Europäisches Patentamt *EP001399456B1* (19) European Patent Office

Office européen des brevets (11) EP 1 399 456 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.7: C07F 9/6574 of the grant of the patent: 07.12.2005 Bulletin 2005/49 (86) International application number: PCT/US2002/019159 (21) Application number: 02744389.4 (87) International publication number: (22) Date of filing: 17.06.2002 WO 2003/002581 (09.01.2003 Gazette 2003/02)

(54) PROCESS FOR THE PRODUCTION OF PENTAERYTHRITOL PHOSPHATE ALCOHOL VERFAHREN ZUR HERSTELLUNG VON PENTAERYTHRITOLPHOSOHATALKOHOL PROCEDE DE PRODUCTION D’ALCOOL DE PHOSPHATE DE PENTAERYTHRITOL

(84) Designated Contracting States: (56) References cited: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU EP-A- 0 578 318 US-A- 4 454 064 MC NL PT SE TR • CHEMICAL ABSTRACTS, vol. 135, Columbus, (30) Priority: 29.06.2001 US 896710 Ohio, US; abstract no. 211146, PENG, XIAOPING ET AL: "Preparation method of pentaerythritol (43) Date of publication of application: phosphate" XP002214946 & CN 1 281 861 A 24.03.2004 Bulletin 2004/13 (RESEARCH INST., YUEYANG PETRO-CHEMICAL GENERAL PLANT, PEOP. (73) Proprietor: PABU Services, Inc. REP. CHINA) 31 January 2001 (2001-01-31) Wilmington, Delaware 19801 (US) • TSE H L A ET AL: "Constrained analogues of 2’-nor cyclic nucleoside monophosphates" (72) Inventors: BIOORGANIC & MEDICINAL CHEMISTRY • VYVERBERG, Frederick LETTERS, OXFORD, GB, vol. 7, no. 11, 3 June Chester, NY 10918 (US) 1997 (1997-06-03), pages 1387-1392, • CHAPMAN, Robert, W. XP004136222 ISSN: 0960-894X Mt. Vernon, IN 47620-9657 (US)

(74) Representative: von Kreisler, Alek et al Deichmannhaus am Dom, Postfach 10 22 41 50462 Köln (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 1 399 456 B1

Printed by Jouve, 75001 PARIS (FR) EP 1 399 456 B1

Description

Claim for Priority

5 [0001] This application claims the benefit of the filing date of U.S. Provisional Patent Application Serial No. 09/896,710, of the same title, filed June 29, 2001.

BACKGROUND OF THE INVENTION

10 Field of the Invention

[0002] This invention relates to an improved process for the production of pentaerythritol phosphate alcohol.

Description of the Related Art 15 [0003] Pentaerythritol phosphate alcohol (PEPA) is a known effective flame retardant for plastics and other combus- tibles when used alone as an additive, or as part of a combination of additives. PEPA may be synthesized by the liquid phase reaction of pentaerythritol and oxychloride using a solvent to enable the reaction to go forward but in which the PEPA product has little if any after the reaction solution is cooled. However, various problems 20 with this process have been caused by certain undesirable properties of the solvents employed, e.g., excessive flam- mability in the case of ethers such as dioxane which also has a tendency to form explosive peroxides in contact with air and cannot be easily separated from by product HCl and water making solvent recycle difficult, or problems of purification and recycling due to the high boiling points and of solvents such as aryl phosphates. Thus, the use of a solvent which avoids some or all of the foregoing problems is very desirable. 25 [0004] U.S. Patent No. 4,454,064, issued June 12, 1984 to Halpern et al., discloses the preparation of PEPA by reacting approximately equimolar amounts of pentaerythritol (PE) and phosphorus oxychloride in a solvent at a tem- perature of about 75°C to about 125°C, cooling the mixture to precipitate the PEPA, and isolating the PEPA. The disclosed solvents are dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, chlorobenzene, tolu- ene, xylene, acetonitrile, sulfolane, and tetrachlorethylene. 30 [0005] U.S. Patent No. 5,237,085, issued August 17, 1993 to Telschow et al., teaches a process for the formation of pentaerythritol-based phosphorus heterocycles, e.g., PEPA, comprising the reaction of a pentaerythritol polyol with either a trivalent or pentavalent phosphorus compound, e.g., phosphorus oxychloride, using an arylphosphate solvent, at elevated temperature. [0006] Chemical Abstracts, vol. 135, Columbus, Ohio, US; abstract no. 211146, Peng, Xiaoping et al: "Preparation 35 method of pentaerythritol phosphate" XP002214946 & CN 1 281 861 A (Research Inst., Yueyang Petrochemical Gen- eral Plant, Peop. Rep. China) 31 January 2001 disclose a process for the preparation of pentaerythritol phosphate alcohol (PEPA) by esterification of pentaerythritol with POCl3 in a halohydrocarbon solvent with a boiling range of 96-140°C. The solvent used by said invention method can be obtained by distilling by-product produced in production of chloropropene, and is a mixture of 1,2-dichloropropane, 1,2-dichloropropene, 1,3-dichloropropene, and/or 40 1,2,3-trichloropropane.

