Characterisation of Inflammatory Responses in Two Models of Experimental Ischaemia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterizing the Roles of ADAM10 and 15 Disintegrins in Prostate Biology and Disease
Characterizing the roles of ADAM10 and 15 disintegrins in prostate biology and disease by Magdalena M. Grabowska A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2011 Doctoral Committee: Professor Mark L. Day, Chair Professor James T. Elder Professor Robert S. Fuller Professor Jill A. Macoska Professor Benjamin L. Margolis Dedication To my parents for their unending support ii Acknowledgements I would like to extend a tremendous thank you to my family and friends without whose support this doctoral process would not have been possible. I would also like to thank Derek for being a constant source of support in all aspects of my life. I would like to thank Mark for taking me on as a graduate student and my committee for their commitment to my training. Thank you to the faculty members and administrators of the Cellular and Molecular Biology and the Cancer Biology Programs for your willingness to help with training, letters, funding, and graduate student business as a whole. Finally, I would like to thank collaborators who have provided reagents, resources, expertise, and lab equipment without which my research would not have been possible. Thank you. iii Table of Contents Dedication ............................................................................................................ ii Acknowledgements .............................................................................................. iii List of Figures -
(12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders. -
Cei'itre for Newfoundi.Ano Studies
CEI'ITRE FOR NEWFOUNDI.ANO STUDIES TOTAL OF 10 PACES ONLY MAY BE XEROXED (W1thout Author·• Pt-rminton) PURIFICATION AND CHARACTERIZATION OF MAJOR GELATIN CLEAVAGE ACTIVITIES IN THE APICALLY LOCATED EXTRACELLULAR MATRIX OF THE SEA URCHIN EMBRYO by Lavanya Ranganathan A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biochemistry Memorial University of Newfoundland and Labrador May, 2004 St.John's Newfoundland and Labrador Canada Library and Bibliotheque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de !'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre reference ISBN: 0-612-99107-5 Our file Notre reference ISBN: 0-612-99107-5 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a Ia Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I' Internet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve Ia propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Gent Forms of Metalloproteinases in Hydra
Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin. -
Crystallization and Structure Analysis
Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013 1 ELECTRONIC SUPPLEMENTARY INFORMATION Table of Contents 1. Experimental procedures 1 Production and purification of sermetstatin 1 Production and purification of snapalysin 2 In vitro activation studies of prosnapalysin 3 Proteolytic and inhibition assays 4 Cleavage of sermetstatin mutants 4 Complex formation and purification 5 Crystallization and X-ray diffraction data collection 5 Structure solution and refinement 6 Miscellaneous 8 2. Acknowledgments 8 3. Supplemental References 9 4. Supplemental Tables 11 Supplemental Table S1 11 Supplemental Table S2 12 Supplemental Table S3 13 5. Supplemental Figures 14 Supplemental Figure S1 14 1. Experimental procedures Production and purification of sermetstatin – A synthetic gene coding for sermetstatin from Streptomyces caespitosus (UniProt database code Q9FDS0), also known as Streptomyces caespitosus neutral proteinase inhibitor 1, was purchased (GenScript) and cloned into a modified pET-32a vector between the BglII and HindIII restriction sites. This vector attaches an N-terminal