Exploring the Regulatory Mechanism of the Notch Ligand Receptor Jagged1 Via the Aryl Hydrocarbon Receptor in Breast Cancer Sean Alan Piwarski

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Regulatory Mechanism of the Notch Ligand Receptor Jagged1 Via the Aryl Hydrocarbon Receptor in Breast Cancer Sean Alan Piwarski Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2018 Exploring the Regulatory Mechanism of the Notch Ligand Receptor Jagged1 Via the Aryl Hydrocarbon Receptor in Breast Cancer Sean Alan Piwarski Follow this and additional works at: https://mds.marshall.edu/etd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Medical Molecular Biology Commons, Medical Toxicology Commons, and the Oncology Commons EXPLORING THE REGULATORY MECHANISM OF THE NOTCH LIGAND RECEPTOR JAGGED1 VIA THE ARYL HYDROCARBON RECEPTOR IN BREAST CANCER A dissertation submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical Sciences by Sean Alan Piwarski Approved by Dr. Travis Salisbury, Committee Chairperson Dr. Gary Rankin Dr. Monica Valentovic Dr. Richard Egleton Dr. Todd Green Marshall University July 2018 APPROVAL OF DISSERTATION We, the faculty supervising the work of Sean Alan Piwarski, affirm that the dissertation, Exploring the Regulatory Mechanism of the Notch Ligand Receptor JAGGED1 via the Aryl Hydrocarbon Receptor in Breast Cancer, meets the high academic standards for original scholarship and creative work established by the Biomedical Sciences program and the Graduate College of Marshall University. This work also conforms to the editorial standards of our discipline and the Graduate College of Marshall University. With our signatures, we approve the manuscript for publication. ii © 2018 SEAN ALAN PIWARSKI ALL RIGHTS RESERVED iii DEDICATION To my mom and dad, This dissertation is a product of your hard work and sacrifice as amazing parents. I could never have accomplished something of this magnitude without your love, support, and constant encouragement. Thank you for teaching me that anything worth having must be earned and that what I am willing to accomplish is determined by what I am willing to sacrifice. Having you two in my life gave me the courage to acknowledge my self-worth and the tenacity to never quit, even in the most improbable situations. I love you and thank you for everything, Sean iv ACKNOWLEDGEMENTS The first and most important acknowledgement is for my advisor, Dr. Travis Salisbury. I’ll start off by saying that I would not have survived the program, nor would I have become the scientist I am today and want to continue to be, if it was not for him. He allowed me to pursue my original research that was outside the realm of his research, and he helped me turn an original idea into a complete story that I could make a reality. He has been an incredible mentor, an absolutely amazing role model, and scientist. He has been and continues to be extremely patient for putting up with my often-overzealous passion and tenacity. He has also helped me apply my creativity into research. His office door was always open to me, and he was always there in the lab with me to help me complete my experiments. He always challenged me to do my best work through encouraging me to think completely through my ideas. He helped me realize my strengths and weaknesses, and how to improve upon as well as work with my ideas. It is because of Dr. Salisbury that I learned what it truly means to be a scientist. I am forever grateful. I would also like to thank my amazing committee members Dr. Gary Rankin and Dr. Monica Valentovic for their professional advice and many letters of recommendation. They are two of the greatest scientists and people I know. Thank you so much for all that you have done for me, and for introducing me to the BMS program when I was studying forensic science. I would not have come to this program if it was not for you both. I also would like to extend my thanks to Dr. Richard Egleton for being an awesome teacher. I always enjoyed going to your lectures, and your door was always open for random conversations and professional advice, as well as introducing me to peanut butter powder. I also want to thank Dr. Green for serving on my committee, for keeping me on track to graduate, and for generously introducing me to the Chancellor’s Scholar Program. I would not have been given the opportunity to pursue this v research without you. Thank you all for being supportive of me, and for affording me the opportunities to learn and grow. For all of this, I am incredibly humbled, and will never take any of this for granted. Thank you all! To Katie and Carl, thank you for letting me into your family, becoming my home away from home and for everything you have done for me over these past seven years. You both are truly amazing, and I am truly blessed to have you guys in my life. Rick and Peggy, thank you for all the dinners you made