Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia Coli and Inhibition of the Platelet–Collagen Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia Coli and Inhibition of the Platelet–Collagen Interaction Archives of Biochemistry and Biophysics Vol. 369, No. 2, September 15, pp. 295–301, 1999 Article ID abbi.1999.1372, available online at http://www.idealibrary.com on Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia coli and Inhibition of the Platelet–Collagen Interaction Ana M. Moura-da-Silva,*,†,‡,1 Alex Lı´nica,* Maisa S. Della-Casa,* Aura S. Kamiguti,§ Paulo L. Ho,¶ Julian M. Crampton,† and R. David G. Theakston‡ *Laborato´rio de Imunopatologia and ¶Laborato´rio de Biotecnologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sa˜o Paulo, Brazil; §Department of Haematology, University of Liverpool, Prescot Street, Liverpool, L69 3BX, United Kingdom; and †Molecular Genetics Unit and ‡Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, United Kingdom Received May 17, 1999, and in revised form July 6, 1999 demonstrating that these antibodies recognize the Jararhagin, a hemorrhagin from Bothrops jararaca parent jararhagin molecule. Treatment of the fusion venom, is a soluble snake venom component compris- protein with enterokinase, followed by further cap- ing metalloproteinase and disintegrin cysteine-rich ture of the enzyme, resulted in a band of 30 kDa, the domains and, therefore, is structurally closely related expected size for jararhagin-C. Further purification of to the membrane-bound A Disintegrin And Metallo- the cleaved disintegrin using FPLC Mono-Q columns proteinase (ADAMs) protein family. Its hemorrhagic resulted in one fraction capable of efficiently inhibit- activity is associated with the effects of both metallo- ing collagen-induced platelet aggregation in a dose- proteinase and disintegrin domains; the metallopro- dependent manner (IC50 of 8.5 mg/ml). © 1999 Academic Press teinase enzymatically damages the endothelium and Key Words: disintegrin; metalloproteinase; expres- the disintegrin domain inhibits platelet–collagen in- sion in E. coli; venom; platelet. teractions. The expression of whole jararhagin or its disintegrin domain has never been attempted before. The aim of this study was to investigate whether we could express the disintegrin domain of jararhagin The action of snake venom toxins implies binding to and to verify whether this domain displays an inhibi- a variety of critical physiological targets interfering tory effect on the platelet–collagen interaction. There- with important processes such as neuromuscular fore, the cDNA fragment coding for the disintegrin transmission or hemostasis. One particularly impor- plus cysteine-rich domains of jararhagin was cloned tant group of snake venom toxins is the hemorrhagins. into the pET32a vector, used to transform the Esche- These are found mainly in viper venoms and are re- richia coli AD494(DE3)pLysS strain. The thioredoxin– sponsible for the often massive hemorrhage due to the disintegrin fusion protein was recovered from the sol- uble extract of the cells, yielding up to 50 mg/liter disruption of blood vessels as well as for inhibition of culture. The fusion protein was isolated using polyhis- platelet aggregation (1). Hemorrhagins are soluble tidine binding resin which resulted in a main band of zinc-dependent metalloproteinases possessing an addi- 45 kDa recognized by anti-native jararhagin antibod- tional disintegrin-like domain extended by a cysteine- ies. Antibodies raised in rabbits against the fusion rich carboxy terminus, characteristic of the P-III snake protein had high enzyme-linked immunosorbent assay venom metalloproteinases (2). The molecular mecha- titers against native jararhagin and detected a band of nisms related to the activity of the metalloproteinase 52 kDa on Western blots of whole B. jararaca venom domain are well understood and resemble those of the matrixins (3). However, little is known about the action of the disintegrin domain of the metalloproteinases. 1 To whom correspondence should be addressed at Laborato´rio de Imunopatologia, Instituto Butantan, Av. Vital Brasil, 1500-Butan- The most frequently studied disintegrins are the P-II tan, 05503-900, Sao Paulo, SP, Brazil. Fax: 55-11-815.1505. E-mail: snake venom metalloproteinases known as RGD-disin- [email protected]. tegrins (4). These are coded as precursor molecules 0003-9861/99 $30.00 295 Copyright © 1999 by Academic Press All rights of reproduction in any form reserved. 