United States Patent 0

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 0 32,736,331 United States Patent 0 CC Patented May 29, 1973 1 2 Speci?c compounds which fall with the above classes 3,736,331 of novel compounds and are particularly useful include ISOTHIOUREAS James Whyte Black, Hempstead, Graham John Durant, N-3- (4 ( 5 ) -imidazolyl) propyl-S-ethylisothiourea, Welwyn Garden City, John Colin Emmett, Kimptdn, N-3- ( 4( 5 ) -imidazolyl) propyl-S-(2-phenylethy1) isothio and Charon Robin Ganellin, Welwyn Garden City, urea, England, assignors to Smith Kline & French Labora N-3 - (4 ( 5 ) -imidazolyl) propyl-S-propargylisothiourea, and tories Limited, Welwyn Garden City, England N-4» (4 ( 5 ) -imidazolyl) butyl-S-methylisothiourea. No Drawing. Filed Oct. 14, 1970, Ser. No. 80,819 Int. Cl. C07d 49/36‘, 31/40, 91/42 Suitable starting materials which may be used for the US. Cl. 260—309 14 Claims 10 synthesis of the isothioureas of Formula I are the com pounds represented by the following Formula II: ABSTRACT OF THE DISCLOSURE FORMULA II N-(heterocyclic-alkyl)isothioureas. These compounds inhibit histamine activity. 15 {To-(0112mm,‘N This invention relates to isothiourea compounds which in which n and A have the same signi?cance as in For are pharmacologically active and to intermediates in the mula I. Of the preferred compounds wherein A is such preparation of these compounds. The compounds of the that an imidazol-4(5)-y1 ring is formed, histamine (n=2) invention normally exist as the addition salts but, for 20 is of course well known and readily available; the com convenience, reference will be made throughout this spec pound where n=3 may ‘be synthesized from 4(5)-2-chlo i?cation to the parent compounds. roethylimidazole as described in Example 1 hereinafter; It has for long been postulated that many of the physio the synthesis of the compound wherein ni=4 has [been de logically active substances within the animal body, in the scribed and the compound wherein n==5 is synthesized course of their activity, combine with certain speci?c sites 25 from e-aminocaproic acid. known as receptors. Histamine is a compound which is Reaction of amines of Formula II with an isothiocy believed to act in such a way but, since the actions of anate of the formula R3NCS wherein R3 is an alkyl group histamine fall into more than one type, it is believed that containing from one to four carbon atoms, phenyl, benzyl there is more than one type of histamine receptor. The or benzoyl leads to compounds of Formula III: type of action of histamine which is blocked by drugs FORMULA III commonly called “antihistamines” (of which mepyramine is a typical example) is believed to involve a receptor which has been designated by Ash and Schild (Brit. J. Pharmac. Chemother. 27:427, 1966) as H-l. The sub 35 stances of the present invention are distinguished. by the The compounds of Formula HI may also be formed, in fact that they act as histamine receptors other than the certain cases, from the amines of Formula II by treatment H-1 receptor. Thus they are of utility in inhibiting certain of the latter with carbon disulphide to form the dithio actions of histamine which are not inhibited by the above carbamic acid, the alkyl ester of which is then treated with mentioned “antihistamines.” 40 R3NH2. The pharmacologically active isothiourea compounds, In the case where R3 in the compounds of Formula III of this invention are represented by the following formula is benzoyl, hydrolysis leads to the corresponding com in which it is understood that the structure of the nucleus pounds wherein R3 is hydrogen, which compounds may is such that the bond between the carbon and nitrogen alternatively be formed directly from the amines of For atoms might equally well be represented as a double 45 mula II by reaction at an elevated temperature with am bond: monium or an alkali metal thiocyanate. FORMULA I The compounds of Formula III wherein R3 is hydrogen, NR2 an alkyl group containing from one to four carbon atoms, phenyl, benzyl or benzoyl form an important part of the 50 present invention. Treatment of these compounds with SR1 the compound R1Y wherein R1 has the same signi?cance in which: as in Formula I and Y is halogen or hydroxy leads to the isothioureas of Formula I. This reaction is