Architecture and Function of Metallopeptidase Catalytic Domains

Total Page:16

File Type:pdf, Size:1020Kb

Architecture and Function of Metallopeptidase Catalytic Domains Cerdà-Costa et al. 1 !"#$%&'#&("')*+,)-(+#&%.+).-)/'&*00.1'1&%,*2')#*&*03&%#) ,./*%+2) ) 45"%*)6'",786.2&*)9):;)<*=%'")>./%28?@&$)A)) ) ) B".&'.032%2)C*DE)F'1*"&/'+&).-)G&"(#&("*0)H%.0.I3E)J.0'#(0*")H%.0.I3)K+2&%&(&').-) H*"#'0.+*L)6GK6E)H*"#'0.+*)G#%'+#')B*"ME)N'0%O)H(%0,%+IE)#P)H*0,%"%)?'%O*#L)QR8SQE)T8 UVUSV)H*"#'0.+*)WG1*%+X;) ) A)6.""'21.+,'+#'Y)'8/*%0Y)-OI"Z%D/D;#2%#;'2L)1$.+'Y)W[\]X)^\])USU)QV_L)-*OY)W[\]X)^\]) U\])^`^;) ) a$')*(&$."2)2&*&')&$'3)$*=')+.)#./1'&%+I)-%+*+#%*0)%+&'"'2&;) ) b'3c.",2Y)G&"(#&("*0)D%.#$'/%2&"3L)/'&d%+#%+)#0*+L)#*&*03&%#),./*%+2L)*#&%='82%&')#0'-&L) $3,".03&%#)'+d3/'2L)/*&"%O)/'&*00.1".&'*2'2L)*2&*#%+2L)!F!JL)*,*/*032%+2L)2'""*032%+2L) /'&*00.1".&'*2'L)/'&*00.1".&'%+*2';) ! Cerdà-Costa et al. 2 "#$%&"'%! a$')#0'*=*I').-)1'1&%,')D.+,2)D3)/'&*00.1'1&%,*2'2)WJB2X)%2)'22'+&%*0)-.")0%-';)a$'2')(D%e(%&.(2)'+d3/'2) 1*"&%#%1*&')%+)*00)/*f.")1$32%.0.I%#*0)1".#'22'2L)*+,)2.)&$'%"),'"'I(0*&%.+)0'*,2)&.),%2'*2'2)"*+I%+I)-"./)#*+#'") *+,)/'&*2&*2%2L)%+-0*//*&%.+L)*+,)/%#".D%*0)%+-'#&%.+)&.)+'(".0.I%#*0)%+2(0&2)*+,)#*",%.=*2#(0*"),%2.",'"2;)JB2) #0'*=')&$'%")2(D2&"*&'2)c%&$.(&)#.=*0'+&)%+&'"/',%*&')%+)*)2%+I0'82&'1)"'*#&%.+)%+=.0=%+I)*)2.0='+&)/.0'#(0'L)*) I'+'"*0) D*2'P*#%,L) *+,) *) /.+.8) .") ,%+(#0'*") #*&*03&%#) /'&*0) 2%&';) J.2&) /.+./'&*00%#) JB2) #./1"%2') *) 2$."&) /'&*08D%+,%+I)/.&%-)WNT<<NXL)c$%#$)%+#0(,'2)&c.)/'&*08D%+,%+I)$%2&%,%+'2)*+,)*)I'+'"*0)D*2'P*#%,)I0(&*/*&'L) *+,)&$'3)*"')I".(1',)%+&.)&$')d%+#%+)&"%D').-)JB2;)a$')0*&&'"),%=%,'2)/*%+03)%+&.)&$')I0(d%+#%+)*+,)/'&d%+#%+) #0*+2;) J'&d%+#%+2) #.+2%2&) .-) I0.D(0*") gQ\U8S`U8"'2%,(') #*&*03&%#) ,./*%+2L) c$%#$) *"') (2(*003) 1"'#',',) D3) 48 &'"/%+*0)1".82'I/'+&2L)&31%#*003)"'e(%"',)-.")-.0,%+I)*+,)0*&'+#3)/*%+&'+*+#';)a$')#*&*03&%#),./*%+2)*"').-&'+) -.00.c',)D3)68&'"/%+*0),./*%+2)-.")2(D2&"*&')"'#.I+%&%.+)*+,).&$'")1".&'%+81".&'%+)%+&'"*#&%.+2L)*+#$."%+I)&.) /'/D"*+'2L) .0%I./'"%d*&%.