296 MOURA-DA-SILVA ET AL. with a similar domain orientation to the P-III metallo- merase, and T4 ligase were supplied by Boehringer-Mannheim. proteinases. However, the mature proteins are short pET32 vector, E. coli strains, enterokinase and an enterokinase peptide chains comprising only the disintegrin domain. capture kit, and poly-histidine-binding resin were purchased from a b Novagen (Cambridge, UK). Oligonucleotides were synthesized by They bind to the platelet IIb 3 integrin with nanomo- Genosys (Cambridge, UK). lar affinity, blocking fibrinogen binding and thus inhib- pET32-JD9. The cDNA sequence coding for the disintegrin plus iting platelet aggregation by this route (4). Other func- cysteine-rich domains of jararhagin was amplified by PCR using the tional activities include interference with cell metasta- complete original clone (BJD4) of jararhagin cDNA as template (9; sis in experimental models (5). These activities are EMBL X68251). A SacI site and codons for the amino acid sequence 9 9 directly related to the presence of an RGD motif, which LGTDIISP flanked the amplification product at the 5 end. The 3 end consisted of the anticodons for VATAY amino acids followed by is present on the surface of the molecule in a disulfide a stop codon and a NotI site. These amino acid sequences comprise bond-stabilized loop (6). The P-II and P-III disintegrins respectively the N-terminal residues of the disintegrin domain and share a high amount of sequence similarity. However, the C-terminal residues of the cysteine-rich domain. The PCR prod- the latter possess a carboxy-terminal extension rich in ucts were digested by SacI and NotI and ligated to the same sites of cysteines and they have distinct RSECD motifs, which the linearized pET32a vector. The resulting vector, pET32-JD9, pre- dicts a protein with 109 amino acids of thioredoxin A, a histidine tag, replace the RGD sequence (7). a thrombin site, and an enterokinase site, followed by the disintegrin Venom metalloproteinases and disintegrins share plus cysteine-rich extension of jararhagin. Correct cloning was con- strong sequence similarity to the recently character- firmed by partial sequence of the 59 end of 300 bp, which confirmed ized ADAM2 (A Disintegrin And Metalloproteinase) the complete sequence of the disintegrin domain. family of mammalian proteins (8). The ADAMs have E. coli cultures and protein expression. pET32-JD9 was trans- the same domain organization as venom metallopro- fected into E. coli AD494(DE3)pLysS and cultured at 37°C in Luria– Bertani medium, containing the appropriated antibiotics, to A600 5 teinases added to a transmembrane domain and a po- 0.500. The T7 RNA polymerase under lacUV5 promoter was induced tential signaling cytoplasmic tail. These proteins have with 1 mM isopropyl-thio-b-D-galactopyranoside (IPTG). been ascribed adhesive and antiadhesive properties; Protein isolation. Bacteria from cultures were collected by cen- adhesive properties include sperm–egg fusion as well trifugation, suspended in 1/20 vol of 50 mM Tris/HCl, 500 mM NaCl, as muscle fusion and antiadhesive properties such as 5 mM imidazole, pH 7.9, and sonicated. The soluble intracellular inhibition of neural cell fate at different stages of em- fraction was added to a histidine-binding nickel–Sepharose resin. Elution was performed after extensive washing with 60 mM imid- bryogenesis and axonal extension in Drosophila (8). azole by addition of 1 M imidazole, both in the same Tris buffer. The Therefore, the soluble venom metalloproteinases eluted sample was dialyzed against 20 mM Tris/HCl, 50 mM NaCl, 2 would be expected to possess antiadhesive properties mM CaCl2, pH 7.4, and the recombinant disintegrin released from inhibiting intercellular communication. With native the thioredoxin peptide by digestion with enterokinase (1 U/100 mg jararhagin we have shown that a b integrin is the fusion protein). The cleavage enzyme was then removed using a 2 1 capture kit according to the manufacturer’s instructions. In some selective target of this enzyme (1). However, knowl- experiments, the cleaved fusion protein was further chromato- edge is lacking on the structure of the ECD-containing graphed in FPLC Mono-Q columns (Pharmacia) equilibrated with 20 disintegrin domain, which could explain the specificity mM Tris/HCl, pH 8.0. Retained proteins were eluted with a linear of the integrin binding. It appears therefore that the gradient of 0–1 M NaCl in the same buffer. Protein concentration P-III disintegrins may bind to different types of cell was estimated using Bradford reagent (Amresco, U.S.A.). surface receptors; snake venom peptides could act as Immunochemical analyses. ELISA and Western blotting were carried out using standard protocols (11). Antibodies against the antagonists of the mammalian ADAMs or even ago- native jararhagin (JAR) isolated from B. jararaca venom (9), the nists in integrin-mediated cell activation. recombinant