normally n is 2 to 5; carried out on the halogen acid addition salt of the com A is a chain of 3 to 4 atoms of which 1 to 2 are nitrogen 55 pounds of Formula III and/or in the presence of a halo or 1 is sulfur in the position alpha to the carbon atom gen acid which, when Y is halogen, will conveniently be and the remainder are carbon, which chain forms an of the Formula HY. The reaction will normally be car unsaturated ring with the carbon and nitrogen atoms ried out in a suitable solvent such as an alcohol, e.g. to which it is attached; ethanol, dimethylformamide or acetone. R1 is a saturated or unsaturated alkyl group having 1 to 60 Alternatively, the compounds of Formula III may be 6 carbon atoms or (CH2)mZ where m is 1 to 3 and Z treated with an unsaturated substance such as acrylonitrile is phenyl optionally substituted by halogen, hydroxy or as described in Example 16 hereinafter to yield the cor nitro; hydroxy; di-lower alkylamino; cyano; carboxy; responding isothiourea within the scope of Formula I. phenoxy; benzhydryloxy or imidazolyl and An alternative method for the production of certain R2 is hydrogen, alkyl having 1 to 4 carbon atoms, phenyl 65 compounds of Formula I from the amines of Formula H or benzyl or R1 and R2 together with the carbon-atoms involves treatment of the latter with an alkylthio com to which they are attached may form a thiazoline or pound for example with 2-methylmercapto-Z-thiazoline thiazolin-4-one ring I as described in Example 27 hereinafter. and pharmaceutically acceptable acid addition salts there As stated hereinabove the isothioureas of our invention of. 70 normally exist and are produced as addition salts with Most preferably A is such that it forms with the carbon acids. Such addition salts include those with hydrochloric, and nitrogen atoms shown an imidazol-4(5)-yl ring. hydrobromic, hydriodic, sulphuric, picric and maleic 3,736,331 acids and as described in a number of the examples here M.P. 118—120° C., is obtained by acidi?cation with dry inafter, the addition salt with one of these acids may hydrogen chloride in ether. readily be converted to that with another. Such conver A solution of 4(5)-(2-cyanoethyl)imidazole (61 g.) in sion may be effected by means of ion-exchange tech absolute alcohol (600 ml.) is saturated with gaseous am niques. A particularly useful method which also in many monia at --20° C. The resultant solution is hydrogenated cases elfects puri?cation to a su?icient degree to allow the over Raney nickel catalyst (approximately 4 g.) at 100 resultant solution of the addition salt to be used for phar atmospheres pressure for four hours at a temperature of macological estimations involves the formation of the 135-145 ° C. After cooling, ?ltration and treatment with picrate salt and conversion therefrom to the chloride salt. charcoal, the solution is concentrated under reduced pres As stated above, the isothioureas of Formula I have 10 sure, a?'ording 4(5) - 3-aminopropylimidazole as a low been found to have pharmacological activity in the animal melting solid. For puri?cation, the amine (61 g.) is dis body as antagonists to certain actions of histamine which solved in a solution of sodium bicarbonate (82 g.) in are not blocked by “antihistamines” such as mepyramine. water (1.6 l.) and N-carbethoxyphthalimide ‘(122 g.) For example, they have been found to inhibit selectively added over 0.5 hour. After stirring for 1.5 hours, the solid the histamine-stimulated secretion of gastric acid from 15 is collected, Washed with water and dried. Recrystalliza the lumen-perfused stomachs of rats anaesthetised with tion from aqueous ethanol yields 4(5)-(3-phthalimido~ urethane, at doses from 8 to 256 micromoles per kilogram. propyl)imidazole. A pure sample obtained by further re~ Similarly, the action of these compounds may, in many crystallization from aqueous ethanol has M.P. 160 cases, be demonstrated by their antagonism to the eifects 162° C. of histamine on other tissues which, according to the Hydrolysis with 5 N hydrochloric acid for 16 hours above-mentioned paper of Ash and Schild, are not H-l followed by removal of phthalic acid yields 4(5)-3 receptors. Examples of such tissues are perfused isolated aminopropylimidazole dihydrochloride, M.P. 156-158° C. guinea-pig heart, isolated guineaapig