Crystal Structure Analysis of a Snake Venom Metalloproteinase In

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structure Analysis of a Snake Venom Metalloproteinase In Crystal structure analysis of a snake venom metalloproteinase in complex with an inhibitor as basis for considerations on the proteolytic activity and the hemorrhagic mode of action INAUGURALDISSERTATION zur Erlangung der Doktorwürde der Fakultät für Chemie, Pharmazie und Geowissenschaften Albert-Ludwigs Universität Freiburg im Breisgau vorgelegt von Torsten Jens Lingott aus Bayreuth Freiburg im Breisgau November 2010 Tag der Bekanntgabe des Prüfungsergebnisses: 16.12.2010 Dekan: Prof. Dr. H. Hillebrecht Referentin: Prof. Dr. I. Merfort Korreferent: Prof. Dr. J. M. Gutiérrez Drittprüfer: Prof. Dr. A. Bechthold Parts of this thesis have been or are prepared to be published in the following articles: Lingott, T., Schleberger, C., Gutiérrez, J. M., and Merfort, I. (2009). High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: insight into inhibitor binding. Biochemistry 48 , 6166-6174. Wallnoefer, H. G., Lingott, T., Gutiérrez, J. M., Merfort, I., and Liedl, K. R. (2010). Backbone flexibility controls the activity and specificity of a protein-protein interface: Specificity in snake venom metalloproteases. J Am Chem Soc 132 , 10330-10337. Lingott, T. and Merfort, I. (xxxx). The catalytic domain of snake venom metalloproteinases - Sequential and structural considerations. in preparation. Wallnoefer, H. G.*, Lingott, T.*, Escalante, T., Ferreira, R. N., Nagem, R. A. P., Gutiérrez, J. M., Merfort, I., and Liedl, K. R. (xxxx). The hemorrhagic activity of P-I snake venom metalloproteinases is controlled by loop dynamics. in preparation. * Equally contributed authors. Steinbrecher, T., Lingott, T., and Merfort, I. (xxxx). Free energy calculations on snake venom metalloproteinase BaP1. in preparation. Relevant coordinates and structure factors have been deposited in the RCSB Protein Data Bank under the following access codes: 2W12 High-resolution rystal structure of snake venom metalloproteinase BaP1 complexed with a peptidomimetic, 1.46 Å, pH 6.5 2W13 High-resolution rystal structure of snake venom metalloproteinase BaP1 complexed with a peptidomimetic, 1.14 Å, pH 4.6 2W14 High-resolution rystal structure of snake venom metalloproteinase BaP1 complexed with a peptidomimetic, 1.08 Å, pH 8.0 2W15 High-resolution rystal structure of snake venom metalloproteinase BaP1 complexed with a peptidomimetic, 1.05 Å, pH 7.5 Parts of this thesis have been presented at following conferences: Talk: Lingott, T., Wallnoefer, H. G., Liedl, K. R., Gutiérrez, J. M., and Merfort, I. (2010). In silico tool to predict hemorrhagic activity of snake venom metalloproteinases. 10 th Meeting of the Pan American Section of the International Society on Toxinology (IST) , San José, Costa Rica, April 18 th -20 th . Posters: Lingott, T., Gutiérrez, J. M., and Merfort, I. (2008). High-resolution crystal structure of the P-I snake venom metalloproteinase BaP1 in complex with a peptidomimetic: Insight into inhibitor binding. ChemBioNet - 5th Status Seminar Chemical Biology (DECHEMA e.V.) , Frankfurt, Germany, December 8 th -9th . Lingott, T., Gutiérrez, J. M., Wolber, G. and Merfort, I. (2009). High-resolution crystal structure of a SVMP*inhibitor complex as model for the design of metalloproteinase inhibitors. Drug Discovery and Delivery: Membrane Proteins and Natural Product Research , Freiburg, Germany, April 16 th -17 th . Lingott, T., Gutiérrez, J. M., Wolber, G. and Merfort, I. (2009). X-ray analysis of a snake venom metalloproteinase inhibitor complex as basis for drug design using pharmacophore-based virtual screening. Fakultätsfest der Fakultät für Chemie, Pharmazie und Geowissenschaften der Albert- Ludwigs-Universität , Freiburg, Germany, July 9th . Lingott, T., Gutiérrez, J. M., and Merfort, I. (2010). High-resolution crystal structure of the P-I SVMP BaP1 in complex with a peptidomimetic: Insight into inhibitor binding and importance of a flexible loop region correlated to hemorrhagic activity. 10 th Meeting of the Pan American Section of the International Society on Toxinology (IST) , San José, Costa Rica, April 18 th -20 th . Lingott, T., Wallnoefer, H. G., Liedl, K. R., Gutiérrez, J. M., and Merfort, I. (2010). Sequential and structural comparison of hemorrhagic and non-hemorrhagic P-I SVMPs and specific MD simulations lead to new insight into hemorrhagic activity. 10 th Meeting of the Pan American Section of the International Society on Toxinology (IST) , San José, Costa Rica, April 18 th -20 th . RESEARCH to see what everybody else has seen and to think what nobody else has thought Albert von Szent-Györgyi Nagyrápolt Table of contents 1 INTRODUCTION ........................................................................................................................1 1.1 Metalloendopeptidases.............................................................................................................1 1.1.1 Classification of zinc-dependent metalloendopeptidases.................................................2 1.1.2 The metzincin clan of metalloendopeptidases..................................................................3 1.1.3 Reaction mechanism of