+L) *+,) #./1*"&/'+&*0%d*&%.+;) J'&d%+#%+) #*&*03&%#) ,./*%+2) #.+2%2&) .-) *) 2&"(#&("*003) #.+2'"=',)48&'"/%+*0)2(D8,./*%+)21*++%+I)*)-%='82&"*+,',)h82$''&L)*)D*#M%+I)$'0%OL)*+,)*+)*#&%='82%&')$'0%O;)a$') 0*&&'")#.+&*%+2)/.2&).-)&$')/'&*08D%+,%+I)/.&%-L)c$%#$)%2)$'"')#$*"*#&'"%2&%#*003)'O&'+,',)&.)NT<<N<<><<WNLFX;) F.c+2&"'*/)68&'"/%+*0)2(D8,./*%+2)*"')I'+'"*003)2$."&'"L),%--'")/."')*/.+I)/'&d%+#%+2L)*+,)/*%+03)2$*"')*) #.+2'"=',)0..1i&$')J'&8&("+i*+,)*)68&'"/%+*0)$'0%O;)a$')*##(/(0*&',)2&"(#&("*0),*&*)-"./)/."')&$*+)\UU) ,'1.2%&',) 2&"(#&("'2) .-) &$') QS) #(""'+&03) #$*"*#&'"%d',) /'&d%+#%+) -*/%0%'2) "'=%'c',) $'"') 1".=%,') ,'&*%0',) M+.c0',I') .-) &$') /.0'#(0*") -'*&("'2) .-) &$'%") #*&*03&%#) ,./*%+2L) $'01) %+) .(") (+,'"2&*+,%+I) .-) &$'%") c."M%+I) /'#$*+%2/2)*+,)-."/)&$')D*2%2)-.")&$'),'2%I+).-)+.='0),"(I2;) ) ) Cerdà-Costa et al. 3 ()!*+*%,-"$+$! a$') &'"/) j1'1&%,*2'k) %2) #(""'+&03) "'#.//'+,',) -.") 1".&'.03&%#) '+d3/'2L) 1".&'*2'2L) *+,) 1".&'%+*2'2) %+) Q SE)\ I'+'"*0) ;)B'1&%,*2'2)*"'),%2&"%D(&',)*/.+I)*00)M%+I,./2).-)0%-') ;)a$'3)&*"I'&)1'1&%,')D.+,2).-)1".&'%+2)*+,P.") 1'1&%,'2) *+,) 2./') #*&*03d') 'O&'+2%=') 1".&'%+81".#'22%+I) '='+&2) 2(#$) *2) ,%I'2&%.+) .") ,'I"*,*&%.+) .-) %+&*M') 1".&'%+2L)*+,),'='0.1/'+&L)/*%+&'+*+#')*+,)"'/.,'0%+I).-)&%22('2;)l&$'")1'1&%,*2'2)#*&*03d')0%/%&',L)21'#%-%#) 2#%22%.+).-)*)2/*00)+(/D'").-)1'1&%,')D.+,2L)c$%#$)"'2(0&2)%+)&$')*#&%=*&%.+).-),'*#&%=*&%.+).-)&$'/2'0='2)*+,) S .&$'")W1".X'+d3/'2L)D%.*#&%=')1'1&%,'2L)*+,)F4!)"'1"'22."2) ;)K+)&$%2)c*3L)1'1&%,*2'2)1*"&%#%1*&')%+)"'I(0*&."3) /'#$*+%2/2L) c$%#$) *"') "'e(%"',) %+) 1$32%.0.I%#*0) 1".#'22'2) 2(#$) *2) D0..,81"'22("') #.+&".0L) $."/.+') $./'.2&*2%2L) "'I(0*&%.+) .-) 2%I+*08&"*+2,(#&%.+) 1*&$c*32L) /.,(0*&%.+) .-) 1".&'%+81".&'%+) *+,) #'008#'00) ] %+&'"*#&%.+2) ;)G(#$)0%/%&',)1".&'.032%2)&$".(I$)j2$',,*2'2k)1".,(#'2)2.0(D0')-."/2)-"./)/'/D"*+'8*+#$."',) R8` 1"'#("2."2L)&$(2),'#"'*2%+I)1".&'%+)#.+#'+&"*&%.+)*&)#'00)2("-*#'2)*+,)%+#"'*2%+I)%&)%+)&$')#%"#(0*&%.+) ;) B'1&%,*2'2) $*=') &"*,%&%.+*003) D''+) #0*22%-%',) %+&.) 