BRIEF SUMMARY OF THE INVENTION

[0007] In accordance with this invention the following is provided 45 (1) A process for the production of pentaerythritol phosphate alcohol (PEPA) comprising reacting in the liquid phase phosphorous oxychloride (POCl3) with pentaerythritol (PE) at a reaction temperature of at least 100°C in the pres- ence of a solvent which is an alkane substituted with at least one halogen atom and having an atmospheric boiling point of 40 to 150°C, said atmospheric boiling point being below said reaction temperature, the reaction pressure 50 being superatmospheric and sufficiently high to maintain the solvent in the liquid phase, the reaction resulting in the production of PEPA and HCl by-product.

(2) The process of (1) wherein said alkane is methane, or .

55 (3) The process of (2) wherein said halogen atom is chlorine.

(4) The process of (3) wherein said solvent is 1,2-dichloroethane (ethylene dichloride or EDC).

2 EP 1 399 456 B1

(5) The process of (1) wherein said reaction temperature is in the range of 100 to 150°C.

(6) The process of (5) wherein said reaction temperature is in the range of 110 to 130°C.

5 (7) The process of (1) wherein said superatomspheric reaction pressure is up to 482,79 kPa (70 psig).

(8) The process of (7) wherein said reaction pressure is in the range of 137,94 kPa to 344,85 kPa (20 to 50 psig).

(9) The process of (1) wherein the atmospheric boiling point of said solvent is in the range of 80 to 120°C. 10

(10) The process of (1) wherein said molar ratio of POCl3 to PE is in the range of 0.9 to 1.10 moles of POCl3 per mole of PE.

(11) The process of (1) carried out by adding the total amount of PE to the solvent, heating the resulting slurry in 15 the reaction zone to a temperature close to the desired reaction temperature while allowing the pressure in the reaction zone to increase to the superatmospheric reaction pressure, adding the POCl3 portionwise to the reaction zone, maintaining the reaction temperature at the desired level, and continuing the reaction until the substantial completion of the evolution of HCl off-gas.

20 (12) The process of (11) wherein the pressure in the reaction zone is allowed to rise to a superatomspheric level by the accumulation of HCl off-gas.

(13) The process of (1) wherein the reaction time is in the range of 0.5 to 8 hours.

25 (14) The process of (13) where said range of reaction time is 1 to 3 hours.

(15) The process of (11) wherein said POCl3 is added within a time range of 5 minutes to 2 hours.

(16) The process of (11) wherein PEPA is produced before further purification in a mass yield of at least 95% of 30 the theoretical yield based on the reactant present in limiting amount and with a PEPA purity of at least 80%.

(17) A process for the production of pentaerythritol phosphate alcohol (PEPA) comprising reacting in the liquid phase phosphorus oxychloride (POCl3) with pentaerythritol (PE) at a molar ratio of no more than 1.20 mole of POCl3 per mole ofPE and at a reaction temperature of at least 100°C in the presence of a solvent which is an 35 alkane substituted with at least one halogen atom and having an atmospheric boiling point of 40 to 150°C, said atmospheric boiling point being below said reaction temperature, the reaction pressure being superatmospheric and sufficiently high to maintain the solvent in the liquid phase, the reaction resulting in the production of PEPA and HCl by-product.

40 (18) The process of (17) wherein said molar ratio is no more than 1.15.

(19) The process of (17) wherein said alkane is methane, ethane or propane.

(20) The process of (19) wherein said halogen atom is chlorine. 45 (21) The process of (20) wherein said solvent is 1,2-dichloroethane (ethylene dichloride or EDC).