metzincins...................................................................................8 1.2 Metalloproteinases from snake venoms.................................................................................10 1.2.1 Classification and biosynthesis of snake venom metalloproteinases.............................11 1.2.2 Hemorrhagic activity of snake venom metalloproteinases.............................................16 1.3 Snake venom metalloproteinases as models for drug design.................................................17 1.4 In silico approaches in drug discovery...................................................................................18 1.4.1 Pharmacophore modeling and virtual screening...........................................................18 1.4.2 Protein-ligand docking...................................................................................................19 1.4.3 Molecular dynamics simulations....................................................................................19 1.4.4 Sequence alignments ......................................................................................................20 1.5 Aims of this work...................................................................................................................21 2 EXPERIMENTAL PROCEDURES.........................................................................................22 2.1 Materials ................................................................................................................................22 2.1.1 Appliances ......................................................................................................................22 2.1.2 Chemicals and kits .........................................................................................................23 2.1.3 Buffers and solutions......................................................................................................24 2.2 Protein purification ................................................................................................................26 2.2.1 Venom of Bothrops asper snakes ...................................................................................26 2.2.2 Ion exchange chromatography.......................................................................................26 2.2.3 Concentration of protein solutions.................................................................................27 2.2.4 Affinity chromatography ................................................................................................27 2.2.5 Gel permeation chromatography ...................................................................................28 2.3 Protein characterization .........................................................................................................29 2.3.1 Discontinuous sodium dodecylsulfate polyacrylamide gel electrophoresis...................29 2.3.2 Photometric determination of protein concentrations ...................................................29 2.3.3 Proteolytic activity of BaP1 and protease inhibition assay ...........................................30 2.4 Protein crystallization ............................................................................................................30 2.4.1 Crystal lattices and symmetry ........................................................................................30 2.4.2 Solvent content in protein crystals .................................................................................31 2.4.3 Protein crystallization....................................................................................................32 2.4.4 Crystal mounting............................................................................................................37 2.5 X-ray structure analysis .........................................................................................................38 2.5.1 Theory of X-ray diffraction ............................................................................................38 2.5.2 Reciprocal space and Ewald construction.....................................................................42 2.5.3 Temperature factors .......................................................................................................44 2.5.4 The Patterson function ...................................................................................................45
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Structural Basis of Mammalian Mucin Processing by the Human Gut O
    ARTICLE https://doi.org/10.1038/s41467-020-18696-y OPEN Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila ✉ ✉ Beatriz Trastoy 1,4, Andreas Naegeli2,4, Itxaso Anso 1,4, Jonathan Sjögren 2 & Marcelo E. Guerin 1,3 Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness 1234567890():,; and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila,anO-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also con- tribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins. 1 Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. 2 Genovis AB, Box 790, 22007 Lund, Sweden. 3 IKERBASQUE, Basque Foundation for Science, 48013 ✉ Bilbao, Spain. 4These authors contributed equally: Beatriz Trastoy, Andreas Naegeli, Itxaso Anso.