for me and for bringing me into your home for the holidays when I could not go to back to California. But most importantly, thank you for calling me your son (you will always be my other mom and dad). I will make it a point to come visit you all whenever I am back in West Virginia. To Naseeb, Quentin, Ateeq, Arnold, Will E., Will O., Jenna, Warren, Duran, Jason, Cindy and Delilah. You were all there with me from the very beginning when my research was nothing more than an idea and when I was going through my struggles of making it happen. Each of you have always kept me sane in your own unique way, whether it was watching football, chilling out and chatting, going on trips, or just calling and texting me to see how I was doing when you never heard from me for extended periods of time. Thank you for sticking around and looking out for me over the years; I would not have succeeded if I did not have you guys in my life. I am truly grateful to have such amazing friends. Last but not least, I’d like to acknowledge my dogs Bentley, Charlie, and Milo. Thank you for your unconditional love and loyalty. I could not ask for a better entourage to have in my life. vi TABLE OF CONTENTS Approval of Dissertation…………………………………………………………………………. ii Dedication………………………………………………………………………………………...iv Acknowledgements………………………………………………………………………………. v List of Tables……………………………………………………………………………………xiii List of Figures .............................................................................................................................. xiv Abstract ....................................................................................................................................... xvii Chapter 1: Overview of Current Knowledge in Breast Cancer ...................................................... 1 1.1. Survival Rates and Subtypes………………………………………………………….1 1.2. Breast Cancer Subtype Characteristics and Current Treatment Strategies…………...3 1.2.1. Luminal A and B Subtype..………………………………………………....3 1.2.2. HER2-enriched Subtype ............................................................................... 6 1.2.3. Triple Negative Subtype ............................................................................... 9 1.2.4. Breast Cancer Stem Cells………………………………………………….15 1.3. Drug Resistance in Breast Cancer .............................................................................. 24 Chapter 2: The Notch Signaling Pathway ..................................................................................... 29 2.1. Canonical Notch Signaling ........................................................................................ 29 2.2. Physiological Functions of Notch Signaling: Immunity, Inflammation, Hematopoiesis and Development ..................................................................................... 36 2.3. JAG1-dependent Notch Signaling in Cancer ............................................................. 42 2.3.1. Angiogenesis ............................................................................................... 44 2.3.2. Cancer Stem Cells ....................................................................................... 46 2.3.3. Epithelial-Mesenchymal Transition (EMT), Invasion, and Metastasis ...... 47 vii 2.3.4. Proliferation, Cell Cycle Regulation, Drug Resistance, and Survival ........ 49 2.3.5. T-cell Regulation ........................................................................................ 50 2.3.6. A Synopsis of JAG1-Notch Signaling in Breast Cancer ............................ 51 Chapter 3: The Aryl Hydrocarbon Receptor (AHR): A Multi-Faceted Transcription Factor ...... 53 3.1. A Brief History and Introduction to AHR Biology ................................................... 53 3.2. The Canonical AHR Signaling Pathway .................................................................... 55 3.3. Non-canonical AHR Signaling ................................................................................. 60 3.4. TCDD-induced Negative-feedback Loops that Limit AHR Signaling ...................... 64 3.5. Physiological Roles of AHR: Immunity, Development, and Reproduction .............. 67 3.6. AHR Signaling and Cancer ....................................................................................... 69 3.7. Current Problematic Observation and Overall Hypothesis ....................................... 75 Chapter 4: Methods for Studying AHR Signaling ........................................................................ 76 4.1. Materials .................................................................................................................... 76 4.2. RNA-sequencing ........................................................................................................ 76 4.3. Cell Culture and Treatments .....................................................................................
