process for the transmission of extracellular signals to the cytosol Reviewed by: through the bacterial membranes. By a proteolytic mechanism known as regulated Iain Lamont, intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of University of Otago, New Zealand the membrane to liberate a cytosolic domain or protein able to modify gene transcription.
    [Show full text]
  • Loss of Protease Activity of ADAM15 Abolishes Protective Effects on Plaque Progression in Atherosclerosis
    382 Letters to the Editor Loss of protease activity of ADAM15 abolishes protective effects on plaque progression in atherosclerosis Andreas Bültmann, Zhongmin Li, Silvia Wagner, Meinrad Gawaz, Martin Ungerer, Harald Langer, Andreas E. May ⁎⁎, Götz Münch ⁎ Corimmun, Fraunhofer Str. 17, D-82152 Martinsried, Germany Medizinische Klinik III, Eberhard-Karls Universität Tübingen, D-72076 Tübingen, Germany article info For the induction of atherosclerosis, rabbits were fed with Western Article history: type high cholesterol (0.25%) diet for 8 weeks and vascular gene Received 8 August 2011 transfer to the carotid artery was performed as previously described Accepted 13 August 2011 [7]. Available online 9 September 2011 Animals were sacrificed 4 weeks after the adenovirus delivery. Keywords: The left common carotid arteries, aorta and iliac arteries were Atherosclerosis macroscopically prepared for “en face” evaluation of plaque ADAM15 extension and stained with Sudan III. Serial 6-μm-thick cryosections Sheddase were cut and histological assessment of atherosclerosis after Metalloproteinase hematoxylin eosin (HE) and van Gieson (VG)-elastica staining and GFP expression were performed. Immunohistochemical analysis, with anti rabbit RAM 11 antibody (DAKO, Hamburg, Germany) was The A Disintegrin And Metallporteinases (ADAMs) contain a used for macrophages as previously described [12]. metalloprotease-like and a disintegrin-like domain. Currently 40 After vascular gene transfer into the carotid artery, GFP expression different types of ADAM proteins have been identified. ADAM15 is could be detected with AdGFP and also with Ad-ADAM15 and Ad- found in the myocardium [1,2], endothelial cells and in vascular ADAM15 prot neg, which both co-expressed GFP (Fig. 1). Relative atherosclerotic lesions [3].
    [Show full text]
  • Invariant Chain Complexes and Clusters As Platforms for MIF Signaling
    cells Review Invariant Chain Complexes and Clusters as Platforms for MIF Signaling Robert Lindner Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; [email protected]; Tel.: +49-511-532-2918 Academic Editor: Ritva Tikkanen Received: 8 December 2016; Accepted: 7 February 2017; Published: 10 February 2017 Abstract: Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking.
    [Show full text]
  • The Role of Proteases in Plant Development
    The Role of Proteases in Plant Development Maribel García-Lorenzo Department of Chemistry, Umeå University Umeå 2007 i Department of Chemistry Umeå University SE - 901 87 Umeå, Sweden Copyright © 2007 by Maribel García-Lorenzo ISBN: 978-91-7264-422-9 Printed in Sweden by VMC-KBC Umeå University, Umeå 2007 ii Organization Document name UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Chemistry SE - 901 87 Umeå, Sweden Date of issue October 2007 Author Maribel García-Lorenzo Title The Role of Proteases in Plant Development. Abstract Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Systematic comparative analysis of the available sequenced genomes of two model organisms led to the identification of an increasing number of protease genes, giving insights about protein sequences that are conserved in the different species, and thus are likely to have common functions in them and the acquisition of new genes, elucidate issues concerning non-functionalization, neofunctionalization and subfunctionalization. The involvement of proteases in senescence and PCD was investigated. While PCD in woody tissues shows the importance of vacuole proteases in the process, the senescence in leaves demonstrate to be a slower and more ordered mechanism starting in the chloroplast where the proteases there localized become important. The light-harvesting complex of Photosystem II is very susceptible to protease attack during leaf senescence. We were able to show that a metallo-protease belonging to the FtsH family is involved on the process in vitro.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Characterization of the Cpx Response in Vibrio Cholerae
    Characterization of the Cpx Response in Vibrio cholerae by Paula Nicole Acosta Amador A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Biotechnology Department of Biological Sciences University of Alberta © Paula Nicole Acosta Amador, 2015 Abstract The gram negative bacterial cell envelope is composed of the outer membrane, the periplasm and the inner membrane. These compartments are exposed directly to changes in the environment that are sensed and adapted to through different signaling transduction pathways. This often occurs through two-component signal transduction systems (TCS), which are broadly distributed among different bacterial species. The Cpx pathway is a TCS that employs the sensor histidine kinase CpxA and the response regulator CpxR, and regulates crucial adaptations to envelope stress response that affects many functions, including antibiotic resistance, across bacterial species. This system has also been implicated in the regulation of a number of envelope localized virulence determinants across bacterial species. The first goal of this thesis was to characterize the Cpx regulon members in the human pathogen Vibrio cholerae when the Cpx pathway is activated. For this purpose I characterized the transcriptional profile of the pandemic V. cholerae El Tor strain C6706 upon overexpression of cpxR, and the inducing cues that lead to the activation of the Cpx pathway. My data shows that the Cpx regulon of V. cholerae is enriched for genes encoding membrane localized and transport proteins, including a large number of genes known or predicted to be iron-regulated. The V. cholerae Cpx regulon included three strongly Cpx-regulated, putative ferric reductases that are likely directly regulated by CpxR.