    [Show full text]
  • Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia Coli and Inhibition of the Platelet–Collagen Interaction
    Archives of Biochemistry and Biophysics Vol. 369, No. 2, September 15, pp. 295–301, 1999 Article ID abbi.1999.1372, available online at http://www.idealibrary.com on Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia coli and Inhibition of the Platelet–Collagen Interaction Ana M. Moura-da-Silva,*,†,‡,1 Alex Lı´nica,* Maisa S. Della-Casa,* Aura S. Kamiguti,§ Paulo L. Ho,¶ Julian M. Crampton,† and R. David G. Theakston‡ *Laborato´rio de Imunopatologia and ¶Laborato´rio de Biotecnologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sa˜o Paulo, Brazil; §Department of Haematology, University of Liverpool, Prescot Street, Liverpool, L69 3BX, United Kingdom; and †Molecular Genetics Unit and ‡Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, United Kingdom Received May 17, 1999, and in revised form July 6, 1999 demonstrating that these antibodies recognize the Jararhagin, a hemorrhagin from Bothrops jararaca parent jararhagin molecule. Treatment of the fusion venom, is a soluble snake venom component compris- protein with enterokinase, followed by further cap- ing metalloproteinase and disintegrin cysteine-rich ture of the enzyme, resulted in a band of 30 kDa, the domains and, therefore, is structurally closely related expected size for jararhagin-C. Further purification of to the membrane-bound A Disintegrin And Metallo- the cleaved disintegrin using FPLC Mono-Q columns proteinase (ADAMs) protein family. Its hemorrhagic resulted in one fraction capable of efficiently inhibit- activity is associated with the effects of both metallo- ing collagen-induced platelet aggregation in a dose- proteinase and disintegrin domains; the metallopro- dependent manner (IC50 of 8.5 mg/ml).
    [Show full text]
  • Characterization of a Novel Metalloproteinase in Duvernoy's Gland of Rhabdophis Tigrinus Tigrinus
    The Journal of Toxicological Sciences, 157 Vol.31, No.2, 157-168, 2006 CHARACTERIZATION OF A NOVEL METALLOPROTEINASE IN DUVERNOY’S GLAND OF RHABDOPHIS TIGRINUS TIGRINUS Koji KOMORI1, Motomi KONISHI1, Yuji MARUTA1, Michihisa TORIBA2, Atsushi SAKAI2, Akira MATSUDA3, Takamitsu HORI3, Mitsuko NAKATANI4, Naoto MINAMINO4 and Toshifumi AKIZAWA1 1Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan 2The Japan Snake Institute, 3318 Yabuzuka Ota, Gunma 379-2301, Japan 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan 4Department of Pharmacology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan (Received January 31, 2006; Accepted February 20, 2006) ABSTRACT — During the characterization of hemorrhagic factor in venom of Rhabdophis tigrinus tigri- nus, so-called Yamakagashi in Japan, one of the Colubridae family, a novel metalloproteinase with molec- ular weight of 38 kDa in the Duvernoy’s gland of Yamakagashi was identified by gelatin zymography and by monitoring its proteolytic activity using a fluorescence peptide substrate, MOCAc-PLGLA2pr(Dnp)AR-NH2, which was developed for measuring the well-known matrix metalloproteinase (MMP) activity. After purification by gel filtration HPLC and/or column switch HPLC system consisting of an affin- ity column, which was immobilized with a synthetic BS-10 peptide (MQKPRCGVPD) originating from propeptide domain of MMP-7 and a reversed-phase column, the N-terminal amino acid sequence of the 38 kDa metalloproteinase was identified as FNTFPGDLK which shared a high homology to Xenopus MMP-9. The 38 kDa metalloproteinase required Zn2+ and Ca2+ ions for its proteolytic activity.