Recommended publications
  • HEF1 (NEDD9) Mouse Monoclonal Antibody [Clone ID: 2G9] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA319568 HEF1 (NEDD9) Mouse Monoclonal Antibody [Clone ID: 2G9] Product data: Product Type: Primary Antibodies Clone Name: 2G9 Applications: IF, WB Recommend Dilution: ELISA: 1:5,000 - 1:20,000, WB: 1:5,000, IF: 1:500, IP: 1:1,000 Reactivity: Human Host: Mouse Clonality: Monoclonal Immunogen: Anti-HEF1 monoclonal antibody was produced by repeated immunizations with a synthetic peptide corresponding to amino acid residues 82-398 of human HEF1 protein (hHEF1, 843 aa, predicted MW 92.8 kDa). Formulation: 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 Concentration: 1 mg/ml Gene Name: neural precursor cell expressed, developmentally down-regulated 9 Database Link: NP_001135865 Entrez Gene 4739 Human Synonyms: CAS-L; CAS2; CASL; CASS2; HEF1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2020 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 HEF1 (NEDD9) Mouse Monoclonal Antibody [Clone ID: 2G9] – TA319568 Note: HEF1, also known as Enhancer of filamentation 1, CRK-associated substrate-related protein, CAS-L, CasL, p105 and Neural precursor cell expressed developmentally down-regulated 9 is the product of the NEDD9 (CASGL) gene. HEF1 functions as a docking protein that plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 may also function in transmitting growth control signals between focal adhesions at the cell periphery and the mitotic spindle in response to adhesion or growth factor signals initiating cell proliferation.
    [Show full text]
  • Expression of Membrane Proteins in Escherichia Coli
    From Biogenesis to Over- expression of Membrane Proteins in Escherichia coli Samuel Wagner Stockholm University © Samuel Wagner, Stockholm 2008 ISBN 978-91-7155-594-6, Pages i-81 Printed in Sweden by Universitetsservice AB, Stockholm 2008 Distributor: Department of Biochemistry and Biophysics, Stockholm University To Claudia. Abstract In both pro- and eukaryotes 20-30% of all genes encode α-helical transmem- brane domain proteins, which act in various and often essential capacities. Notably, membrane proteins play key roles in disease and they constitute more than half of all known drug targets. The natural abundance of membrane proteins is in general too low to con- veniently isolate sufficient material for functional and structural studies. Therefore, most membrane proteins have to be obtained through overexpres- sion. Escherichia coli is one of the most successful hosts for overexpression of recombinant proteins, and T7 RNA polymerase-based expression is the major approach to produce recombinant proteins in E. coli. While the pro- duction of soluble proteins is comparably straightforward, overexpression of membrane proteins remains a challenging task. The yield of membrane lo- calized recombinant membrane protein is usually low and inclusion body formation is a serious problem. Furthermore, membrane protein overexpres- sion is often toxic to the host cell. Although several reasons can be postu- lated, the basis of these difficulties is not completely understood. It is gener- ally believed, that the complex requirements of membrane protein biogenesis significantly contribute to the difficulty of membrane protein overexpres- sion. Therefore, an understanding of membrane protein biogenesis is a pre- requisite for understanding membrane protein overexpression and for de- signing rational strategies to improve overexpression yields.
    [Show full text]
  • Tumor Initiating but Differentiated Luminal-Like Breast Cancer Cells Are Highly Invasive in the Absence of Basal-Like Activity
    Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity Jiyoung Kima, René Villadsena, Therese Sørlieb,c, Louise Fogha, Signe Z. Grønlunda,d, Agla J. Fridriksdottira, Irene Kuhne, Fritz Rankf,1, Vera Timmermans Wielengaf, Hiroko Solvangb,g, Paul A. W. Edwardsh, Anne-Lise Børresen-Daleb,i, Lone Rønnov-Jessend, Mina J. Bisselle,2, and Ole William Petersena,2 aDepartment of Cellular and Molecular Medicine, Centre for Biological Disease Analysis and Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; bDepartment of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello 0310, Oslo, Norway; cCancer Stem Cell Innovation Center, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; dCell and Developmental Biology, Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; eLife Sciences Division, Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Pathology, Rigshospitalet, DK-2100 Copenhagen Ø, Denmark; gDepartment of Biostatistics, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway; hDepartment of Pathology and Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0X2, United Kingdom; and iK. G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Clinical Medicine, University of Oslo, 0318 Oslo, Norway Contributed by Mina J. Bissell, February 28, 2012 (sent for review January 10, 2012) The majority of human breast cancers exhibit luminal epithelial these contradictions is the concept of tumor cell plasticity, i.e., the differentiation. However, most aggressive behavior, including possibility that differentiated luminal cells must acquire basal-like invasion and purported cancer stem cell activity, are considered traits to become malignant (10–14).