(22) The process of (17) wherein said reaction temperature is in the range of 100 to 150°C.

50 (23) The process of (22) wherein said reaction temperature is in the range of 110 to 130°C.

(24) The process of (1) wherein said superatomspheric reaction pressure is up to 482,79 kPa (70 psig).

(25) The process of (24) wherein said reaction pressure is in the range of 137,94 kPa to 344,85 kPa (20 to 50 psig). 55 (26) The process of (1), wherein said solvent is selected from the group consisting of 1,2-dichloroethane (ethylene dichloride or EDC), 1,1-dichloroethane (ethylidene chloride), 1,1,1-trichloroethane (methyl ), trichlo- romethane (chloroform) tetrachloromethane (carbon tetrachloride), 1,1-dichloropropane, 1-bromopropane (n-pro-

3 EP 1 399 456 B1

pylbromide), 2-bromopropane (isopropylbromide), iodoethane (), 2-iodopropane (isopropyl iodide), and bromochloromethane.

[0008] The foregoing solvents utilized in the process of this invention present fewer problems associated with the 5 properties of the solvent as identified previously than many of the solvents for the reaction which are known in the art.

DETAILED DESCRIPTION OF THE INVENTION

[0009] Pentaerythritol phosphate alcohol (PEPA) is a white solid compound having a of 213-218°C and 10 the following structural formula:

15

20 [0010] The CAS registry name of this compound is 2,6,7-trioxa-1-phosphabicyclo-[2,2,2]octane-4-methanol-1-oxide. [0011] The PEPA is synthesized by reacting approximately equimolar amounts of phosphorous oxychloride and pen- taerythritol (PE) in the liquid phase, and in the presence of any of a specific class of solvents for the reactants as defined hereinafter. The reaction proceeds in accordance with the following equation:

25 C(CH2OH)4 + POCl3 → PEPA + 3HCl

[0012] No catalyst is required for this reaction. [0013] In general, when the amount of POCl3 utilized in the reaction is 1 mole or slightly more per mole of PE, the 30 mass yield of PEPA produced is relatively high, e.g., at least 95% based on the POCl3. Of course, the use of less than I mole of POCl3 per mole ofPE will reduce the overall yield of PEPA since the POCl3 is the limiting reactant. As used herein, "mass yield" is defined as the amount of product recovered as a fraction of the theoretical amount of PEPA expected based on the quantity of limiting reactant charged to the vessel. However, it has been found that the employ- ment of substantially more than 1 mole of POCl3 per mole of PE tends to reduce the mass yield of PEPA based on the 35 PE even though the PE in this case is the limiting reactant; see comparative Example B hereinafter. The apparent cause of this reduction in the mass yield of PEPA when POCl3 is present in a relatively large excess is the occurrence of another reaction between POCl3 and PE in accordance with the following equation:

40

45

The phosphorus containing product of the reaction indicated in the latter equation is 3,9-dichloro-2,4,8,10-tetraoxa- 3,9-diphosphaspiro[5,5]undecane-3,9-dioxide. [0014] Taking into account the foregoing description of the reactions involved, the process of the invention is pref- 50 erably carried out by employing no more than 1.20 moles of POCl3, more preferably no more than 1.15 moles of POCl3 and most preferably from 0.95 to 1.10 moles of POCl3, per mole of PE. [0015] As stated in the Brief Summary of the Invention, the solvent employed in the process is an alkane, preferably methane, ethane, or propane, substituted with at least one halogen atom, preferably chlorine, and having an atmos- pheric boiling point (b.p.) of at least 40°C and no higher than 150°C. Preferably the atmospheric boiling point (b.p.) is 55 in the range of 80 to 120°C. Some suitable solvents are:

1,2-dichloroethane (ethylene dichloride or EDC, b.p. = 83.5°C), 1,1-dichloroethane (ethylidene chloride, b.p. = 57.3°C),

