Structural, Functional and Therapeutic Aspects of Snake Venom Metal- Loproteinases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders. -
Metalloproteases): a Review
Accepted Manuscript Therapeutic applications of collagenase (metalloproteases): A review Hamzeh Alipour, Abbasali Raz, Sedigheh Zakeri, Navid Dinparast Djadid PII: S2221-1691(16)30793-6 DOI: 10.1016/j.apjtb.2016.07.017 Reference: APJTB 369 To appear in: Asian Pacific Journal of Tropical Biomedicine Received Date: 14 February 2016 Revised Date: 27 February 2016 Accepted Date: 27 July 2016 Please cite this article as: Alipour H, Raz A, Zakeri S, Djadid ND, Therapeutic applications of collagenase (metalloproteases): A review, Asian Pacific Journal of Tropical Biomedicine (2016), doi: 10.1016/j.apjtb.2016.07.017. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Title: Therapeutic applications of collagenase (metalloproteases): A review Authors: Hamzeh Alipour 1,2,# , Abbasali Raz 1,# , Sedigheh Zakeri 1, Navid Dinparast Djadid 1* Affiliations: 1Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran 2Department of Medical Entomology, School of Health, Research Center for Health Sciences, Shiraz University of Medical Sciences, Shiraz, Iran Keywords: Enzyme Therapeutic application Collagenase MANUSCRIPT Non-invasive Metalloproteinase *Corresponding author: Navid Dinparast Djadid, Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. Tel: +91 23573763 E-mail: [email protected] Foundation Project: Supported by Pasteur Institute of Iran and Iran National Science Foundation (Grant No. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Structural Basis of Mammalian Mucin Processing by the Human Gut O
ARTICLE https://doi.org/10.1038/s41467-020-18696-y OPEN Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila ✉ ✉ Beatriz Trastoy 1,4, Andreas Naegeli2,4, Itxaso Anso 1,4, Jonathan Sjögren 2 & Marcelo E. Guerin 1,3 Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness 1234567890():,; and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila,anO-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also con- tribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins. 1 Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. 2 Genovis AB, Box 790, 22007 Lund, Sweden. 3 IKERBASQUE, Basque Foundation for Science, 48013 ✉ Bilbao, Spain. 4These authors contributed equally: Beatriz Trastoy, Andreas Naegeli, Itxaso Anso. -
Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia Coli and Inhibition of the Platelet–Collagen Interaction
Archives of Biochemistry and Biophysics Vol. 369, No. 2, September 15, pp. 295–301, 1999 Article ID abbi.1999.1372, available online at http://www.idealibrary.com on Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia coli and Inhibition of the Platelet–Collagen Interaction Ana M. Moura-da-Silva,*,†,‡,1 Alex Lı´nica,* Maisa S. Della-Casa,* Aura S. Kamiguti,§ Paulo L. Ho,¶ Julian M. Crampton,† and R. David G. Theakston‡ *Laborato´rio de Imunopatologia and ¶Laborato´rio de Biotecnologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sa˜o Paulo, Brazil; §Department of Haematology, University of Liverpool, Prescot Street, Liverpool, L69 3BX, United Kingdom; and †Molecular Genetics Unit and ‡Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, United Kingdom Received May 17, 1999, and in revised form July 6, 1999 demonstrating that these antibodies recognize the Jararhagin, a hemorrhagin from Bothrops jararaca parent jararhagin molecule. Treatment of the fusion venom, is a soluble snake venom component compris- protein with enterokinase, followed by further cap- ing metalloproteinase and disintegrin cysteine-rich ture of the enzyme, resulted in a band of 30 kDa, the domains and, therefore, is structurally closely related expected size for jararhagin-C. Further purification of to the membrane-bound A Disintegrin And Metallo- the cleaved disintegrin using FPLC Mono-Q columns proteinase (ADAMs) protein family. Its hemorrhagic resulted in one fraction capable of efficiently inhibit- activity is associated with the effects of both metallo- ing collagen-induced platelet aggregation in a dose- proteinase and disintegrin domains; the metallopro- dependent manner (IC50 of 8.5 mg/ml). -