    [Show full text]
  • Downregulation of Nuclear and Cytoplasmic Chibby Is Associated with Advanced Cervical Cancer
    6632 ONCOLOGY LETTERS 14: 6632-6644, 2017 Downregulation of nuclear and cytoplasmic Chibby is associated with advanced cervical cancer MING-CHANG YANG1,2*, SHANG-TAO CHIEN3,4*, TZU-FENG YANG2,5, SHIH-YI LIN3, TAI-MIN LEE3 and YI-REN HONG1,6,7 1 2 Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424; Laboratory of 3 Medical Research; Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284; 4Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102; 5Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284; 6Department of Biochemistry, Faculty of Medicine, College of Medicine; 7Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C. Received March 11, 2014; Accepted June 9, 2017 DOI: 10.3892/ol.2017.7050 Abstract. Chibby has been identified as a putative tumor tumors, in which a significantly increased level of protein suppressor and antagonist to β-catenin, thereby controlling expression was detected. Chibby may be a tumor suppressor in the Wnt signaling pathway. Chibby is typically downregulated cervical cancer, since the dysregulation of Chibby expression is in numerous types of cancer and may be associated with associated with tumorigenesis in cervical cancer. Chibby and tumorigenesis. The present study aimed at clarifying the β-catenin expression together may potentially to a biomarker following: i) Whether Chibby antagonizes β-catenin in cervical for disease progression in cervical cancer. cancer; ii) whether Chibby and β-catenin mRNA expression is associated with cancer progression; and iii) whether Chibby Introduction and β-catenin expression may be used as a biomarker.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis
    Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma, Anna-Karin Ekman, Cecilia Bivik Eding and Charlotta Enerbäck The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147791 N.B.: When citing this work, cite the original publication. Verma, D., Ekman, A., Bivik Eding, C., Enerbäck, C., (2018), Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis, Journal of Investigative Dermatology, 138(5), 1088-1093. https://doi.org/10.1016/j.jid.2017.11.036 Original publication available at: https://doi.org/10.1016/j.jid.2017.11.036 Copyright: Elsevier http://www.elsevier.com/ Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma*a, Anna-Karin Ekman*a, Cecilia Bivik Edinga and Charlotta Enerbäcka *Authors contributed equally aIngrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden Corresponding author: Charlotta Enerbäck Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University SE-581 85 Linköping, Sweden Phone: +46 10 103 7429 E-mail: [email protected] Short title Differential methylation in psoriasis Abbreviations CGI, CpG island; DMS, differentially methylated site; RRBS, reduced representation bisulphite sequencing Keywords (max 6) psoriasis, epidermis, methylation, Wnt, susceptibility, expression 1 ABSTRACT Psoriasis is a chronic inflammatory skin disease with both local and systemic components. Genome-wide approaches have identified more than 60 psoriasis-susceptibility loci, but genes are estimated to explain only one third of the heritability in psoriasis, suggesting additional, yet unidentified, sources of heritability.
    [Show full text]
  • Alagille Watson Syndrome (JAG1) Sequencing & Deletion/Duplication
    Lab Dept: Anatomic Pathology Test Name: ALAGILLE WATSON SYNDROME (JAG1) SEQUENCING General Information Lab Order Codes: JAG1 Synonyms: Alagille Watson Syndrome; Cholestasis with Peripheral Pulmonary Stenosis; Arteriohepatic Dysplasia; Syndromatic Hepatic Ductular Hypoplasia; ALGS1 CPT Codes: Sequencing: 81407 – Molecular pathology Level 8 Deletion/Duplication- High Density Targeted Array 81406 – Molecular pathology Level 7 Test Includes: Analysis of bi-directional sequencing. Also includes a targeted array CGH analysis with exon-level resolution to evaluate for a deletion or duplication of one exon of this gene. Logistics Test Indications: Alagille Syndrome is one of the major forms of chronic liver disease in children and is an autosomal dominant disorder with high penetrance but variable expressivity. The main clinical findings include cholestatis due to bile duct paucity, a characteristic facial appearance, and cardiovascular, eye and skeletal abnormalities. Cardiovascular findings include tetralogy of Fallot or singular manifestations thereof, peripheral pulmonary artery stenosis, atrial and/or ventricular septal defects, and coarction of the aorta. Butterfly vertebra is the most common skeletal finding. Other findings include narrowing of interpeduncular spaces in the lumbar spine, spina bifida occulta, and short fingers and ulnae. Facial features consist of broad forehead, triangular face, prominent zygomatic arch and moderate hypertelorism. Posterior embryotoxon and retinal pigmentary changes are common opthalmological findings. ALGS1 is caused by mutations in the JAG1 gene. It encodes jagged-1, a ligand for the Notch receptors. Notch proteins are transmembrane receptors and are components of signaling pathways important for cell fate. JAG1 is expressed in the developing heart and other structures affected in Alagille syndrome. Over 90% of patients with Alagille syndrome have a mutation in the JAG1 gene.