4 EP 1 399 456 B1

1,1,1-trichloroethane (methyl chloroform, b.p. = 74.1°C), 1,1,2-trichloroethane (b.p. = 113.8°C), 1,1,1,2-tetrachloroethane (b.p. = 130.5°C), trichloromethane (chloroform, b.p. = 61.7°C), 5 tetrachloromethane (carbon tetrachloride, b.p. = 76.5°C), 1,1-dichloropropane (b.p. = 88.1°C), 1,2-dichloropropane (b.p= - 96.4°C), 1,3-dichloropropane (b.p. = 120.4°C), 1,2,2-trichloropropane (b.p. = 123-5°C), 10 1,1-dibromoethane (ethylidene bromide, b.p. = 108°C), 1,2-dibromoethane (ethylene dibromide, b.p. = 131.3°C), dibromomethane (methylene bromide, b.p. = 97°C), 1-bromopropane (n-propylbromide, b.p. = 71 °C), 2-bromopropane (isopropylbromide, b.p. = 59.4°C), 15 1,1-dibromopropane (b.p. = 133.5°C), iodoethane (ethyl iodide, b.p. = 72.3°C), 1-iodopropane (n-propyliodide, b.p. = 102.4°C), 2-iodopropane (isopropyl iodide, b.p. = 89.4°C), 1-bromo-3-chloropropane (b.p. = 144°C), 20 bromochloromethane (b.p. = 68°C), and 1-bromo-2-chloroethane (b.p. = 106°C)

[0016] The reaction is carried out at a temperature of at least 100°C, preferably in the range of 100 to 150°C, and more preferably in the range of 110 to 130°C. If the solvent has an atmospheric boiling point below the desired reaction 25 temperature, then superatmospheric pressure is applied to keep most of the solvent in the liquid phase. Consistent with this condition, the reaction pressure is in most cases in the range of 0 to 482,79 kPa 70 psig, preferably in the range of 137,94 kPA (20) to 344,85 kPa (50 psig). [0017] The process is carried out by reacting the PE with the POCl3 in the presence of the solvent at the reaction temperature under superatmospheric pressure if necessary until close to the theoretical amount of HCl off-gas is 30 evolved indicating substantial completion of the reaction. Such reaction time may be, for example, in the range of 0.5 to 8 hours and often in the range of 1 to 3 hours. The reaction may be carried out in batch, semi-continuous or continuous fashion. Due to the handling problems in feeding solid PE to the reactor (which could potentially be operating under pressure), batch reactions are preferred. [0018] In a preferable embodiment of the process of the invention, PE is added to the solvent and the resulting slurry 35 is heated to a reaction temperature at or close to the desired value with stirring. During such heating, if the atmospheric boiling point of the solvent is exceeded, the pressure in the reactor is allowed to increase by the evolution of HCl off- gas and a pressure control valve is preferably used to maintain the reactor pressure at a level which is sufficient to keep the solvent in the liquid phase. Phosphorus oxychloride (POCl3) is then added portionwise, e.g., within a period of at least 5 minutes to two hours while maintaining the reaction temperature at the desired level. The pressure control 40 valve allows the HCl by-product to escape to a scrubber while keeping the reaction pressure constant The substantial completion of HCl evolution indicates the end of the reaction period and the reactor is cooled to a lower temperature at which most of the PEPA product is separated out and the resulting slurry is suitable for filtration. Such lower tem- perature is below the boiling point of the solvent if such boiling point was below the reaction temperature and a super- atmospheric reaction pressure was employed. Room temperature is often suitable as the temperature to which the 45 reaction slurry is cooled although such cooling may be to a temperature somewhat higher than room temperature. The cooled slurry is then filtered, and the PEPA product washed, if necessary, with appropriate washing liquids and dried by well-known methods. [0019] Using the process of this invention, a PEPA product can be obtained with relatively low reaction time, at a mass yield of at least 95% of the theoretical yield based on the reactant present in limiting amount, allowing for high 50 productivity, and with a PEPA purity of at least 80%. The product can be used directly or, if desired, can be further purified by known methods. [0020] The following examples further illustrate the invention.

Example 1 55 [0021] A glass stirred pressure reactor was charged with 87.5g (0.64 mole) of pentaerythritol (PE) and 500 ml. of 1,2-dichloroethane (EDC) to form a slurry. The reactor was fitted with a pressure valve set to release gas at 206,91 kPA (30 psig) into a water scrubber. The resulting stirred slurry was heated to 115°C and 103.5g (0.67 mole) of POCl3