2'"%+'L) #32&'%+'L) *21*"&%#L) *+,) /'&*00.1'1&%,*2'2) WJB2X) V8QU D*2',).+)'0'/'+&2)M'3)-.")#*&*032%2) ;)J."')"'#'+&03L)&$"'')#*&'I."%'2)$*=')D''+)*,,',Y)48&'"/%+*0)&$"'.+%+') QQE) QSE) Q 1'1&%,*2'2L) I0(&*/*&') 1'1&%,*2'2L) *+,) *21*"*I%+') 1'1&%,*2'2) ;) K+) *,,%&%.+L) 1'1&%,*2'2) *"') ,%=%,',) %+&.) Q\ '+,.1'1&%,*2'2) *+,) 'O.1'1&%,*2'2L) c$%#$) #(&) %+) &$') /%,,0') .") *&) &$') '+,2) .-) 2(D2&"*&'2L) "'21'#&%='03) ;) a$') 0*&&'"L) %+) &("+L) #*+) D') -("&$'") #0*22%-%',) %+&.) */%+.1'1&%,*2'2) *+,) #*"D.O31'1&%,*2'2L) c$%#$) #0'*=') .--) 48 Q &'"/%+*0)*+,)68&'"/%+*0)*/%+.)*#%,2L)"'21'#&%='03) ;)l='"*00L)'Oe(%2%&')"'I(0*&%.+).-)*+3)1".&'.03&%#)'+d3/')%2) '22'+&%*0)-.")1".1'")-(+#&%.+%+I)*+,)&.)1"'='+&)/%2,%"'#&',)&'/1."*0)*+,)21*&%*0)1".&'.03&%#)*#&%=%&3;)6.+&".0) /*3)D')'O'"&',)*&)&$')&"*+2#"%1&%.+*0)0'='0).")=%*)1.2&8&"*+20*&%.+*0)/.,%-%#*&%.+2;)l&$'")"'I(0*&."3)/'#$*+%2/2) Q] %+#0(,')D%.23+&$'2%2)%+)&$')-."/).-)d3/.I'+2)&$*&)"'e(%"')*#&%=*&%.+) L)#.80.#*0%d*&%.+).-)'+d3/')*+,)2(D2&"*&'L) #.-*#&.") D%+,%+I) *+,) 2(D2&"*&') *##'22%D%0%&3) *+,) 21'#%-%#%&3L) *2) c'00) *2) &$') 1"'2'+#') .-) 1$32%.0.I%#*0) 1".&'%+) QRE) Q_ %+$%D%&."2) ;) :*%0("') .-) "'I(0*&."3) /'#$*+%2/2) #*+) I%=') "%2') &.) 1*&$.0.I%'2) 2(#$) *2) %+-0*//*&%.+L) &%22(') ,'2&"(#&%.+) W*2) %+) *"&$"%&%2) *+,) -%D".&%#) ,%2'*2'2XL) +'(".0.I%#*0) ,%2'*2'2) W!0d$'%/'"m2) ,%2'*2'L) /'+%+I%&%2) *+,) /(0&%10')2#0'".2%2XL)*+,)#*",%.=*2#(0*"),%2.",'"2)W2&".M'L)$31'"&'+2%.+L)&$"./D.2%2L)D0'',%+IL)*+,)/3.#*",%*0) Q`8Q^ %+-*"#&X ;) T='+) %+) &(/."%I'+'2%2) *+,) &(/."81".I"'22%.+) '='+&2L) 2(#$) *2) *+I%.I'+'2%2L) &%22(') %+=*2%.+) *+,) SUE) SQ /'&*2&*2%2L)1'1&%,*2'2)10*3)*)/*f.")".0') ;)!)1*"&%#(0*")I".(1).-)1'1&%,*2'2)*"')'O.I'+%#)=%"(0'+#')-*#&."2) SS8S] &$*&) 0'*,) &.) &$') ,'10'&%.+) .-) $.2&) ,'-'+2'2) *+,) &%22(') ,'2&"(#&%.+) ;) a$%2) %2) .D2'"=',) ,("%+I) /%#".D%*0) %+-'#&%.+2) &$*&) #*(2') %+-0*//*&%.+L) &'&*+(2L) 1+'(/.+%*L) &(D'"#(0.2%2L) !KFGL) /*0*"%*L) D.&(0%2/L) I*2) I*+I"'+'L) D*#&'"%*0) /'+%+I%&%2L) *+&$"*OL) '&#;) D(&) *02.) *-&'") 1.%2.+%+I;) !