Characterization of a Novel Metalloproteinase in Duvernoy's Gland of Rhabdophis Tigrinus Tigrinus
The Journal of Toxicological Sciences, 157 Vol.31, No.2, 157-168, 2006 CHARACTERIZATION OF A NOVEL METALLOPROTEINASE IN DUVERNOY’S GLAND OF RHABDOPHIS TIGRINUS TIGRINUS Koji KOMORI1, Motomi KONISHI1, Yuji MARUTA1, Michihisa TORIBA2, Atsushi SAKAI2, Akira MATSUDA3, Takamitsu HORI3, Mitsuko NAKATANI4, Naoto MINAMINO4 and Toshifumi AKIZAWA1 1Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan 2The Japan Snake Institute, 3318 Yabuzuka Ota, Gunma 379-2301, Japan 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan 4Department of Pharmacology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan (Received January 31, 2006; Accepted February 20, 2006) ABSTRACT — During the characterization of hemorrhagic factor in venom of Rhabdophis tigrinus tigri- nus, so-called Yamakagashi in Japan, one of the Colubridae family, a novel metalloproteinase with molec- ular weight of 38 kDa in the Duvernoy’s gland of Yamakagashi was identified by gelatin zymography and by monitoring its proteolytic activity using a fluorescence peptide substrate, MOCAc-PLGLA2pr(Dnp)AR-NH2, which was developed for measuring the well-known matrix metalloproteinase (MMP) activity. After purification by gel filtration HPLC and/or column switch HPLC system consisting of an affin- ity column, which was immobilized with a synthetic BS-10 peptide (MQKPRCGVPD) originating from propeptide domain of MMP-7 and a reversed-phase column, the N-terminal amino acid sequence of the 38 kDa metalloproteinase was identified as FNTFPGDLK which shared a high homology to Xenopus MMP-9. The 38 kDa metalloproteinase required Zn2+ and Ca2+ ions for its proteolytic activity. -
Final Program N
XXII Congress The International Society on Thrombosis and Haemostasis B July 11-16 2009 O 55th Annual Meeting S of the Scientific and Standardization Committee of the ISTH T O Final Program N Boston - July 11-16 2009 XXII Congress of the International Society on Thrombosis and Haemostasis 2009 Table ISTH of Contents Venue and Contacts 2 Wednesday 209 Welcome Messages 3 – Plenary Lectures 210 Committees 7 – State of the Art Lectures 210 Congress Awards and Grants 15 – Abstract Symposia Lectures 212 Other Meetings 19 – Oral Communications 219 – Posters 239 ISTH Information 20 Program Overview 21 Thursday 305 SSC Meetings and – Plenary Lectures 306 Educational Sessions 43 – State of the Art Lectures 306 – Abstract Symposia Lectures 309 Scientific Program 89 – Oral Communications 316 Monday 90 – Posters 331 – Plenary Lectures 90 Nursing Program 383 – State of the Art Lectures 90 Special Symposia 389 – Abstract Symposia Lectures 92 Satellite Symposia 401 – Oral Communications 100 – Posters 118 Technical Symposia Sessions 411 Exhibition and Sponsors 415 Tuesday 185 – Plenary Lectures 186 Exhibitor and Sponsor Profiles 423 – State of the Art Lectures 186 Congress Information 445 – Abstract Symposia Lectures 188 Map of BCEC 446 – Oral Communications 196 Hotel and Transportation Information 447 ISTH 2009 Congress Information 452 Boston Information 458 Social Events 463 Excursions 465 Authors’ Index 477 1 Venue & Contacts Venue Boston Convention & Exhibition Center 415 Summer Street - Boston, Massachusetts 02210 - USA Phone: +1 617 954 2800 - Fax: +1 617 954 3326 The BCEC is only about 10 minutes by taxi from Boston Logan International Airport. The 2009 Exhibition is located in Hall A and B of the Exhibit Level of the BCEC, along with posters and catering. -
(12) Patent Application Publication (10) Pub. No.: US 2008/0305517 A1 Griffin Et Al