right atrium and (from ethanol-ether). Treatment with sodium ethoxide in isolated rat uterus. ethanol yields pure 4(5)-(3-aminopropyl)imidazolc. The compounds of Formula I may be combined with a A solution of benzoyl isothiocyanate (65.2 g.) in chlo pharmaceutically acceptable carrier to form pharmaceu roform is added slowly to a solution of 4(5)-(3-amino tical compositions. Advantageously the composition will propyl)~imidazole (50.0 g.) in chloroform (1.5 1.). The be made up in dosage unit form appropriate to the de resultant solution is heated at re?ux temperature for two sired mode of administration. The pharmaceutical carrier hours and concentrated under reduced pressure. The employed may be, for example, either a solid or liquid. 30 residue is dissolved in ethanol and added to an excess Exemplary of solid carriers are lactose, terra alba, su of distilled water which results in the precipitation of a crose, talc, gelatin, agar, pectin, acacia, magnesium stea White solid.
Recommended publications
  • Wo 2009/082437 A9
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) CORRECTED VERSION (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 2 July 2009 (02.07.2009) WO 2009/082437 A9 (51) International Patent Classification: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, C07D 207/08 (2006.01) A61K 31/402 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, C07D 207/09 (2006.01) A61P 5/26 (2006.01) NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, C07D 498/04 (2006.01) SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: PCT/US2008/013657 (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (22) International Filing Date: G M M N S D S L s z τ z U G Z M 12 December 2008 (12.12.2008) z w Eurasian (A M B γ KG> M D RU> τ (25) Filing Language: English TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (26) Publication Language: English M C M T N L N O P L P T R O S E S I s T R OAPI (30) Priority Data: B F ' B J ' C F ' C G ' C I' C M ' G A ' G N ' 0 G W ' M L ' M R ' 61/008,731 2 1 December 2007 (21 .12.2007) US N E ' S N ' T D ' T G ) - (71) Applicant (for all designated States except US): LIG- Declarations under Rule 4.17: AND PHARMACEUTICALS INCORPORATED [US/ — as to applicant's entitlement to apply for and be granted US]; 11085 N.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 5,072,065 Sun Et Al
    United States Patent (19) 11) Patent Number: 5,072,065 Sun et al. 45 Date of Patent: Dec. 10, 1991 54 NHIBITING POPCORN POLYMER FORMATION WITH ALKYL HALDES FOREIGN PATENT DOCUMENTS 63-223003 9/1988 Japan. (75) inventors: Hsiang-ning Sun, Houston, Tex.; Steven J. Potlock, Baton Rouge, La. OTHER PUBLICATIONS Liu, Plugging-Up of Equipment by Self-Polymeriza (73) Assignee: Exxon Chemical Patents Inc., tion Butadiene Production and its Prevention, China Linden, N.J. Synthetic Rubber Industry, 11(5) 356-360 (1988) & English abstract. 21 Appl. No.: 647,358 Liu et al., Determination of Traces of Diethylhydrox ylamine Inhibitor in c5 Fraction by Gas Chromatogra 22 Fied: Jan. 29, 1991 phy, China Synthetic Rubber Industry, 12(6), 408-410 (1989) & English abstract. (51 Int, C. ........................... C07C 7/20; B08B 9/00 (52) U.S. C. ..................................... 585/2; 134/22.19; Primary Examiner-Curtis R. Davis 585/3,585/950 Attorney, Agent, or Firm-Linda K. Russell (58 Field of Search ............................... 585/3, 2,950; 57 ABSTRACT 34/22.19 Inhibition of popcorn polymer growth by treatment with an alkyl halide. This compound can be admixed (56) References Cited with organic material from which popcorn polymer is U.S. PATENT DOCUMENTS formed, or added to a system for the recovery, use or 4,404,413 9/1983 Heskell ................................ 585/950 storage of such organic material. 4,941,926 7/1990 Nakajima ................................ 585/5 4,956,020 9/1990 Nakajima ................................ 585/5 16 Claims, No Drawings 5,072,065 1. 2 once present in a system. Some of the seeds become NHIBITING POPCORN POLYMER FORMATION attached to the processing and handling equipment, and WITH ALKYL HALDES cannot be readily removed by mechanical means; more over, being insoluble in most common solvents, they are CONCURRENTLY FILED APPLICATIONS virtually impossible to wash out by use of such solvents.