    [Show full text]
  • Final Program N
    XXII Congress The International Society on Thrombosis and Haemostasis B July 11-16 2009 O 55th Annual Meeting S of the Scientific and Standardization Committee of the ISTH T O Final Program N Boston - July 11-16 2009 XXII Congress of the International Society on Thrombosis and Haemostasis 2009 Table ISTH of Contents Venue and Contacts 2 Wednesday 209 Welcome Messages 3 – Plenary Lectures 210 Committees 7 – State of the Art Lectures 210 Congress Awards and Grants 15 – Abstract Symposia Lectures 212 Other Meetings 19 – Oral Communications 219 – Posters 239 ISTH Information 20 Program Overview 21 Thursday 305 SSC Meetings and – Plenary Lectures 306 Educational Sessions 43 – State of the Art Lectures 306 – Abstract Symposia Lectures 309 Scientific Program 89 – Oral Communications 316 Monday 90 – Posters 331 – Plenary Lectures 90 Nursing Program 383 – State of the Art Lectures 90 Special Symposia 389 – Abstract Symposia Lectures 92 Satellite Symposia 401 – Oral Communications 100 – Posters 118 Technical Symposia Sessions 411 Exhibition and Sponsors 415 Tuesday 185 – Plenary Lectures 186 Exhibitor and Sponsor Profiles 423 – State of the Art Lectures 186 Congress Information 445 – Abstract Symposia Lectures 188 Map of BCEC 446 – Oral Communications 196 Hotel and Transportation Information 447 ISTH 2009 Congress Information 452 Boston Information 458 Social Events 463 Excursions 465 Authors’ Index 477 1 Venue & Contacts Venue Boston Convention & Exhibition Center 415 Summer Street - Boston, Massachusetts 02210 - USA Phone: +1 617 954 2800 - Fax: +1 617 954 3326 The BCEC is only about 10 minutes by taxi from Boston Logan International Airport. The 2009 Exhibition is located in Hall A and B of the Exhibit Level of the BCEC, along with posters and catering.
    [Show full text]
  • Loss of Protease Activity of ADAM15 Abolishes Protective Effects on Plaque Progression in Atherosclerosis
    382 Letters to the Editor Loss of protease activity of ADAM15 abolishes protective effects on plaque progression in atherosclerosis Andreas Bültmann, Zhongmin Li, Silvia Wagner, Meinrad Gawaz, Martin Ungerer, Harald Langer, Andreas E. May ⁎⁎, Götz Münch ⁎ Corimmun, Fraunhofer Str. 17, D-82152 Martinsried, Germany Medizinische Klinik III, Eberhard-Karls Universität Tübingen, D-72076 Tübingen, Germany article info For the induction of atherosclerosis, rabbits were fed with Western Article history: type high cholesterol (0.25%) diet for 8 weeks and vascular gene Received 8 August 2011 transfer to the carotid artery was performed as previously described Accepted 13 August 2011 [7]. Available online 9 September 2011 Animals were sacrificed 4 weeks after the adenovirus delivery. Keywords: The left common carotid arteries, aorta and iliac arteries were Atherosclerosis macroscopically prepared for “en face” evaluation of plaque ADAM15 extension and stained with Sudan III. Serial 6-μm-thick cryosections Sheddase were cut and histological assessment of atherosclerosis after Metalloproteinase hematoxylin eosin (HE) and van Gieson (VG)-elastica staining and GFP expression were performed. Immunohistochemical analysis, with anti rabbit RAM 11 antibody (DAKO, Hamburg, Germany) was The A Disintegrin And Metallporteinases (ADAMs) contain a used for macrophages as previously described [12]. metalloprotease-like and a disintegrin-like domain. Currently 40 After vascular gene transfer into the carotid artery, GFP expression different types of ADAM proteins have been identified. ADAM15 is could be detected with AdGFP and also with Ad-ADAM15 and Ad- found in the myocardium [1,2], endothelial cells and in vascular ADAM15 prot neg, which both co-expressed GFP (Fig. 1). Relative atherosclerotic lesions [3].