    [Show full text]
  • Westerhausen, Geb
    Development of highly sensitive tools to investigate the Salmonella Type III Secretion System Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Sibel Westerhausen, geb. Şeker aus Uşak/Türkei Tübingen 2020 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 28.01.2021 Stellvertretender Dekan: Prof. Dr. József Fortágh 1. Berichterstatter: Prof. Ph.D. Samuel Wagner 2. Berichterstatter: Prof. Dr. Ana J. Garcia-Saéz Table of Contents List of abbreviations .............................................................................................................................. IV Deutsche Zusammenfassung ................................................................................................................. VI Abstract ................................................................................................................................................ VII 1 Introduction ..................................................................................................................................... 1 1.1 General protein transport pathways through the inner membrane........................................... 1 1.1.1 Protein degradation system .............................................................................................. 3 1.2 The type III secretion system .................................................................................................
    [Show full text]
  • Dissertation Nicolette Mamant
    Charakterisierung des Aktivierungsmechanismus der HtrA-Protease DegP von E. coli Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Biologie und Geografie an der Universität Duisburg-Essen vorgelegt von Nicolette Mamant aus Essen Gutachter: Prof. Dr. M. Ehrmann, Prof. Dr. B. Siebers, Prof. Dr. H. de Groot Datum der mündlichen Prüfung: 17.12.2009 Teile dieser Arbeit sind in folgenden Veröffentlichungen enthalten: Hauske, P., Mamant, N., Hasenbein, S., Nickel, S., Ottmann, C., Clausen, T., Ehrmann, M. und Kaiser, M. (2009) Peptidic small molecule activators of the stress sensor DegS. Mol. BioSyst. , 5(9): 980-985. Meltzer, M., Hasenbein, S., Mamant, N., Merdanovic, M., Poepsel, S., Hauske, P., Kaiser, M., Huber, R., Krojer, T., Clausen, T. und Ehrmann, M. (2009) Structure, function and regulation of the conserved serine proteases DegP and DegS of E. coli. Res. Microbiol., 2009. Meltzer, M., Hasenbein, S., Hauske, P., Kucz, N., Merdanovic, M., Grau, S., Beil, A., Jones, D., Krojer, T., Clausen, T., Ehrmann, M. und Kaiser, M. (2008) Allosteric activation of HtrA protease DegP by stress signals during bacterial protein quality control. Angew. Chem. Int. Ed. Engl., 47 : 1332-1334; Angew. Chem., 120 : 1352-1355. Kucz, N., Meltzer, M. und Ehrmann, M. (2006) Periplasmic proteases and protease inhibitors. The Periplasm , ASM Press, ed. M. Ehrmann: 150-170. In Vorbereitung: Merdanovic, M., Meltzer, M., Mamant, N., Pöpsel, S., Beil, A., Soerensen, R., Hauske, P., Kaiser, M., Nagel-Steger, L., Sickmann, A., Huber,
    [Show full text]
  • New Insight Into Plant Intramembrane Proteases Małgorzata Adamiec
    bioRxiv preprint doi: https://doi.org/10.1101/101204; this version posted January 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. New insight into plant intramembrane proteases Małgorzata Adamiec *, Lucyna Misztal, and Robert Luciński Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland. *-corresponding author ABSTRACT The process of proteolysis is a factor involved in control of the proper development of the plant and its responses to a changeable environment. Recent research has shown that proteases are not only engaged in quality control and protein turnover processes but also participate in the process which is known as regulated membrane proteolysis (RIP). Four families of integral membrane proteases, belonging to three different classes, have been identified: serine intramembrane proteases known as rhomboid proteases, site-2 proteases belonging to zinc metalloproteases, and two families of aspartic proteases: presenilins and signal peptide peptidases. The studies concerning intramembrane proteases in higher plants are, however, focused on Arabidopsis thaliana. The aim of the study was to identify and retrieve protein sequences of intramembrane protease homologs from other higher plant species and perform a detailed analysis of their primary sequences as well as their phylogenetic relations. This approach allows us to indicate several previously undescribed issues which may provide important directions for further research. INTRODUCTION Proteolysis is considered as a crucial factor determining the proper development of the plant and its efficient functioning in variable environmental conditions.
    [Show full text]