    [Show full text]
  • Aldrich Vapor
    Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2-
    [Show full text]
  • Chapter 2: Alkanes Alkanes from Carbon and Hydrogen
    Chapter 2: Alkanes Alkanes from Carbon and Hydrogen •Alkanes are carbon compounds that contain only single bonds. •The simplest alkanes are hydrocarbons – compounds that contain only carbon and hydrogen. •Hydrocarbons are used mainly as fuels, solvents and lubricants: H H H H H H H H H H H H C H C C H C C C C H H C C C C C H H H C C H H H H H H CH2 H CH3 H H H H CH3 # of carbons boiling point range Use 1-4 <20 °C fuel (gasses such as methane, propane, butane) 5-6 30-60 solvents (petroleum ether) 6-7 60-90 solvents (ligroin) 6-12 85-200 fuel (gasoline) 12-15 200-300 fuel (kerosene) 15-18 300-400 fuel (heating oil) 16-24 >400 lubricating oil, asphalt Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H C H eth- -ane ethane 2 6 H3C CH3 C3H8 prop- -ane propane C4H10 but- -ane butane C5H12 pent- -ane pentane C6H14 hex- -ane hexane C7H16 hept- -ane heptane C8H18 oct- -ane octane C9H20 non- -ane nonane C10H22 dec- -ane decane Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C H prop- -ane propane 3 8 H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane butane? H3C C CH3 or CH3 HydHrydorcocaarrbobnos ns Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C3H8 prop- -ane propane H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane iso-butane H3C C CH3 or CH3 HydHrydoroccarbrobnsons Formula Prefix Suffix Name Structure H H
    [Show full text]
  • By ZELDA KAIIAN, B.Sc. SOME Years Ago, Ur. Travers, Wishing to Prepare Butane, Employed for This Purpose the Well Known Method O
    View Article Online / Journal Homepage / Table of Contents for this issue 132 KAHAN: THE EFFECT OF HEAT ON THE ALKYL IODIDES. By ZELDAKAIIAN, B.Sc. SOMEyears ago, Ur. Travers, wishing to prepare butane, employed for this purpose the well known method of heating together ethyl iodide and zinc. He found, however, that, instead of obtaining pure butane, a mixture of gases was formed, the chief constituent of which was ethane, To investigate the cause of this, a few preliminary experi- Published on 01 January 1908. Downloaded by State University of New York at Stony Brook 26/10/2014 03:29:37. ments were performed, but the work was abandoned owing to lack of time. The investigation of the influence of heat on the alkyl iodides is so much the more important in view of the interesting experiments performed by Nef, and the theory of the bivalent carbon atom based upon them. If it could be proved that in the state of vapour the alkyl iodides are dissociated, it would at least be strong evidence of their being in a similar state in solution. As a result of a large number of experiments (ilnnalen, 1892, 270, 267 ; 1897, 297, 202 ; 1899, 309, 126; 1901, 318, I), Nef has arrived at the conclusion that all chemical actions, whether of addition or substitution, are to be explained by an application, in each case, of the principle of dis- sociation. As regards the alkyl halides, Nef assumes that the first stage in their reaction in solution, whatever the other reacting sub- stance may be, is a dissociation into an alkylidene or methylene deriv- View Article Online KAIIAN: THE EFFECT OF HEAT ON THE ALKYI, IODIDES.