##.",%+I03L) 2(#$) ,%='"2') 1$32%.1*&$.0.I%#*0) SR %/10%#*&%.+2)/*M')&$'2')1".&'%+2)1"./%2%+I),"(I)&*"I'&2) )*+,)&$'%")2&"(#&("*0)2&(,%'2)*"')&$(2)'22'+&%*0)&.)&$') (+,'"2&*+,%+I).-)&$'%")-(+#&%.+*0),'&'"/%+*+&2)*+,)&$'),'2%I+).-)+.='0)&$'"*1'(&%#)*I'+&2L)! +.c)I".(1',)(+,'") S_E)S`E)]E)SVE)S^ ) &$')&'"/)j,'I"*,./%#2k ; ) \U8\\E) SVE) \]8\` N'"')c')"'=%'c)&$')#*&*03&%#),./*%+2).-)JB2L)%+)1*"&%#(0*")-"./)&$')/'&d%+#%+)#0*+) ;)a.),*&'L) 2&"(#&("'2) *"') *=*%0*D0') -.") &c'0=') /'&d%+#%+) -*/%0%'2Y) *2&*#%+2L) *,*/*032%+2P!F!J2L) 2'""*032%+2L) /*&"%O%+2) Cerdà-Costa et al. 4 "#$"% W ) /*&"%O) /'&*00.1".&'%+*2'2) *+,) JJB2XL) 0'%2$/*+.032%+2L) 2+*1*032%+2L) 1*11*032%+2L) *"#$*'/'&d%+#%+2L) -"*I%032%+2L)#$.0'"%032%+2L)&.O%032%+2L)*+,)%I*032%+2)W-.")&$')-%"2&)#.00'#&%=')/'+&%.+).-)&$')-%"2&)&'+)-*/%03)+*/'2L) SV 2'') X;) .)!'/"$$,0,'"%,12!) "2-!'/+"3"4+!5+'6"2,$5!10!5+%"//1*+*%,-"$+$! l+')c%,'03)*##'1&',)#0*22%-%#*&%.+).-)JB2)*+,)1".&'.03&%#)'+d3/'2)%+)I'+'"*0)%2)1".=%,',)D3)&$')JT?lBG) ,*&*D*2'L) c$%#$) #0*22%-%'2) $./.0.I.(2) 2'&2) .-) 1'1&%,*2'2) *+,) 1".&'%+) %+$%D%&."2) $%'"*"#$%#*003) %+&.) 1".&'%+) 21'#%'2L) -*/%0%'2L) *+,) #0*+2) D*2',) .+) 2'e('+#') 2%/%0*"%&3) *+,) '=.0(&%.+*"3) ,%2&*+#'2) \V W$&&1YPP/'".12;2*+I'";*#;(ME) X;) a$%2) 2#$'/') %2) *02.) -.00.c',) %+) *) #./1"'$'+2%=') 2&(,3L) &$') N*+,D..M) .-) \^ B".&'.03&%#)T+d3/'2) ;)N'"'L)c')*1103)*),%--'"'+&)*11".*#$)D*2',).+)*#&%='82%&')*"#$%&'#&("')*+,).='"*00)-.0,) ]UE) \UE) ]QE) ]SE) SVE) ]\E) \R 2%/%0*"%&3)W2'')*02.) X;)!##.",%+I)&.)&$%2)2#$'/'L)JB2)*"')-%"2&),%=%,',)%+&.)&$.2')&$*&)$*=')*) 2%+I0') #*&*03&%#) /'&*0L) *+,) &$.2') &$*&) $*=') &c.;) F%/'&*0*&') JB2) /*%+03) %+#0(,') 'O.1'1&%,*2'2) *+,) &$'2') *"') ]]8]_ "'=%'c',) '02'c$'"') L) 2.) $'"') c') -.#(2) .+) 2&"(#&("*0038#$*"*#&'"%d',) /'/D'"2) .-) &$') 2(D#0*22) .-) ]`E) ]V ]^ /.+.+(#0'*")JB2)W:%I;)QX;)K+)*,,%&%.+L)%2.1'1&%,*2'2)2(#$)*2)n*DQPJB4) )*+,)!JGN8CB),'(D%e(%&%+*2'2) L) c$%#$) #0'*=') */%,') D.+,2) &$*&) *"') +.&) 1'1&%,') D.+,2L) *+,) 1'1&%,') ,'-."/30*2'L) c$%#$) "'/.='2) 48&'"/%+*0) RUE)RQ -."/30)I".(12)-"./)48&'"/%+*0)/'&$%.