5 EP 1 399 456 B1

were added over a period of five minutes. Off gassing began within 30 minutes and continued for 2.5 hours until 70g of HCl were collected. The total reaction time was about 3 hours. The reaction mass was cooled to room temperature, the pressure released and the reaction slurry filtered. The separated product was dried at 85°C to yield 113.3 grams of white solids (98% mass yield) containing 84% PEPA by liquid chromatography (LC). 5 [0022] These results show that an almost ideal mass yield of high quality product can be obtained from the process of the invention with the short reaction time resulting in high productivity:

Comparative Example A

10 [0023] This example illustrates the effect of operating the process at a reaction temperature below the prescribed minimum of 100°C. [0024] A glass stirred reactor connected through a water cooled condenser to an acid scrubber was charged with 75g (0.55 mole) ofPE and 262.5g of EDC. The reactor was heated to 80°C and 87.8g (0.57 mole) of POCl3 were added over 105 minutes. Slow off-gassing began around 70 minutes after the start of the addition of POCl3 and continued for 15 another 7 hours until 55.4 g of HCl were collected. The total reaction time was about 9 hours. The heating was then stopped, the reaction mass cooled to room temperature and the resulting product slurry filtered. The separated product was dried at 105°C to yield 94.0g of white solids (95% mass yield) containing only 55% of PEPA by LC. [0025] The foregoing results indicate that operating the process at a temperature substantially below the minimum of 100°C results in relatively low conversion to PEPA even after a relatively long reaction time. 20 Example 2

[0026] This example illustrates the effect of utilizing a comparatively large excess of POCl3 relative to PE in carrying out the process. 25 [0027] A glass stirred pressure reactor was charged with 87.4g (0.64 mole) of PE and 568 ml. of EDC. The reactor was fitted with a pressure valve set to release gas at 206,91 kPA (30 psig) into a water scrubber. The resulting stirred slurry was heated to 115°C and 122g (0.80 mole) of POCl3 were added over 30 minutes. Off-gassing of HCl began within 20 minutes and continued until 69g were collected 2.5 hours later. The total reaction time was about 3.5 hours. The heating was then discontinued, the reaction mass cooled to room temperature, the pressure released and the 30 slurry filtered. The separated product was dried at 105°C to yield 103.5g of white solids (89% mass yield) containing 86% PEPA by LC.

Example 3

35 [0028] This example illustrates the effect of using comparatively higher temperature and pressure conditions in car- rying out the inventive process. [0029] A glass stirred pressure reactor was charged with 87.6g (0.64 mole) of PE and 568 ml. of EDC. The reactor was fitted with a pressure valve set to release gas at 310,365 kPa (45 psig) into a water scrubber. The resulting stirred slurry was heated to 130°C and 122g (0.80 mole) of POCl3 were added over 28 minutes. Off-gassing of HCl began 40 just before the addition was complete and continued until 70g were collected 2 hours later. The total reaction time was about 2.5 hours. The heating was then discontinued, the reaction mass cooled to room temperature, the pressure released and the slurry filtered. The separated product was dried at 105°C to yield 110.2g of white solids (95% mass yield) containing 83% PEPA by liquid chromatography (LC).

45 Claims

1. A process for the production of pentaerythritol phosphate alcohol (PEPA) comprising reacting in the liquid phase phosphorous oxychloride (POCl3) with pentaerythritol (PE) at a reaction temperature of at least 100°C in the pres- 50 ence of a solvent which is an alkane substituted with at least one halogen atom and having an atmospheric boiling point of 40 to 150°C, said atmospheric boiling point being below said reaction temperature, the reaction pressure being superatmospheric and sufficiently high to maintain the solvent in the liquid phase, the reaction resulting in the production of PEPA and HCl by-product.

55 2. The process of Claim 1 wherein said alkane is methane, ethane or propane.

3. The process of Claim 2 wherein said halogen atom is chlorine.

6 EP 1 399 456 B1

4. The process of Claim 3 wherein said solvent is 1,2-dichloroethane (ethylene dichloride or EDC).

5. The process of Claim 1 wherein said reaction temperature is in the range of 100 to 150°C.

5 6. The process of claim 5 wherein said reaction temperature is in the range of 110 to 130°C.

7. The process of Claim 1 wherein said superatomspheric reaction pressure is up to 482,79 kPa (70 psig).

8. The process of Claim 7 wherein said reaction pressure is in the range of 137,94 kPa to 344,85 kPa. (20 to 50 psig). 10 9. The process of Claim 1 wherein the atmospheric boiling point of said solvent is in the range of 80 to 120°C.