    [Show full text]
  • SAFETY DATA SHEET Revision Date 07/28/2021 Print Date 09/18/2021
    Version 6.4 SAFETY DATA SHEET Revision Date 07/28/2021 Print Date 09/18/2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : 2-Iodopropane Product Number : 148938 Brand : Aldrich CAS-No. : 75-30-9 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Flammable liquids (Category 3), H226 Skin irritation (Category 2), H315 Eye irritation (Category 2A), H319 Specific target organ toxicity - single exposure (Category 3), Respiratory system, H335 For the full text of the H-Statements mentioned in this Section, see Section 16. 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Warning Aldrich - 148938 Page 1 of 9 The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada Hazard statement(s) H226 Flammable liquid and vapor. H315 Causes skin irritation. H319 Causes serious eye irritation. H335 May cause respiratory irritation. Precautionary statement(s) P210 Keep away from heat/ sparks/ open flames/ hot surfaces. No smoking. P233 Keep container tightly closed.
    [Show full text]
  • Petroleum No
    "2732 Petroleum No. 468 1973. No. 468 {NC] PETROLEUM Inflammable Liquids ORDER, DATED THE 19TH DAY OF NOVEMBER 1973, MADE BY THE SECRETA,RY OF STATE UNDER SECTION 19 OF THE PETROLEUM (CONSOLiDATION) ACT (NORTHERN 1;RELAND) 1929. " In exercise of the powers conferred on me by section 19 of the Petwleum (Consolidation) Act (Nor.thern Ireland) 1929(a) and sectien 1(1) of the Northern Ireland (Temporary Provisions) Act 1972(b) and of all other powers ena:bling me in ;that behalf I hereby make the follewing Order:- Application of the Act of 1929 to certain substances 1.-(1) Sections 6, 13(2) and (3), 14, 15, 16 and 18 of the Petroleum (Conselidation) Act (Northern Ireland) 1929 shall apply to s:uch of the fellowing substances, solutiens and mixtures as give eff an inflammable vapour at a ;temperature below 23 degrees Centigrade (73 degrees Fahrenheit), that is to say:- (a) the substances specified in the first column in Part I of the Schedule tOl this Order, being substances which are known also by the name or names (if any) mentioned in the second column; (b) any solutien or mixture (not being a mixture of petroleum as defined in the Schedule to. the Petroleum (Mixtures) Order (Northern Ireland) 1930(c) which contains any. of the said substances; and (c) any solutien specified in Part II ef the Schedule to this Order. (2) Fer the purposes ef this Ar.ticle a substance, solution or mixture shall be regarded as giving off an inflammable vapour at a temperature belew 23 degrees Centigrade (73' degrees Fahrenheit) if it does se when tested as if it were petroleum spirit in the manner set forth in Part II of the Secend Schedule ;to the Petroleum (Consolidation) Act (Northern Ireland) 1929.