+%+')"'2%,('2) L)$*=')*02.)D''+)./%&&',;)a$%2)#0*22%-%#*&%.+)%2)D*2',).+) SVE)]\E)RS "'#'+&)2&"(#&("*0),*&*)*+,)&$(2)2(1'"2','2)1"'=%.(2)"'1."&2)D3).(")I".(1) ;) a$')*#&%=')2%&').-)JB2)*##.//.,*&'2)*)#*&*03&%#),%=*0'+&)/'&*0)%.+L)/.2&03)d%+#)D(&)*02.)2./'&%/'2)#.D*0&L) /*+I*+'2').")+%#M'0L)c$%#$)%2)*+#$."',)*&)&$')D.&&./).-)&$')*#&%='82%&')#0'-&).-)&$')'+d3/')D3)1".&'%+)"'2%,(') ]QE)R\ 2%,')#$*%+2) ;)N'"')%&)/%I$&)D')*11".1"%*&')&.)#0*"%-3)#.//.+038(2',)&'"/2)c$%#$)&'+,)&.)D')/%2(2',)%+)&$') 0%&'"*&("';) ) a$') %+&*#&L) *#&%='L) /'&*08D.(+,) 1".&'%+) %2) ,'2#"%D',) *2) &$') j'+d3/'k) .") &$') j$.0.'+d3/'k;))K-)&$') '+d3/')$*2)*)0%I*+,)D.(+,)%&)#*+)D'),'2#"%D',)*2)*+)'+d3/'80%I*+,)#./10'O;))a$')'+d3/')0*#M%+I)*)/'&*0)%.+) %+,%21'+2*D0') -.") #*&*032%2) %2) ,'2#"%D',) *2) *+) j*1.'+d3/'k;) J'&*08D%+,%+I) "'2%,('2) *"') /.2&03) $%2&%,%+'2L) *21*"&*&'2L)*+,)I0(&*/*&'2L)c$%#$)*"')%+#0(,',)%+)d%+#8D%+,%+I)/.&%-2)&$*&)*"')#$*"*#&'"%2&%#).-)1*"&%#(0*")JB) &"%D'2L) #0*+2) *+,) -*/%0%'2)W:%I;)QL) "'2%,('2) %+) I"''+X;) a"%D'2) %+#0(,') oho8'O.1'1&%,*2'2L) c$%#$) #./1"%2') &$') ]\E) RS R]8R_ -(++'0%+) #0*+) E)C!G)JB2) E) "'0*&%='2) .-) $3,".I'+*2') /*&("*&%+I) -*#&."L) N3DFL) *) 1".='+) +*&("*0) +%#M'08 R`E) RV \UE) ]QE) R^ _UE) _QE) QQE) _S ,'1'+,'+&) JB) E) d%+#%+2) E) *+,) %+='"d%+#%+2) ;) K+) *00) #*2'2L) *) I'+'"*0PD*2') *#%,L) /.2&03) *) I0(&*/*&'L)%2)-("&$'")-.(+,)#0.2')&.)&$')#*&*03&%#)/'&*0)*+,)%2)"'e(%"',)-.")#*&*032%2)W2'')2'#&%.+)S)*+,):%I;)QL) "'2%,('2)%+)/*I'+&*X;) K+)I'+'"*0L)1'1&%,'8D.+,)$3,".032%2)&$".(I$)/.+./'&*00%#)JB2)%2)*+).",'"',)2%+I0'8,%210*#'/'+&)"'*#&%.+) &$*&) -.00.c2) 2%/10') J%#$*'0%28J'+&'+) M%+'&%#2) *+,) .##("2) .1&%/*003) *&) +'(&"*0) 1N;) !) 2.0='+&) /.0'#(0') *+,) *) 1'1&%,')2(D2&"*&')*"')D.(+,)D3)&$')*#&%='82%&')#0'-&)*+,)&$')#*&*03&%#)/'&*0)%.+)&.)"'+,'")&$')J%#$*'0%2)#./10'O) _\E) _] ;) K+) /.2&) #*2'2L) &$') .='"*00) *#&%='82%&') '+=%".+/'+&) %2) %+) *) #./1'&'+&) #.+-."/*&%.+) -.") #*&*032%2) %+) &$') /*&("')'+d3/')D'-."')"'#"(%&%+I)&$')1'1&%,%#)2(D2&"*&'L)c$%#$)D%+,2)%+)'O&'+,',)#.+-."/*&%.+)%+)2(#$)*)c*3) Cerdà-Costa et al.