fusion protein (Trx-JD9), and the expression product of Production of recombinant P-III disintegrins is the wild vector (Trx) were raised in rabbits by immunization with therefore crucial for characterizing the molecular 500 mg of each protein in Freund’s complete adjuvant. After 4 weeks, m mechanisms of action of these peptides. In this paper the animals received two boosters of 100 g of samples in saline at 15-day intervals. The antibody titers were assayed by ELISA using we report the successful expression of the disintegrin peroxidase-labeled anti-rabbit IgG conjugates (Sigma). For SDS– domain of jararhagin, a P-III snake venom metallopro- PAGE (12), pellets from 0.5-ml cultures or 10 mg of purified proteins teinase isolated from Bothrops jararaca venom (9) us- (4 mg for pool 6) were diluted in 25 ml of sample buffer (125 mM ing Escherichia coli expression vectors.
Recommended publications
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Characterization of a Novel Metalloproteinase in Duvernoy's Gland of Rhabdophis Tigrinus Tigrinus
    The Journal of Toxicological Sciences, 157 Vol.31, No.2, 157-168, 2006 CHARACTERIZATION OF A NOVEL METALLOPROTEINASE IN DUVERNOY’S GLAND OF RHABDOPHIS TIGRINUS TIGRINUS Koji KOMORI1, Motomi KONISHI1, Yuji MARUTA1, Michihisa TORIBA2, Atsushi SAKAI2, Akira MATSUDA3, Takamitsu HORI3, Mitsuko NAKATANI4, Naoto MINAMINO4 and Toshifumi AKIZAWA1 1Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan 2The Japan Snake Institute, 3318 Yabuzuka Ota, Gunma 379-2301, Japan 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan 4Department of Pharmacology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan (Received January 31, 2006; Accepted February 20, 2006) ABSTRACT — During the characterization of hemorrhagic factor in venom of Rhabdophis tigrinus tigri- nus, so-called Yamakagashi in Japan, one of the Colubridae family, a novel metalloproteinase with molec- ular weight of 38 kDa in the Duvernoy’s gland of Yamakagashi was identified by gelatin zymography and by monitoring its proteolytic activity using a fluorescence peptide substrate, MOCAc-PLGLA2pr(Dnp)AR-NH2, which was developed for measuring the well-known matrix metalloproteinase (MMP) activity. After purification by gel filtration HPLC and/or column switch HPLC system consisting of an affin- ity column, which was immobilized with a synthetic BS-10 peptide (MQKPRCGVPD) originating from propeptide domain of MMP-7 and a reversed-phase column, the N-terminal amino acid sequence of the 38 kDa metalloproteinase was identified as FNTFPGDLK which shared a high homology to Xenopus MMP-9. The 38 kDa metalloproteinase required Zn2+ and Ca2+ ions for its proteolytic activity.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Structural, Functional and Therapeutic Aspects of Snake Venom Metal- Loproteinases
    Send Orders for Reprints to [email protected] 28 Mini-Reviews in Organic Chemistry, 2014, 11, 28-44 Structural, Functional and Therapeutic Aspects of Snake Venom Metal- loproteinases P. Chellapandi* Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India Abstract: Snake venoms are rich sources of metalloproteinases that are of biological interest due to their diverse molecu- lar diversity and selective therapeutic applications. Snake venoms metalloproteinases (SVMPs) belong to the MEROPS peptidase family M12B or reprolysin subfamily, which are consisted of four major domains include a reprolysin catalytic domain, a disintegrin domain, a reprolysin family propeptide domain and a cysteine-rich domain. The appropriate struc- tural and massive sequences information have been available for SVMPs family of enzymes in the Protein Data Bank and National Center for Biotechnology Information, respectively. Functional essentiality of every domain and a crucial contri- bution of binding geometry, primary specificity site, and structural motifs have been studied in details, pointing the way for designing potential anti-coagulation, antitumor, anti-complementary and anti-inflammatory drugs or peptides. These enzymes have been reported to degrade fibrinogen, fibrin and collagens, and to prevent progression of clot formation. An- giotensin-converting enzyme activity, antibacterial properties, haemorrhagic activity and platelet aggregation response of SVMPs have been studied earlier. Structural information of these enzymes together with recombinant DNA technology would strongly promote the construction of many recombinant therapeutic peptides, particularly fibrinogenases and vac- cines. We have comprehensively reviewed the structure-function-evolution relationships of SVMPs family proteins and their advances in the promising target models for structure-based inhibitors and peptides design.