    [Show full text]
  • Process for the Production of Pentaerythritol
    Europäisches Patentamt *EP001399456B1* (19) European Patent Office Office européen des brevets (11) EP 1 399 456 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07F 9/6574 of the grant of the patent: 07.12.2005 Bulletin 2005/49 (86) International application number: PCT/US2002/019159 (21) Application number: 02744389.4 (87) International publication number: (22) Date of filing: 17.06.2002 WO 2003/002581 (09.01.2003 Gazette 2003/02) (54) PROCESS FOR THE PRODUCTION OF PENTAERYTHRITOL PHOSPHATE ALCOHOL VERFAHREN ZUR HERSTELLUNG VON PENTAERYTHRITOLPHOSOHATALKOHOL PROCEDE DE PRODUCTION D’ALCOOL DE PHOSPHATE DE PENTAERYTHRITOL (84) Designated Contracting States: (56) References cited: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU EP-A- 0 578 318 US-A- 4 454 064 MC NL PT SE TR • CHEMICAL ABSTRACTS, vol. 135, Columbus, (30) Priority: 29.06.2001 US 896710 Ohio, US; abstract no. 211146, PENG, XIAOPING ET AL: "Preparation method of pentaerythritol (43) Date of publication of application: phosphate" XP002214946 & CN 1 281 861 A 24.03.2004 Bulletin 2004/13 (RESEARCH INST., YUEYANG PETRO-CHEMICAL GENERAL PLANT, PEOP. (73) Proprietor: PABU Services, Inc. REP. CHINA) 31 January 2001 (2001-01-31) Wilmington, Delaware 19801 (US) • TSE H L A ET AL: "Constrained analogues of 2’-nor cyclic nucleoside monophosphates" (72) Inventors: BIOORGANIC & MEDICINAL CHEMISTRY • VYVERBERG, Frederick LETTERS, OXFORD, GB, vol. 7, no. 11, 3 June Chester, NY 10918 (US) 1997 (1997-06-03), pages 1387-1392, • CHAPMAN, Robert, W. XP004136222 ISSN: 0960-894X Mt. Vernon, IN 47620-9657 (US) (74) Representative: von Kreisler, Alek et al Deichmannhaus am Dom, Postfach 10 22 41 50462 Köln (DE) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Reactions of Tertiary Phosphites with Alkyl Iodides in Acetonitrile
    AN ABSTRACT OF THE THESIS OF LANE JOSEPH GOODELL for the MASTER OF SCIENCE (Name) (Degree) in CHEMISTRY presented on Mcy Q\-\ `j CIL4 (Major) (Dates Title: REACTIONS OF TERTIARY PHOSPHITES WITH ALKYL IODIDES IN ACETONITRILE Abstract approved: Redacted for Privacy Dr. John Thdma Yoke III The Arbuzov reaction is an important method of synthesis of compounds containing a carbon -phosphorus bond. (RO)3P + R'X 1 [(RO)3PR')X],-- (RO)2P(0)R' + RX The intermediate might have a salt -like or a penta- coordinate type of structure, or both in equilibrium. In many systems, the rate determining step of the reaction is not known. A polar solvent might have a significant influence on these points. Although the reaction is normally carried out without a solvent, two groups of workers have studied the kinetics of the reaction in acetonitrile. These two groups published conflicting reports, speci- fically related to the system of tri -n -butyl phosphite with ethyl iodide in acetonitrile at 310 . The possibilities for the reaction to be considered in the present work were (1) olefin elimination from the tertiary phosphite to give a dialkyl hydrogen phosphonate, (2) inadvertent hydrolysis to give a dialkyl hydrogen phosphonate and an alcohol, (3) the Arbuzov reaction to give a dialkyl alkylphosphonate, and (4) no reaction. Assuming that it is the Arbuzov reaction which actually occurs for such reactants in acetonitrile, the previous reports were also in conflict as to the rate determining step. In the present work, it was found by qualitative and quantitative analysis of this system that the Arbuzov reaction occurs, but very slowly, contrary to one of the previous reports.
    [Show full text]
  • Flammability Limits, Flash Points, and Their Consanguinity: Critical Analysis, Experimental Exploration, and Prediction
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2010-06-25 Flammability Limits, Flash Points, and Their Consanguinity: Critical Analysis, Experimental Exploration, and Prediction Jeffrey R. Rowley Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Chemical Engineering Commons BYU ScholarsArchive Citation Rowley, Jeffrey R., "Flammability Limits, Flash Points, and Their Consanguinity: Critical Analysis, Experimental Exploration, and Prediction" (2010). Theses and Dissertations. 2233. https://scholarsarchive.byu.edu/etd/2233 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Flammability Limits, Flash Points, and their Consanguinity: Critical Analysis, Experimental Exploration, and Prediction Jef Rowley A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy W. Vincent Wilding, Chair Richard L. Rowley Larry L. Baxter Thomas A. Knotts David O. Lignell Department of Chemical Engineering Brigham Young University August 2010 Copyright © 2010 Jef Rowley All Rights Reserved ABSTRACT Flammability Limits, Flash Points, and their Consanguinity: Critical Analysis, Experimental Exploration, and Prediction Jef Rowley Department of Chemical Engineering Doctor of Philosophy Accurate flash point and flammability limit data are needed to design safe chemical processes. Unfortunately, improper data storage and reporting policies that disregard the temperature dependence of the flammability limit and the fundamental relationship between the flash point and the lower flammability limit have resulted in compilations filled with erroneous values.