    [Show full text]
  • Immunohistochemical Expression of NEDD9, E-Cadherin and Γ-Catenin and Their Prognostic Significance in Pancreatic Ductal Adenocarcinoma (PDAC)
    BOSNIAN JOURNAL of Basic Medical Sciences RESEARCH ARTICLE WWW.BJBMS.ORG Immunohistochemical expression of NEDD9, E-cadherin and γ-catenin and their prognostic significance in pancreatic ductal adenocarcinoma (PDAC) Petra Radulović*, Božo Krušlin Department of Pathology and Cytology, Sestre Milosrdnice University Hospital, Zagreb, Croatia ABSTRACT Extensive research is being conducted to identify novel diagnostic, predictive and prognostic biomarkers for pancreatic ductal adenocarcinoma (PDAC), as only a few markers have been routinely used so far with limited success. Our aim was to assess the expression of neural precur- sor cell expressed developmentally down-regulated protein 9 (NEDD9), E-cadherin, and γ-catenin in PDAC in relation to clinicopathological parameters and patient survival. We also investigated if there is a correlation of NEDD9 expression with E-cadherin or γ-catenin. The protein expression was determined by immunohistochemistry in 61 PDAC and 61 samples of normal pancreatic tissue. The log rank test and Kaplan- Meier survival curve were used for survival analysis. E-cadherin and γ-catenin expressions were reduced in PDAC, and completely retained in normal pancreatic tissue. Expression of NEDD9 was significantly increased in PDAC (strong expression in 78.7% of cases and moderate in 21.3%) and reduced in normal pancreatic tissue (strong positivity in 45.9% of cases, moderate in 31.1%, and weak in 23%). There was a positive correlation between reduced E-cadherin and γ-catenin expression in PDAC (p = 0.015). The loss or reduced expression of E-cadherin had a negative impact on patient survival (p = 0.020). A negative correlation between E-cadherin expression and tumor grade was also observed (p = 0.011).
    [Show full text]
  • Dioxin) Receptor
    TOXICOLOGICAL SCIENCES 124(1), 1–22 (2011) doi:10.1093/toxsci/kfr218 Advance Access publication September 9, 2011 Exactly the Same but Different: Promiscuity and Diversity in the Molecular Mechanisms of Action of the Aryl Hydrocarbon (Dioxin) Receptor Michael S. Denison,*,1 Anatoly A. Soshilov,* Guochun He,* Danica E. DeGroot,* and Bin Zhao† Downloaded from *Department of Environmental Toxicology, University of California, Davis, California 95616; and †Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China 1To whom correspondence should be addressed at Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588. Fax: (530) 752-3394. E-mail: [email protected]. http://toxsci.oxfordjournals.org/ Received June 6, 2011; accepted August 12, 2011 toxic effects in a wide range of species and tissues (Beischlag The Ah receptor (AhR) is a ligand-dependent transcription et al., 2008; Furness and Whelan, 2009; Hankinson, 2005; factor that mediates a wide range of biological and toxicological Humblet et al., 2008; Marinkovic´ et al., 2010; Poland and effects that result from exposure to a structurally diverse variety Knutson, 1982; Safe, 1990; White and Birnbaum, 2009). The of synthetic and naturally occurring chemicals. Although the overall mechanism of action of the AhR has been extensively best-characterized high-affinity ligands for the AhR include at University of California, Davis - Library on May 4, 2012 studied and involves a classical nuclear receptor mechanism of a wide variety of ubiquitous hydrophobic environmental action (i.e., ligand-dependent nuclear localization, protein hetero- contaminants such as the halogenated aromatic hydrocarbons dimerization, binding of liganded receptor as a protein complex to (HAHs) and nonhalogenated polycyclic aromatic hydrocarbons its specific DNA recognition sequence and activation of gene (PAHs).