    [Show full text]
  • Albocollagenase, a Novel Recombinant P-III Snake Venom Metalloproteinase from Green Pit Viper (Cryptelytrops Albolabris), Digest
    Toxicon 57 (2011) 772–780 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Albocollagenase, a novel recombinant P-III snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris), digests collagen and inhibits platelet aggregation Anuwat Pinyachat a,b, Ponlapat Rojnuckarin a,*, Chuanchom Muanpasitporn a, Pon Singhamatr a, Surang Nuchprayoon b a Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand b Department of Parasitology and Chulalongkorn Medical Research Center (Chula MRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand article info abstract Article history: Molecular cloning and functional characterization of P-III snake venom metalloproteinases Received 1 October 2010 (SVMPs) will give us deeper insights in the pathogenesis of viper bites. This may lead to Received in revised form 20 January 2011 novel therapy for venom-induced local tissue damages, the complication refractory to Accepted 9 February 2011 current antivenom. The aim of this study was to elucidate the in vitro activities of a new Available online 17 February 2011 SVMP from the green pit viper (GPV) using recombinant DNA technology. We report, here, a new cDNA clone from GPV (Cryptelytrops albolabris) venom glands encoding 614 amino Keywords: acid residues P-III SVMP, termed albocollagenase. The conceptually translated protein Green pit viper Albocollagenase comprised a signal peptide and prodomain, followed by a metalloproteinase domain Snake venom metalloproteinase (SVMP) containing a zinc-binding motifs, HEXGHXXGXXH-CIM and 9 cysteine residues. The dis- Cloning integrin-like and cysteine-rich domains possessed 24 cysteines and a DCD (Asp-Cys-Asp) Pichia motif. The albocollagenase deduced amino acid sequence alignments showed approxi- Collagen type IV mately 70% identity with other P-III SVMPs.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan Et Al
    US 2004.008 1648A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan et al. (43) Pub. Date: Apr. 29, 2004 (54) ADZYMES AND USES THEREOF Publication Classification (76) Inventors: Noubar B. Afeyan, Lexington, MA (51) Int. Cl." ............................. A61K 38/48; C12N 9/64 (US); Frank D. Lee, Chestnut Hill, MA (52) U.S. Cl. ......................................... 424/94.63; 435/226 (US); Gordon G. Wong, Brookline, MA (US); Ruchira Das Gupta, Auburndale, MA (US); Brian Baynes, (57) ABSTRACT Somerville, MA (US) Disclosed is a family of novel protein constructs, useful as Correspondence Address: drugs and for other purposes, termed “adzymes, comprising ROPES & GRAY LLP an address moiety and a catalytic domain. In Some types of disclosed adzymes, the address binds with a binding site on ONE INTERNATIONAL PLACE or in functional proximity to a targeted biomolecule, e.g., an BOSTON, MA 02110-2624 (US) extracellular targeted biomolecule, and is disposed adjacent (21) Appl. No.: 10/650,592 the catalytic domain So that its affinity Serves to confer a new Specificity to the catalytic domain by increasing the effective (22) Filed: Aug. 27, 2003 local concentration of the target in the vicinity of the catalytic domain. The present invention also provides phar Related U.S. Application Data maceutical compositions comprising these adzymes, meth ods of making adzymes, DNA's encoding adzymes or parts (60) Provisional application No. 60/406,517, filed on Aug. thereof, and methods of using adzymes, Such as for treating 27, 2002. Provisional application No. 60/423,754, human Subjects Suffering from a disease, Such as a disease filed on Nov.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • SIFTS: Updated Structure Integration with Function, Taxonomy and Sequences Resource Allows 40-Fold Increase in Coverage of Struc