Recommended publications
  • Biochemical Characterization of Human Matrix Metalloproteinases and Their Newly Designed Inhibitors Related to Stroke Qiang Cao
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Biochemical Characterization of Human Matrix Metalloproteinases and Their Newly Designed Inhibitors Related to Stroke Qiang Cao Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES BIOCHEMICAL CHARACTERIZATION OF HUMAN MATRIX METALLOPROTEINASES AND THEIR NEWLY DESIGNED INHIBITORS RELATED TO STROKE By QIANG CAO A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2010 The members of the committee approve the dissertation of Qiang Cao defended on July 14, 2010. Qing-Xiang Amy Sang Professor Directing Dissertation Yan-Chang Wang University Representative Hong Li Committee Member Igor Alabugin Committee Member Approved: Joseph B. Schlenoff, Chair, Department of Chemistry and Biochemistry The Graduate School has verified and approved the above-named committee members. ii This dissertation is dedicated to my parents, Shi-De Cao & Mu-Dan Li. iii ACKNOWLEDGEMENTS There are many people to thank for their support and guidance during the past years. My wife, Juan Zhou, has shown a great deal of patience and personal support through difficult times. Professor Qing-Xiang Amy Sang has provided outstanding scientific guidance and truly developed my interest in cancer research and cardiovascular disease research. A special thanks is given to Drs. Martin Schwartz, Yonghao Jin and Wei Yang for the many discussions about inhibitor interactions the synthesis and modeling of the compounds. I especially thank Mark Dru Roycik for his help on English writing and organizing through the past years and Douglas R.
    [Show full text]
  • Characterizing the Roles of ADAM10 and 15 Disintegrins in Prostate Biology and Disease
    Characterizing the roles of ADAM10 and 15 disintegrins in prostate biology and disease by Magdalena M. Grabowska A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2011 Doctoral Committee: Professor Mark L. Day, Chair Professor James T. Elder Professor Robert S. Fuller Professor Jill A. Macoska Professor Benjamin L. Margolis Dedication To my parents for their unending support ii Acknowledgements I would like to extend a tremendous thank you to my family and friends without whose support this doctoral process would not have been possible. I would also like to thank Derek for being a constant source of support in all aspects of my life. I would like to thank Mark for taking me on as a graduate student and my committee for their commitment to my training. Thank you to the faculty members and administrators of the Cellular and Molecular Biology and the Cancer Biology Programs for your willingness to help with training, letters, funding, and graduate student business as a whole. Finally, I would like to thank collaborators who have provided reagents, resources, expertise, and lab equipment without which my research would not have been possible. Thank you. iii Table of Contents Dedication ............................................................................................................ ii Acknowledgements .............................................................................................. iii List of Figures
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • Cloning and Expression of Leishmanolysin Gene from Leishmania Major in Primate Cell Lines
    J. Sci. I. R. Iran Vol. 12, No. 2, Spring 2001 CLONING AND EXPRESSION OF LEISHMANOLYSIN GENE FROM LEISHMANIA MAJOR IN PRIMATE CELL LINES M. R. Razavi-Deligani1, M. Reza Sadaie2, V. Richinsky3, M. R. Noori- Daloii4, M. Azizi5, A. Amanzadeh6 and M. Assmar1* 1 Department of Parasitology, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran 2 NovoMed Pharmaceuticals, Inc., Germantown, Maryland 20875, USA 3 Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia 4 Department of Medical Genetic, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran 5 Department of Biotechnology, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran 6 National Cell Bank, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran Abstract Leishmanolysin is a worldwide disease that is caused by different species of the genus Leishmania. Leishmanolysin, One of the genes expressed by Leishmania, appears to be an ideal candidate for genetic vaccination. In this study, a full length sequence, which encodes Leishmanolysin functionally critical regions (amino acids 100-579), was cloned from a Leishmania strain endemic to Iran. Analysis by restriction enzyme digestion and DNA sequencing in pUC 19 based T-Vector showed that the cloned gene contained the conserved segments of the Leishmanolysin. The identified segments in predicted protein sequence of our clone contained the important domains that have been known to function at the attachment and internalization steps of the parasite life cycle. The cloned gene was expressed in human transformed muscle (Rhabdomyosarcoma TE671/RD) and African green monkey epithelial (COS-7) cell lines under cytomegalovirus (CMV) promoter, and the expressed protein was detected by enzyme linked immunosorbent assay.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Loss of Protease Activity of ADAM15 Abolishes Protective Effects on Plaque Progression in Atherosclerosis
    382 Letters to the Editor Loss of protease activity of ADAM15 abolishes protective effects on plaque progression in atherosclerosis Andreas Bültmann, Zhongmin Li, Silvia Wagner, Meinrad Gawaz, Martin Ungerer, Harald Langer, Andreas E. May ⁎⁎, Götz Münch ⁎ Corimmun, Fraunhofer Str. 17, D-82152 Martinsried, Germany Medizinische Klinik III, Eberhard-Karls Universität Tübingen, D-72076 Tübingen, Germany article info For the induction of atherosclerosis, rabbits were fed with Western Article history: type high cholesterol (0.25%) diet for 8 weeks and vascular gene Received 8 August 2011 transfer to the carotid artery was performed as previously described Accepted 13 August 2011 [7]. Available online 9 September 2011 Animals were sacrificed 4 weeks after the adenovirus delivery. Keywords: The left common carotid arteries, aorta and iliac arteries were Atherosclerosis macroscopically prepared for “en face” evaluation of plaque ADAM15 extension and stained with Sudan III. Serial 6-μm-thick cryosections Sheddase were cut and histological assessment of atherosclerosis after Metalloproteinase hematoxylin eosin (HE) and van Gieson (VG)-elastica staining and GFP expression were performed. Immunohistochemical analysis, with anti rabbit RAM 11 antibody (DAKO, Hamburg, Germany) was The A Disintegrin And Metallporteinases (ADAMs) contain a used for macrophages as previously described [12]. metalloprotease-like and a disintegrin-like domain. Currently 40 After vascular gene transfer into the carotid artery, GFP expression different types of ADAM proteins have been identified. ADAM15 is could be detected with AdGFP and also with Ad-ADAM15 and Ad- found in the myocardium [1,2], endothelial cells and in vascular ADAM15 prot neg, which both co-expressed GFP (Fig. 1). Relative atherosclerotic lesions [3].