10. The process of Claim 1 wherein said molar ratio of POCl3 to PE is in the range of 0.9 to 1.10 moles of POCl3 per mole of PE. 15 11. The process of Claim 1 carried out by adding the total amount ofPE to the solvent, heating the resulting slurry in the reaction zone to a temperature close to the desired reaction temperature while allowing the pressure in the reaction zone to increase to the superatmospheric reaction pressure, adding the POCl3 portionwise to the reaction zone, maintaining the reaction temperature at the desired level, and continuing the reaction until the substantial 20 completion of the evolution of HCl off-gas.

12. The process of Claim 11 wherein the pressure in the reaction zone is allowed to rise to a superatomspheric level by the accumulation of HCl off-gas.

25 13. The process of Claim 1 wherein the reaction time is in the range of 0.5 to 8 hours.

14. The process of Claim 13 where said range of reaction time is 1 to 3 hours.

15. The process of Claim 11 wherein said POCl3 is added within a time range of 5 minutes to 2 hours. 30 16. The process of Claim 11 wherein PEPA is produced before further purification in a mass yield of at least 95% of the theoretical yield based on the reactant present in limiting amount and with a PEPA purity of at least 80%.

17. A process for the production of pentaerythritol phosphate alcohol (PEPA) comprising reacting in the liquid phase 35 phosphorus oxychloride (POCl3) with pentaerythritol (PE) at a molar ratio of no more than 1.20 mole of POCl3 per mole of PE and at a reaction temperature of at least 100°C in the presence of a solvent which is an alkane sub- stituted with at least one halogen atom and having an atmospheric boiling point of 40 to 150°C, said atmospheric boiling point being below said reaction temperature, the reaction pressure being superatmospheric and sufficiently high to maintain the solvent in the liquid phase, the reaction resulting in the production of PEPA and HCl by-product. 40 18. The process of Claim 17 wherein said molar ratio is no more than 1.15.

19. The process of Claim 17 wherein said alkane is methane, ethane or propane.

45 20. The process of Claim 19 wherein said halogen atom is chlorine.

21. The process of Claim 20 wherein said solvent is 1,2-dichloroethane (ethylene dichloride or EDC).

22. The process of Claim 17 wherein said reaction temperature is in the range of 100 to 150°C. 50 23. The process of Claim 22 wherein said reaction temperature is in the range of 110 to 130°C.

24. The process of Claim 1 wherein said superatomspheric reaction pressure is up to 482,79 kPa (70 psig).

55 25. The process of Claim 24 wherein said reaction pressure is in the range of 137,94 kPa to 344,85 kPa (20 to 50 psig).

26. The process of Claim 1, wherein said solvent is selected from the group consisting of 1,2-dichloroethane (ethylene dichloride or EDC), 1,1-dichloroethane (ethylidene chloride), 1,1,1-trichloroethane (methyl chloroform), trichlo-

7 EP 1 399 456 B1

romethane (chloroform) tetrachloromethane (carbon tetrachloride), 1,1-dichloropropane, 1-bromopropane (n-pro- pylbromide), 2-bromopropane (isopropylbromide), iodoethane (ethyl iodide), 2-iodopropane (isopropyl iodide), and bromochloromethane.

5 Patentansprüche

1. Verfahren zur Herstellung von Pentaerythritphosphatalkohol (PEPA), umfassend die Umsetzung von Phosphor- oxychlorid (POCl3) mit Pentaerythrit (PE) in flüssiger Phase bei einer Reaktionstemperatur von wenigstens 100 10 °C in Gegenwart eines Lösungsmittels, das ein Alkan ist, welches mit wenigstens einem Halogenatom substituiert ist und einen Siedepunkt bei Atmosphärendruck von 40 - 150 °C hat, wobei der Siedepunkt bei Atmosphärendruck unterhalb der Reaktionstemperatur liegt, der Reaktionsdruck über Atmosphärendruck liegt und ausreichend hoch ist, um das Lösungsmittel in der flüssigen Phase zu halten, wobei die Umsetzung die Herstellung von PEPA und HCl-Nebenprodukt ergibt. 15 2. Verfahren gemäß Anspruch 1, wobei das Alkan Methan, Ethan oder Propan ist.

3. Verfahren gemäß Anspruch 2, wobei das Halogenatom Chlor ist.

20 4. Verfahren gemäß Anspruch 3, wobei das Lösungsmittel 1,2-Dichlorethan (Ethylendichlorid oder EDC) ist.