US 2008O305517A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0305517 A1 Griffin et al. (43) Pub. Date: Dec. 11, 2008 (54) TRANSGLUTAMINASE CROSSLINKED (30) Foreign Application Priority Data COLLAGEN BOMATERAL FOR MEDICAL MPLANT MATERALS Sep. 10, 2004 (GB) ................................... O42O091.1 (75) Inventors: Martin Griffin, Nottingham (GB); Publication Classification Russell Collighan, Birmingham (51) Int. Cl. (GB); David Chau, Birmingham CI2N 5/06 (2006.01) (GB); Elisabetta Verderio CI2P 2L/02 (2006.01) Edwards, Nottingham (GB) A6IF 2/28 (2006.01) A6F I3/00 (2006.01) Correspondence Address: FSH & RICHARDSON PC (52) U.S. Cl. ..................... 435/68.1; 435/395; 623/16.11; 602/48 P.O. BOX 1022 MINNEAPOLIS, MN 55440-1022 (US) (57) ABSTRACT (73) Assignee: ASTON UNIVERSITY, The present invention provides a method for producing an Birmingham, West Midlands (GB) improved biomaterial comprising treating a collagen bioma terial with a transglutaminase under conditions which permit (21) Appl. No.: 111574,918 the formation of cross-links within the collagen. Preferably, the transglutaminase is a tissue transglutaminase, a plasma (22) PCT Filed: Sep. 12, 2005 transglutaminase or a microbial transglutaminase. In a pre ferred embodiment, the collagen biomaterial further com (86). PCT No.: PCT/GBOS/O352O prises a cell adhesion factor, Such as fibronectin. The inven tion further provides biomaterials obtainable by the methods S371 (c)(1), of the invention, and medical implants and wound dressings (2), (4) Date: Aug. 11, 2008 comprising the same. -- Collagen (3 mg/ml) -O- Coll-mTG (50ug/ml) -v- Co-mTG (250ug/ml) -v- Coll-mTG-R281 -- Coll-R281 O 5 10 15 20 25 Time (min) Patent Application Publication Dec. -
Structural Interaction of Natural and Synthetic Inhibitors with the Venom Metalloproteinase, Atrolysin C
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 8447-8451, August 1994 Biochemistry Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d) (coilagenase/inhibltor complex/crystafography/metastasis) DACHUAN ZHANG*, ISTVAN BOTOS*, FRANZ-XAVER GOMIS-ROTHtt, RONALD DOLL§, CHRISTINE BLOOD§, F. GEORGE NJOROGE§, JAY W. Fox¶, WOLFRAM BODEt, AND EDGAR F. MEYER* 11 *Biographics Laboratory, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; tMax Planck Institute of Biochemistry, D-82152 Martinsried, Germany; §Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033; IBiomolecular Research Facility, University of Virginia Health Sciences Center, Charlottesville, VA 22908 Communicated by Derek H. R. Barton, May 20, 1994 ABSTRACT The structure of the metalloproteinase and 80% sequence similarity to Ht-d) has been described (12), as hemorrhagic toxin atrolysin C form d (EC 3.4.24.42), from the was the native digestive MP, astacin (13). A high degree of venom ofthe western diamondback rattlesnake Crotalus atrox, tertiary structure conservation among the astacin, reprol- has been determined to atomic resolution by x-ray crystallo- ysin, serralysins, and the MMP subfamilies is observed (9, 14) graphic methods. This study illuminates the nature ofinhibitor at the active site, suggesting that the structural principles that binding with natural (<Glu-Asn-Trp, where <Glu is pyroglu- govern the interaction of substrates and inhibitors with tamic acid) and synthetic (SCH 47890) ligands. The primary members of these subfamilies are likely to be similar if not specificity pocket is exceptionally deep; the nature of inhibitor identical. Substrates and synthetic inhibitors of the MMPs and productive substrate binding is discussed. -
Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif
toxins Article Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif Erika Camacho 1, Libia Sanz 2, Teresa Escalante 1, Alicia Pérez 2, Fabián Villalta 1, Bruno Lomonte 1, Ana Gisele C. Neves-Ferreira 3, Andrés Feoli 1, Juan J. Calvete 2,4, José María Gutiérrez 1 and Alexandra Rucavado 1,* 1 Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; [email protected] (E.C.); [email protected] (T.E.); [email protected] (F.V.); [email protected] (B.L.); [email protected] (A.F.); [email protected] (J.M.G.) 2 Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia 46010, Spain; [email protected] (L.S.); [email protected] (A.P.); [email protected] (J.J.C.) 3 Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; [email protected] 4 Departamento de Biotecnología, Universidad Politécnica de Valencia, Valencia 46022, Spain * Correspondence: [email protected]; Tel.: +506-25117876 Academic Editor: Nicholas R. Casewell Received: 12 September 2016; Accepted: 30 September 2016; Published: 12 October 2016 Abstract: Snake venom metalloproteinases (SVMPs) play key biological roles in prey immobilization and digestion. The majority of these activities depend on the hydrolysis of relevant protein substrates in the tissues. Hereby, we describe several isoforms and a cDNA clone sequence, corresponding to PII SVMP homologues from the venom of the Central American pit viper Bothriechis lateralis, which have modifications in the residues of the canonical sequence of the zinc-binding motif HEXXHXXGXXH. -
Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy
Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 203639, 19 pages http://dx.doi.org/10.1155/2014/203639 Review Article Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy Leonardo A. Calderon,1 Juliana C. Sobrinho,1 Kayena D. Zaqueo,1 Andrea A. de Moura,1 Amy N. Grabner,1 Maurício V. Mazzi,2 Silvana Marcussi,3 Auro Nomizo,4 CarlaF.C.Fernandes,1 Juliana P. Zuliani,1 Bruna M. A. Carvalho,5 Saulo L. da Silva,5 Rodrigo G. Stábeli,1 and Andreimar M. Soares1 1 Centro de Estudos de Biomoleculas´ Aplicadas aSa` ude,´ CEBio, Fundac¸ao˜ Oswaldo Cruz, Fiocruz Rondoniaˆ e Departamento de Medicina, Universidade Federal de Rondonia,ˆ UNIR, Porto Velho, RO, Brazil 2 Fundac¸ao˜ Herm´ınio Ometto, UNIARARAS, Nucleo´ de Cienciasˆ da Saude-NUCISA,´ 13607-339 Araras, SP, Brazil 3 Departamento de Qu´ımica, Universidade Federal de Lavras, UFLA, 37200-000 Lavras, MG, Brazil 4 Departamento de Analises´ Cl´ınicas, Toxicologicas´ e Bromatologicas,´ Faculdade de Cienciasˆ Farmaceuticasˆ de Ribeirao˜ Preto, Universidade de Sao˜ Paulo, USP, Ribeirao˜ Preto, SP, Brazil 5 Departamento de Qu´ımica, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de Sao˜ Joao˜ del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil Correspondence should be addressed to Andreimar M. Soares; [email protected] Received 20 September 2013; Revised 7 December 2013; Accepted 8 December 2013; Published 13 February 2014 Academic Editor: Fernando Albericio Copyright © 2014 Leonardo A. Calderon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Collagenase Clostridium Histolyticum in the Treatment of Peyronie's Disease
pISSN: 2287-4208 / eISSN: 2287-4690 World J Mens Health Published online September 6, 2017 https://doi.org/10.5534/wjmh.17033 Review Article Collagenase Clostridium Histolyticum in the Treatment of Peyronie’s Disease: Review of a Minimally Invasive Treatment Option Andrew T Gabrielson, Laith M Alzweri, Wayne JG Hellstrom Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA Peyronie’s disease (PD) is an inflammatory disorder characterized by an abnormal collagen deposition in the tunica albuginea of the penis, leading to fibrous and non-compliant plaques that can impede normal erection. Although pharmacological treatments are available, only intralesional injection therapy and surgical reconstruction have demonstrated tangible clinical efficacy in the management of this condition. Intralesional injection of collagenase clostridium histolyticum (CCH) has come to the forefront of minimally invasive treatment of PD. In this review, the authors provide an update on the safety, efficacy, and indications for CCH. The efficacy of CCH will be assessed on the basis of improvement in the severity of penile fibrosis, curvature, and pain. Numerous well-designed clinical trials and post-approval studies involving more than 1,500 patients have consistently demonstrated the efficacy and tolerability of CCH in the treatment of PD. CCH significantly decreases penile curvature and plaque consistency, as well as improves quality of life. Post-approval studies continue to demonstrate the efficacy of CCH despite broader inclusion criteria for treatment, such as the case with acute phase disease and atypical plaque deformities (i.e., ventral plaques, hourglass narrowing). CCH continues to be the gold standard for non-surgical management of stable phase PD, in the absence of strong evidence supporting oral therapy agents and ongoing evaluation of extracorporeal shockwave therapy.