thioredoxin-His6 fusion construct followed by a tobacco-etch-virus (TEV) protease recognition site. Sermetstatin was produced by heterologous overexpression in Escherichia coli Origami2 (DE3) cells (Novagen). These were grown at 37°C in Luria-Bertani (LB) medium containing 100µg/ml ampicillin and 10µg/ml tetracycline, induced at an OD550 of 0.6 with isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.25mM, and subsequently incubated overnight at 18°C. Cultures were centrifuged at 7,000xg for 30min at 4°C. Pellets were washed twice with buffer A (50mM Tris-HCl, 500mM NaCl, pH8.0) and resuspended in the same buffer further containing 20mM imidazole and supplemented with EDTA-free protease inhibitor cocktail tablets (Roche Diagnostics) and DNase I (Roche Diagnostics). -
Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48 -
The Bioinorganic Chemistry of Copper-Containing Systems: from Type-3 Systems Pertinent to Alzheimer's Disease to Mononuclear H
The Bioinorganic Chemistry Of Copper-Containing Systems: From Type-3 Systems Pertinent To Alzheimer’s Disease To Mononuclear Hydrolysis Involved In Biological Development by Giordano Faustini Zimmerer Da Silva A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Co-Major Professor: Li-June Ming, Ph.D. Co-Major Professor: Brian T. Livingston, Ph.D. Steven H. Grossman, Ph.D. Randy L. Larsen, Ph.D. Date of Approval: May 9, 2007 Keywords: kinetics, reactive oxygen species, metallopeptide, amyloid, enzymology, sea urchin, metalloprotease © Copyright 2007 , Giordano F.Z. Da Silva NOTE TO THE READER Note to Reader: The original of this document contains color that is necessary for understanding the data. The original dissertation is on file at the USF library in Tampa, FL. DEDICATION Although the graduate school experience is highly a personal journey, it would be foolish to believe that I was solely responsible for my accomplishments. I then would like to dedicate this work to all of those who have played a major role in this difficult yet rewarding part of my life. First my grandmother Ermelinda who is the sole reason why I am in the US, my parents Mauricio and Marta for sacrificing the presence of their son, and my sister Marcella for being sibling, friend and parent through part of my formative years. Second I must dedicate this work to the Kelley family for being my parents, brother, and sisters; Moms, Pops, John, Tere, and Abbie, I would not be here today without your love and support. -
A Novel Mechanism of Latency in Matrix Metalloproteinases **
López-Pelegrín et al. 1 A novel mechanism of latency in matrix metalloproteinases ** Mar López-Pelegrín 1, Miroslaw Ksiazek 2, Abdulkarim Y. Karim 2,4, Tibisay Guevara1, Joan L. Arolas 1,*, Jan Potempa 2,3* & F. Xavier Gomis-Rüth 1,* Running title: Structure of Tannerella forsythia prokarilysin 1 Proteolysis Lab; Department of Structural Biology; Molecular Biology Institute of Barcelona, CSIC; Barcelona Science Park; c/ Baldiri Reixac, 15-21; 08028 Barcelona, Catalonia (Spain). 2 Department of Microbiology, Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Ul. Gronostajowa 7; 30-387 Kraków (Poland). 3 Oral Immunology and Infectious Disease; University of Louisville School of Dentistry; Louisville, KY 40202 (USA). 4 Present address: Department of Biology; College of Science; University of Salahaddin; Erbil, Kurdistan (Irak). * Correspondence: e-mail: [email protected]; phone: (+34) 934 020 186; fax : (+34) 934 034 979 ; e-mail: [email protected]; phone: (+34) 934 020 187; fax : (+34) 934 034 979 ; or e-mail : [email protected]; phone (+1) 502 852 5572 ; Fax (+1) 502 852 5572. Keywords: matrixin; MMP; pro-domain; zymogen; X-ray crystal structure; microbial infection ____________________________________________________________________________________________________ BACKGROUND: Animal and plant MMPs are kept cysteines. Here we determined the structure of a pro- zymogenic through large pro-domains and a cysteine- karilysin fragment encompassing the pro-peptide and switch mechanism. the catalytic domain, and found that the former runs across the cleft in the opposite direction to a bound RESULTS: Bacterial MMP karilysin has only a short N- substrate and inhibits the latter through an “aspartate- terminal peptide upstream of the catalytic domain, which switch” mechanism. -