    [Show full text]
  • Transcription Factor Eepr Is Required for Serratia Marcescens Host Proinflammatory Response by Corneal Epithelial Cells
    antibiotics Article Transcription Factor EepR Is Required for Serratia marcescens Host Proinflammatory Response by Corneal Epithelial Cells Kimberly M. Brothers , Stephen A. K. Harvey and Robert M. Q. Shanks * Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; [email protected] (K.M.B.); [email protected] (S.A.K.H.) * Correspondence: [email protected]; Tel.: +1-412-647-3537 Abstract: Relatively little is known about how the corneal epithelium responds to vision-threatening bacteria from the Enterobacterales order. This study investigates the impact of Serratia marcescens on corneal epithelial cell host responses. We also investigate the role of a bacterial transcription factor EepR, which is a positive regulator of S. marcescens secretion of cytotoxic proteases and a hemolytic surfactant. We treated transcriptomic and metabolomic analysis of human corneal limbal epithelial cells with wild-type bacterial secretomes. Our results show increased expression of proinflammatory and lipid signaling molecules, while this is greatly altered in eepR mutant-treated corneal cells. Together, these data support the model that the S. marcescens transcription factor EepR is a key regulator of host-pathogen interactions, and is necessary to induce proinflammatory chemokines, cytokines, and lipids. Keywords: bacterial infection; Serratia marcescens; transcription factor; keratitis; ocular surface; epithelium; cornea; metabolomics Citation: Brothers, K.M.; Harvey, S.A.K.; Shanks, R.M.Q. Transcription Factor EepR Is Required for Serratia marcescens Host Proinflammatory 1. Introduction Response by Corneal Epithelial Cells. The cornea, the transparent, anterior layer of the eye, is essential for vision and pro- Antibiotics 10 2021, , 770.
    [Show full text]
  • Characterisation of Inflammatory Responses in Two Models of Experimental Ischaemia
    CHARACTERISATION OF INFLAMMATORY RESPONSES IN TWO MODELS OF EXPERIMENTAL ISCHAEMIA Louise Marks, April 2001 A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Medicine, University of Glasgow. Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories, University of Glasgow, Bearsden Road, Glasgow, G61 1QH. UNIVERSITY GLASGOW ProQuest Number: 13833994 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833994 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 \lbl2 0)P1\ II Contents Title page page I Contents page n List of tables page VIII List of figures page IX Abbreviations page XIV Acknowledgements page XVI Authors declaration page XVH Summary page XVIII Chapter 1. Introduction page 1 1.1 Stroke Background page 1 1.1.1 Stroke facts and figures page 1 1.1.2 Ischaemia and stroke page 1 1.2 Classification of stroke page 2 1.2.1 Haemorrhagic stroke page 3 1.2.2 Ischaemic stroke page 3 1.3 Models of cerebral ischaemia page 4 1.3.1 Use of the rat as a model of cerebral
    [Show full text]
  • Crystallization and Structure Analysis
    Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013 1 ELECTRONIC SUPPLEMENTARY INFORMATION Table of Contents 1. Experimental procedures 1 Production and purification of sermetstatin 1 Production and purification of snapalysin 2 In vitro activation studies of prosnapalysin 3 Proteolytic and inhibition assays 4 Cleavage of sermetstatin mutants 4 Complex formation and purification 5 Crystallization and X-ray diffraction data collection 5 Structure solution and refinement 6 Miscellaneous 8 2. Acknowledgments 8 3. Supplemental References 9 4. Supplemental Tables 11 Supplemental Table S1 11 Supplemental Table S2 12 Supplemental Table S3 13 5. Supplemental Figures 14 Supplemental Figure S1 14 1. Experimental procedures Production and purification of sermetstatin – A synthetic gene coding for sermetstatin from Streptomyces caespitosus (UniProt database code Q9FDS0), also known as Streptomyces caespitosus neutral proteinase inhibitor 1, was purchased (GenScript) and cloned into a modified pET-32a vector between the BglII and HindIII restriction sites. This vector attaches an N-terminal thioredoxin-His6 fusion construct followed by a tobacco-etch-virus (TEV) protease recognition site. Sermetstatin was produced by heterologous overexpression in Escherichia coli Origami2 (DE3) cells (Novagen). These were grown at 37°C in Luria-Bertani (LB) medium containing 100µg/ml ampicillin and 10µg/ml tetracycline, induced at an OD550 of 0.6 with isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.25mM, and subsequently incubated overnight at 18°C. Cultures were centrifuged at 7,000xg for 30min at 4°C. Pellets were washed twice with buffer A (50mM Tris-HCl, 500mM NaCl, pH8.0) and resuspended in the same buffer further containing 20mM imidazole and supplemented with EDTA-free protease inhibitor cocktail tablets (Roche Diagnostics) and DNase I (Roche Diagnostics).