    [Show full text]
  • Structural Interaction of Natural and Synthetic Inhibitors with the Venom Metalloproteinase, Atrolysin C
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 8447-8451, August 1994 Biochemistry Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d) (coilagenase/inhibltor complex/crystafography/metastasis) DACHUAN ZHANG*, ISTVAN BOTOS*, FRANZ-XAVER GOMIS-ROTHtt, RONALD DOLL§, CHRISTINE BLOOD§, F. GEORGE NJOROGE§, JAY W. Fox¶, WOLFRAM BODEt, AND EDGAR F. MEYER* 11 *Biographics Laboratory, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; tMax Planck Institute of Biochemistry, D-82152 Martinsried, Germany; §Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033; IBiomolecular Research Facility, University of Virginia Health Sciences Center, Charlottesville, VA 22908 Communicated by Derek H. R. Barton, May 20, 1994 ABSTRACT The structure of the metalloproteinase and 80% sequence similarity to Ht-d) has been described (12), as hemorrhagic toxin atrolysin C form d (EC 3.4.24.42), from the was the native digestive MP, astacin (13). A high degree of venom ofthe western diamondback rattlesnake Crotalus atrox, tertiary structure conservation among the astacin, reprol- has been determined to atomic resolution by x-ray crystallo- ysin, serralysins, and the MMP subfamilies is observed (9, 14) graphic methods. This study illuminates the nature ofinhibitor at the active site, suggesting that the structural principles that binding with natural (<Glu-Asn-Trp, where <Glu is pyroglu- govern the interaction of substrates and inhibitors with tamic acid) and synthetic (SCH 47890) ligands. The primary members of these subfamilies are likely to be similar if not specificity pocket is exceptionally deep; the nature of inhibitor identical. Substrates and synthetic inhibitors of the MMPs and productive substrate binding is discussed.
    [Show full text]
  • Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif
    toxins Article Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif Erika Camacho 1, Libia Sanz 2, Teresa Escalante 1, Alicia Pérez 2, Fabián Villalta 1, Bruno Lomonte 1, Ana Gisele C. Neves-Ferreira 3, Andrés Feoli 1, Juan J. Calvete 2,4, José María Gutiérrez 1 and Alexandra Rucavado 1,* 1 Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; [email protected] (E.C.); [email protected] (T.E.); [email protected] (F.V.); [email protected] (B.L.); [email protected] (A.F.); [email protected] (J.M.G.) 2 Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia 46010, Spain; [email protected] (L.S.); [email protected] (A.P.); [email protected] (J.J.C.) 3 Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; [email protected] 4 Departamento de Biotecnología, Universidad Politécnica de Valencia, Valencia 46022, Spain * Correspondence: [email protected]; Tel.: +506-25117876 Academic Editor: Nicholas R. Casewell Received: 12 September 2016; Accepted: 30 September 2016; Published: 12 October 2016 Abstract: Snake venom metalloproteinases (SVMPs) play key biological roles in prey immobilization and digestion. The majority of these activities depend on the hydrolysis of relevant protein substrates in the tissues. Hereby, we describe several isoforms and a cDNA clone sequence, corresponding to PII SVMP homologues from the venom of the Central American pit viper Bothriechis lateralis, which have modifications in the residues of the canonical sequence of the zinc-binding motif HEXXHXXGXXH.