(12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan Et Al
US 2004.008 1648A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan et al. (43) Pub. Date: Apr. 29, 2004 (54) ADZYMES AND USES THEREOF Publication Classification (76) Inventors: Noubar B. Afeyan, Lexington, MA (51) Int. Cl." ............................. A61K 38/48; C12N 9/64 (US); Frank D. Lee, Chestnut Hill, MA (52) U.S. Cl. ......................................... 424/94.63; 435/226 (US); Gordon G. Wong, Brookline, MA (US); Ruchira Das Gupta, Auburndale, MA (US); Brian Baynes, (57) ABSTRACT Somerville, MA (US) Disclosed is a family of novel protein constructs, useful as Correspondence Address: drugs and for other purposes, termed “adzymes, comprising ROPES & GRAY LLP an address moiety and a catalytic domain. In Some types of disclosed adzymes, the address binds with a binding site on ONE INTERNATIONAL PLACE or in functional proximity to a targeted biomolecule, e.g., an BOSTON, MA 02110-2624 (US) extracellular targeted biomolecule, and is disposed adjacent (21) Appl. No.: 10/650,592 the catalytic domain So that its affinity Serves to confer a new Specificity to the catalytic domain by increasing the effective (22) Filed: Aug. 27, 2003 local concentration of the target in the vicinity of the catalytic domain. The present invention also provides phar Related U.S. Application Data maceutical compositions comprising these adzymes, meth ods of making adzymes, DNA's encoding adzymes or parts (60) Provisional application No. 60/406,517, filed on Aug. thereof, and methods of using adzymes, Such as for treating 27, 2002. Provisional application No. 60/423,754, human Subjects Suffering from a disease, Such as a disease filed on Nov. -
12) United States Patent (10
US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S. -
Architecture and Function of Metallopeptidase Catalytic Domains
Cerdà-Costa et al. 1 !"#$%&'#&("')*+,)-(+#&%.+).-)/'&*00.1'1&%,*2')#*&*03&%#) ,./*%+2) ) 45"%*)6'",786.2&*)9):;)<*=%'")>./%28?@&$)A)) ) ) B".&'.032%2)C*DE)F'1*"&/'+&).-)G&"(#&("*0)H%.0.I3E)J.0'#(0*")H%.0.I3)K+2&%&(&').-) H*"#'0.+*L)6GK6E)H*"#'0.+*)G#%'+#')B*"ME)N'0%O)H(%0,%+IE)#P)H*0,%"%)?'%O*#L)QR8SQE)T8 UVUSV)H*"#'0.+*)WG1*%+X;) ) A)6.""'21.+,'+#'Y)'8/*%0Y)-OI"Z%D/D;#2%#;'2L)1$.+'Y)W[\]X)^\])USU)QV_L)-*OY)W[\]X)^\]) U\])^`^;) ) a$')*(&$."2)2&*&')&$'3)$*=')+.)#./1'&%+I)-%+*+#%*0)%+&'"'2&;) ) b'3c.",2Y)G&"(#&("*0)D%.#$'/%2&"3L)/'&d%+#%+)#0*+L)#*&*03&%#),./*%+2L)*#&%='82%&')#0'-&L) $3,".03&%#)'+d3/'2L)/*&"%O)/'&*00.1".&'*2'2L)*2&*#%+2L)!F!JL)*,*/*032%+2L)2'""*032%+2L) /'&*00.1".&'*2'L)/'&*00.1".&'%+*2';) ! Cerdà-Costa et al. 2 "#$%&"'%! a$')#0'*=*I').-)1'1&%,')D.+,2)D3)/'&*00.1'1&%,*2'2)WJB2X)%2)'22'+&%*0)-.")0%-';)a$'2')(D%e(%&.(2)'+d3/'2) 1*"&%#%1*&')%+)*00)/*f.")1$32%.0.I%#*0)1".#'22'2L)*+,)2.)&$'%"),'"'I(0*&%.+)0'*,2)&.),%2'*2'2)"*+I%+I)-"./)#*+#'") *+,)/'&*2&*2%2L)%+-0*//*&%.+L)*+,)/%#".D%*0)%+-'#&%.+)&.)+'(".0.I%#*0)%+2(0&2)*+,)#*",%.=*2#(0*"),%2.",'"2;)JB2) #0'*=')&$'%")2(D2&"*&'2)c%&$.(&)#.=*0'+&)%+&'"/',%*&')%+)*)2%+I0'82&'1)"'*#&%.+)%+=.0=%+I)*)2.0='+&)/.0'#(0'L)*) I'+'"*0) D*2'P*#%,L) *+,) *) /.+.8) .") ,%+(#0'*") #*&*03&%#) /'&*0) 2%&';) J.2&) /.+./'&*00%#) JB2) #./1"%2') *) 2$."&) /'&*08D%+,%+I)/.&%-)WNT<<NXL)c$%#$)%+#0(,'2)&c.)/'&*08D%+,%+I)$%2&%,%+'2)*+,)*)I'+'"*0)D*2'P*#%,)I0(&*/*&'L) *+,)&$'3)*"')I".(1',)%+&.)&$')d%+#%+)&"%D').-)JB2;)a$')0*&&'"),%=%,'2)/*%+03)%+&.)&$')I0(d%+#%+)*+,)/'&d%+#%+) #0*+2;) J'&d%+#%+2) #.+2%2&)