    D482–D489 Nucleic Acids Research, 2019, Vol. 47, Database issue Published online 16 November 2018 doi: 10.1093/nar/gky1114 SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins Jose M. Dana1, Aleksandras Gutmanas 1, Nidhi Tyagi2, Guoying Qi2, Claire O’Donovan3, Maria Martin2 and Sameer Velankar1,* 1Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK, 2Protein Function Development, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK and 3Metabolomics, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Received September 07, 2018; Revised October 15, 2018; Editorial Decision October 18, 2018; Accepted October 22, 2018 ABSTRACT source for sequence and functional information pertain- ing to proteins (1). It currently contains over 500 000 The Structure Integration with Function, Taxonomy manually annotated sequences (UniProtKB/Swiss-Prot) and Sequences resource (SIFTS; http://pdbe.org/ and over 120 million computationally annotated ones sifts/) was established in 2002 and continues to oper- (UniProtKB/TrEMBL) despite a near 50% reduction of the ate as a collaboration between the Protein Data Bank size of the holdings in 2015 to remove high sequence re- in Europe (PDBe; http://pdbe.org) and the UniProt dundancy. This increase is set to continue and likely to ac- Knowledgebase (UniProtKB; http://uniprot.org). The celerate even further with the growing appreciation of the resource is instrumental in the transfer of anno- role microbiome plays in health and disease.
    [Show full text]
  • Petri Nykvist Integrins As Cellular Receptors for Fibril-Forming And
    Copyright © , by University of Jyväskylä ABSTRACT Nykvist, Petri Integrins as cellular receptors for fibril-forming and transmembrane collagens Jyväskylä: University of Jyväskylä, 2004, 127 p. (Jyväskylä Studies in Biological and Environmental Science, ISSN 1456-9701; 137) ISBN 951-39-1773-8 Yhteenveto: Integriinit reseptoreina fibrillaarisille ja transmembraanisille kollageeneille Diss. The two integrin-type collagen receptors α1β1 and α2β1 integrins are structurally very similar. However, cells can concomitantly express both receptors and it has been shown that these collagen receptor integrins have distinct signaling functions, and their binding to collagen may lead to opposite cellular responses. In this study, fibrillar collagen types, I, II, III, and V, and network like structure forming collagen type IV tested were recognized by both integrins at least at the αI domain level. The αI domain recognition does not always lead for cell spreading behavior. In addition transmembrane collagen type XIII was studied. CHO-α1β1 cells could spread on recombinant human collagen type XIII, unlike CHO-α2β1 cells. This finding was supported by αI domain binding studies. The results indicate, that α1β1 and α2β1 integrins do have different ligand binding specificities and distinct collagen recognition mechanisms. A common structural feature in the collagen binding αI domains is the presence of an extra helix, named helix αC. A αC helix deletion reduced affinity for collagen type I when compared to wild-type α2I domain, which indicated the importance of helix αC in collagen type I binding. Further, point mutations in amino acids Asp219, Asp259, Asp292 and Glu299 resulted in weakened affinity for collagen type I. Cells expressing double mutated α2Asp219/Asp292 integrin subunit showed remarkably slower spreading on collagen type I, while spreading on collagen type IV was not affected.