    [Show full text]
  • Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 203639, 19 pages http://dx.doi.org/10.1155/2014/203639 Review Article Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy Leonardo A. Calderon,1 Juliana C. Sobrinho,1 Kayena D. Zaqueo,1 Andrea A. de Moura,1 Amy N. Grabner,1 Maurício V. Mazzi,2 Silvana Marcussi,3 Auro Nomizo,4 CarlaF.C.Fernandes,1 Juliana P. Zuliani,1 Bruna M. A. Carvalho,5 Saulo L. da Silva,5 Rodrigo G. Stábeli,1 and Andreimar M. Soares1 1 Centro de Estudos de Biomoleculas´ Aplicadas aSa` ude,´ CEBio, Fundac¸ao˜ Oswaldo Cruz, Fiocruz Rondoniaˆ e Departamento de Medicina, Universidade Federal de Rondonia,ˆ UNIR, Porto Velho, RO, Brazil 2 Fundac¸ao˜ Herm´ınio Ometto, UNIARARAS, Nucleo´ de Cienciasˆ da Saude-NUCISA,´ 13607-339 Araras, SP, Brazil 3 Departamento de Qu´ımica, Universidade Federal de Lavras, UFLA, 37200-000 Lavras, MG, Brazil 4 Departamento de Analises´ Cl´ınicas, Toxicologicas´ e Bromatologicas,´ Faculdade de Cienciasˆ Farmaceuticasˆ de Ribeirao˜ Preto, Universidade de Sao˜ Paulo, USP, Ribeirao˜ Preto, SP, Brazil 5 Departamento de Qu´ımica, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de Sao˜ Joao˜ del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil Correspondence should be addressed to Andreimar M. Soares; [email protected] Received 20 September 2013; Revised 7 December 2013; Accepted 8 December 2013; Published 13 February 2014 Academic Editor: Fernando Albericio Copyright © 2014 Leonardo A. Calderon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Structural, Functional and Therapeutic Aspects of Snake Venom Metal- Loproteinases
    Send Orders for Reprints to [email protected] 28 Mini-Reviews in Organic Chemistry, 2014, 11, 28-44 Structural, Functional and Therapeutic Aspects of Snake Venom Metal- loproteinases P. Chellapandi* Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India Abstract: Snake venoms are rich sources of metalloproteinases that are of biological interest due to their diverse molecu- lar diversity and selective therapeutic applications. Snake venoms metalloproteinases (SVMPs) belong to the MEROPS peptidase family M12B or reprolysin subfamily, which are consisted of four major domains include a reprolysin catalytic domain, a disintegrin domain, a reprolysin family propeptide domain and a cysteine-rich domain. The appropriate struc- tural and massive sequences information have been available for SVMPs family of enzymes in the Protein Data Bank and National Center for Biotechnology Information, respectively. Functional essentiality of every domain and a crucial contri- bution of binding geometry, primary specificity site, and structural motifs have been studied in details, pointing the way for designing potential anti-coagulation, antitumor, anti-complementary and anti-inflammatory drugs or peptides. These enzymes have been reported to degrade fibrinogen, fibrin and collagens, and to prevent progression of clot formation. An- giotensin-converting enzyme activity, antibacterial properties, haemorrhagic activity and platelet aggregation response of SVMPs have been studied earlier. Structural information of these enzymes together with recombinant DNA technology would strongly promote the construction of many recombinant therapeutic peptides, particularly fibrinogenases and vac- cines. We have comprehensively reviewed the structure-function-evolution relationships of SVMPs family proteins and their advances in the promising target models for structure-based inhibitors and peptides design.
    [Show full text]