    [Show full text]
  • Functional and Structural Insights Into Astacin Metallopeptidases
    Biol. Chem., Vol. 393, pp. 1027–1041, October 2012 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/hsz-2012-0149 Review Functional and structural insights into astacin metallopeptidases F. Xavier Gomis-R ü th 1, *, Sergio Trillo-Muyo 1 Keywords: bone morphogenetic protein; catalytic domain; and Walter St ö cker 2, * meprin; metzincin; tolloid; zinc metallopeptidase. 1 Proteolysis Lab , Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028 Barcelona , Spain Introduction: a short historical background 2 Institute of Zoology , Cell and Matrix Biology, Johannes Gutenberg University, Johannes-von-M ü ller-Weg 6, The fi rst report on the digestive protease astacin from the D-55128 Mainz , Germany European freshwater crayfi sh, Astacus astacus L. – then termed ‘ crayfi sh small-molecule protease ’ or ‘ Astacus pro- * Corresponding authors tease ’ – dates back to the late 1960s (Sonneborn et al. , 1969 ). e-mail: [email protected]; [email protected] Protein sequencing by Zwilling and co-workers in the 1980s did not reveal homology to any other protein (Titani et al. , Abstract 1987 ). Shortly after, the enzyme was identifi ed as a zinc met- allopeptidase (St ö cker et al., 1988 ), and other family mem- The astacins are a family of multi-domain metallopepti- bers emerged. The fi rst of these was bone morphogenetic β dases with manifold functions in metabolism. They are protein 1 (BMP1), a protease co-purifi ed with TGF -like either secreted or membrane-anchored and are regulated growth factors termed bone morphogenetic proteins due by being synthesized as inactive zymogens and also by co- to their capacity to induce ectopic bone formation in mice localizing protein inhibitors.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Structural, Functional and Therapeutic Aspects of Snake Venom Metal- Loproteinases
    Send Orders for Reprints to [email protected] 28 Mini-Reviews in Organic Chemistry, 2014, 11, 28-44 Structural, Functional and Therapeutic Aspects of Snake Venom Metal- loproteinases P. Chellapandi* Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India Abstract: Snake venoms are rich sources of metalloproteinases that are of biological interest due to their diverse molecu- lar diversity and selective therapeutic applications. Snake venoms metalloproteinases (SVMPs) belong to the MEROPS peptidase family M12B or reprolysin subfamily, which are consisted of four major domains include a reprolysin catalytic domain, a disintegrin domain, a reprolysin family propeptide domain and a cysteine-rich domain. The appropriate struc- tural and massive sequences information have been available for SVMPs family of enzymes in the Protein Data Bank and National Center for Biotechnology Information, respectively. Functional essentiality of every domain and a crucial contri- bution of binding geometry, primary specificity site, and structural motifs have been studied in details, pointing the way for designing potential anti-coagulation, antitumor, anti-complementary and anti-inflammatory drugs or peptides. These enzymes have been reported to degrade fibrinogen, fibrin and collagens, and to prevent progression of clot formation. An- giotensin-converting enzyme activity, antibacterial properties, haemorrhagic activity and platelet aggregation response of SVMPs have been studied earlier. Structural information of these enzymes together with recombinant DNA technology would strongly promote the construction of many recombinant therapeutic peptides, particularly fibrinogenases and vac- cines. We have comprehensively reviewed the structure-function-evolution relationships of SVMPs family proteins and their advances in the promising target models for structure-based inhibitors and peptides design.
    [Show full text]