    [Show full text]
  • Crystal Structure Analysis of a Snake Venom Metalloproteinase In
    Crystal structure analysis of a snake venom metalloproteinase in complex with an inhibitor as basis for considerations on the proteolytic activity and the hemorrhagic mode of action INAUGURALDISSERTATION zur Erlangung der Doktorwürde der Fakultät für Chemie, Pharmazie und Geowissenschaften Albert-Ludwigs Universität Freiburg im Breisgau vorgelegt von Torsten Jens Lingott aus Bayreuth Freiburg im Breisgau November 2010 Tag der Bekanntgabe des Prüfungsergebnisses: 16.12.2010 Dekan: Prof. Dr. H. Hillebrecht Referentin: Prof. Dr. I. Merfort Korreferent: Prof. Dr. J. M. Gutiérrez Drittprüfer: Prof. Dr. A. Bechthold Parts of this thesis have been or are prepared to be published in the following articles: Lingott, T., Schleberger, C., Gutiérrez, J. M., and Merfort, I. (2009). High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: insight into inhibitor binding. Biochemistry 48 , 6166-6174. Wallnoefer, H. G., Lingott, T., Gutiérrez, J. M., Merfort, I., and Liedl, K. R. (2010). Backbone flexibility controls the activity and specificity of a protein-protein interface: Specificity in snake venom metalloproteases. J Am Chem Soc 132 , 10330-10337. Lingott, T. and Merfort, I. (xxxx). The catalytic domain of snake venom metalloproteinases - Sequential and structural considerations. in preparation. Wallnoefer, H. G.*, Lingott, T.*, Escalante, T., Ferreira, R. N., Nagem, R. A. P., Gutiérrez, J. M., Merfort, I., and Liedl, K. R. (xxxx). The hemorrhagic activity of P-I snake venom metalloproteinases
    [Show full text]
  • Jararhagin Disruption of Endothelial Cell Anchorage Is Enhanced in Collagen Enriched Matrices
    Toxicon 108 (2015) 240e248 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Jararhagin disruption of endothelial cell anchorage is enhanced in collagen enriched matrices C. Baldo a, D.S. Lopes b, E.L. Faquim-Mauro a, J.F. Jacysyn c, S. Niland d, J.A. Eble d, * P.B. Clissa a, A.M. Moura-da-Silva a, a Laboratorio de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, Sao~ Paulo, SP, Brazil b Instituto de Genetica e Bioquímica, Universidade Federal de Uberlandia,^ Uberlandia,^ MG, Brazil c LIM62, Faculdade de Medicina da Universidade de Sao~ Paulo, Sao~ Paulo, SP, Brazil d Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany article info abstract Article history: Hemorrhage is one of the most striking effects of bites by viper snakes resulting in fast bleeding and Received 21 August 2015 ischemia in affected tissues. Snake venom metalloproteinases (SVMPs) are responsible for hemorrhagic Received in revised form activity, but the mechanisms involved in SVMP-induced hemorrhage are not entirely understood and the 19 October 2015 study of such mechanisms greatly depends on in vivo experiments. In vivo, hemorrhagic SVMPs accu- Accepted 27 October 2015 mulate on basement membrane (BM) of venules and capillary vessels allowing the hydrolysis of collagen Available online 31 October 2015 IV with consequent weakness and rupture of capillary walls. These effects are not reproducible in vitro with conventional endothelial cell cultures. In this study we used two-dimension (2D) or three- Keywords: Snake venom dimension (3D) cultures of HUVECs on matrigel and observed the same characteristics as in ex vivo Metalloproteinase experiments: only the hemorrhagic toxin was able to localize on surfaces or internalize endothelial cells Endothelial cell in 2D cultures or in the surface of tubules formed on 3D cultures.
    [Show full text]
  • Disintegrins from Snake Venoms and Their Applications in Cancer Research and Therapy
    Send Orders for Reprints to [email protected] 532 Current Protein and Peptide Science, 2015, 16, 532-548 Disintegrins from Snake Venoms and their Applications in Cancer Research and Therapy Jéssica Kele Arruda Macêdo1,2,3, Jay W. Fox3,* and Mariana de Souza Castro1,2 1Brazilian Center for Protein Research, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília/DF, Brazil; 2Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília/DF, Brazil; 3Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA Abstract: Integrins regulate diverse functions in cancer pathology and in tumor cell development and contribute to important processes such as cell shape, survival, proliferation, transcription, angiogene- sis, migration, and invasion. A number of snake venom proteins have the ability to interact with in- tegrins. Among these are the disintegrins, a family of small, non-enzymatic, and cysteine-rich proteins found in the venom of numerous snake families. The venom proteins may have a potential role in terms of novel therapeutic leads for cancer treatment. Disintegrin can target specific integrins and as such it is conceivable that they could interfere in important processes involved in carcinogenesis, tumor growth, invasion and migration. Herein we present a survey of studies involving the use of snake venom disintegrins for cancer detection and treatment. The aim of this review is to highlight the relationship of integrins with cancer and to present examples as to how certain disin- tegrins can detect and affect biological processes related to cancer. This in turn will illustrate the great potential of these molecules for cancer research.
    [Show full text]