    [Show full text]
  • ACS Style Guide
    ➤ ➤ ➤ ➤ ➤ The ACS Style Guide ➤ ➤ ➤ ➤ ➤ THIRD EDITION The ACS Style Guide Effective Communication of Scientific Information Anne M. Coghill Lorrin R. Garson Editors AMERICAN CHEMICAL SOCIETY Washington, DC OXFORD UNIVERSITY PRESS New York Oxford 2006 Oxford University Press Oxford New York Athens Auckland Bangkok Bogotá Buenos Aires Calcutta Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Idaban Copyright © 2006 by the American Chemical Society, Washington, DC Developed and distributed in partnership by the American Chemical Society and Oxford University Press Published by Oxford University Press, Inc. 198 Madison Avenue, New York, NY 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the American Chemical Society. Library of Congress Cataloging-in-Publication Data The ACS style guide : effective communication of scientific information.—3rd ed. / Anne M. Coghill [and] Lorrin R. Garson, editors. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8412-3999-9 (cloth : alk. paper) 1. Chemical literature—Authorship—Handbooks, manuals, etc. 2. Scientific literature— Authorship—Handbooks, manuals, etc. 3. English language—Style—Handbooks, manuals, etc. 4. Authorship—Style manuals. I. Coghill, Anne M. II. Garson, Lorrin R. III. American Chemical Society QD8.5.A25 2006 808'.06654—dc22 2006040668 1 3 5 7 9 8 6 4 2 Printed in the United States of America on acid-free paper ➤ ➤ ➤ ➤ ➤ Contents Foreword.
    [Show full text]
  • The Preparation of Alkyl Iodides Ernest Milford Parrott University of Massachusetts Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1932 The preparation of alkyl iodides Ernest Milford Parrott University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Parrott, Ernest Milford, "The preparation of alkyl iodides" (1932). Masters Theses 1911 - February 2014. 1861. Retrieved from https://scholarworks.umass.edu/theses/1861 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. MASSACHUSETTS STATE COLLEGE DATE DUE UNIVERSITY OF MASSACHUSETTS LIBRARY PHYS sell LD ' M268 1932 P26$ PhYS IL?.?'^«2 . ,CE Thes IS TIE PREPARATION OF AUCYL IODIDES Emset Uilford r^rrott Thasis Submitted for The Degree of Master of SeleiK* MASSACHUSSTTS STATE COLLm mj 1932 TABLE OF CONTENTS Page ^ Introduction • Methods of Preparation 10 Experimental Part *3 (1) Preparation of Ethyl Iodide 23 24 (2) Preparation of Methyl Iodide 25 (3) Preparation of Propyl Iodides (a) Using Is ©propyl Alcohol 25 (b) Using Normal Propyl Alcohol 26 27 (4) Preparation of Butyl Iodides (a) Using Normal Butyl Alcohol 27 (b) Using Isobutyl Alcohol 28 28 (e) Using Tertiary Butyl Alcohol 33 Conclusions ..... 34 Bibliography • 36 Acknowledgments . » DfTRODUCTIQH Alkyl faalldttB may be r«gard*d aither as hydrocarbons im which hydrogSB atom ar« rsplaead by halogni at on or as esters of halogen hydraeids and alkyl radicals. By alatalning those two points of view the aode of foraation and the reactions of this class of bodies should be folleved with no difficulty.
    [Show full text]