    [Show full text]
  • Spatial Protein Interaction Networks of the Intrinsically Disordered Transcription Factor C(%3$
    Spatial protein interaction networks of the intrinsically disordered transcription factor C(%3$ Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie/Molekularbiologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Von Evelyn Ramberger, M.Sc. Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing.Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter: 1. Prof. Dr. Achim Leutz 2. Prof. Dr. Matthias Selbach 3. Prof. Dr. Gunnar Dittmar Tag der mündlichen Prüfung: 12.8.2020 For T. Table of Contents Selbstständigkeitserklärung ....................................................................................1 List of Figures ............................................................................................................2 List of Tables ..............................................................................................................3 Abbreviations .............................................................................................................4 Zusammenfassung ....................................................................................................6 Summary ....................................................................................................................7 1. Introduction ............................................................................................................8 1.1. Disordered proteins
    [Show full text]
  • Role of Regulated Proteolysis in the Communication of Bacteria with the Environment
    fmolb-07-586497 October 11, 2020 Time: 10:35 # 1 REVIEW published: 15 October 2020 doi: 10.3389/fmolb.2020.586497 Role of Regulated Proteolysis in the Communication of Bacteria With the Environment Sarah Wettstadt and María A. Llamas* Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this Edited by: process allows for an immediate response to a given signal, which facilitates adaptation Chew Chieng Yeo, to the surrounding environment and bacterial survival. Moreover, regulated proteolysis Sultan Zainal Abidin University, Malaysia is a fundamental process for the transmission of extracellular signals to the cytosol Reviewed by: through the bacterial membranes. By a proteolytic mechanism known as regulated Iain Lamont, intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of University of Otago, New Zealand the membrane to liberate a cytosolic domain or protein able to modify gene transcription.
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review MIRN21 (microRNA 21) Sadan Duygu Selcuklu, Mustafa Cengiz Yakicier, Ayse Elif Erson Biology Department, Room: 141, Middle East Technical University, Ankara 06531, Turkey Published in Atlas Database: March 2007 Online updated version: http://AtlasGeneticsOncology.org/Genes/MIRN21ID44019ch17q23.html DOI: 10.4267/2042/38450 This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence. © 2007 Atlas of Genetics and Cytogenetics in Oncology and Haematology sequences of MIRN21 showed enrichment for Pol II Identity but not Pol III. Hugo: MIRN21 MIRN21 gene was shown to harbor a 5' promoter Other names: hsa-mir-21; miR-21 element. 1008 bp DNA fragment for MIRN21 gene Location: 17q23.1 was cloned (-959 to +49 relative to T1 transcription Location base pair: MIRN21 is located on chr17: site, see Figure 1; A). Analysis of the sequence showed 55273409-55273480 (+). a candidate 'CCAAT' box transcription control element Local order: Based on Mapviewer, genes flanking located approximately about 200 nt upstream of the T1 MIRN21 oriented from centromere to telomere on site. T1 transcription site was found to be located in a 17q23 are: sequence similar to 'TATA' box - TMEM49, transmembrane protein 49, 17q23.1. (ATAAACCAAGGCTCTTACCATAGCTG). To test - MIRN21, microRNA 21, 17q23.1. the activity of the element, about 1kb DNA fragment - TUBD1, tubulin, delta 1, 17q23.1. was inserted into the 5' end of firefly luciferase - LOC729565, similar to NADH dehydrogenase indicator gene and transfected into 293T cells. The (ubiquinone) 1 beta subcomplex, 8, 19 kDa, 17q23.1.
    [Show full text]