5. Verfahren gemäß Anspruch 1, wobei die Reaktionstemperatur im Bereich von 100 °C bis 150 °C liegt.

6. Verfahren gemäß Anspruch 5, wobei die Reaktionstemperatur im Bereich von 110 °C bis 130 °C liegt. 25 7. Verfahren gemäß Anspruch 1, wobei der über Atmosphärendruck liegende Reaktionsdruck bis zu 482,79 kPa (70 psig) beträgt.

8. Verfahren gemäß Anspruch 7, wobei der Reaktionsdruck im Bereich von 137,94 kPa bis 344,85 kPa (20 - 50 psig) 30 liegt.

9. Verfahren gemäß Anspruch 1, wobei der Siedepunkt bei Atmosphärendruck des Lösungsmittels im Bereich von 80 - 120 °C liegt.

35 10. Verfahren gemäß Anspruch 1, wobei das Stoffmengenverhältnis von POCl3 zu PE im Bereich von 0,9 - 1,10 mol POCl3 pro mol PE liegt.

11. Verfahren gemäß Anspruch 1, das wie folgt durchgeführt wird: die Zugabe der gesamten Menge an PE zu dem Lösungsmittel, Erwärmen der sich ergebenden Aufschlämmung in der Reaktionszone auf eine Temperatur, die 40 nahe bei der erwünschten Reaktionstemperatur liegt, während man den Druck in der Reaktionszone auf den überatmosphärischen Reaktionsdruck ansteigen lässt, die portionsweise Zugabe des POCl3 zur Reaktionszone, das Beibehalten der Reaktionstemperatur auf dem erwünschten Niveau und das Fortführen der Umsetzung, bis die Entwicklung von HCl-Abgas im Wesentlichen vervollständigt ist.

45 12. Verfahren gemäß Anspruch 11, wobei man durch die Akkumulation des HCl-Abgases den Druck in der Reaktions- zone auf ein über Atmosphärendruck liegendes Niveau ansteigen lässt.

13. Verfahren gemäß Anspruch 1, wobei die Reaktionszeit im Bereich von 0,5 bis 8 Stunden liegt.

50 14. Verfahren gemäß Anspruch 13, wobei der Bereich der Reaktionszeit 1 Stunde bis 3 Stunden beträgt.

15. Verfahren gemäß Anspruch 11, wobei das POCl3 innerhalb einer Zeitspanne von 5 Minuten bis 2 Stunden zuge- geben wird.

55 16. Verfahren gemäß Anspruch 11, wobei PEPA vor einer weiteren Reinigung in einer Massenausbeute von wenig- stens 95 % der theoretischen Ausbeute, bezogen auf den Reaktionsteilnehmer, der in einer begrenzenden Menge vorliegt, und mit einer PEPA-Reinheit von wenigstens 80 % erzeugt wird.

8 EP 1 399 456 B1

17. Verfahren zur Herstellung von Pentaerythritphosphatalkohol (PEPA), umfassend die Umsetzung von Phosphor- oxychlorid (POCl3) mit Pentaerythrit (PE) in flüssiger Phase bei einem Stoffmengenverhältnis von nicht mehr als 1,20 mol POCl3 pro mol PE und einer Reaktionstemperatur von wenigstens 100 °C in Gegenwart eines Lösungs- mittels, das ein Alkan ist, welches mit wenigstens einem Halogenatom substituiert ist und einen Siedepunkt bei 5 Atmosphärendruck von 40 - 150°C hat, wobei der Siedepunkt bei Atmosphärendruck unterhalb der Reaktions- temperatur liegt, der Reaktionsdruck über Atmosphärendruck liegt und ausreichend hoch ist, um das Lösungsmittel in der flüssigen Phase zu halten, wobei die Umsetzung die Herstellung von PEPA und HCl-Nebenprodukt ergibt.

18. Verfahren gemäß Anspruch 17, wobei das Stoffmengenverhältnis nicht größer als 1,15 ist. 10 19. Verfahren gemäß Anspruch 17, wobei das Alkan Methan, Ethan oder Propan ist.

20. Verfahren gemäß Anspruch 19, wobei das Halogenatom Chlor ist.

15 21. Verfahren gemäß Anspruch 20, wobei das Lösungsmittel 1,2-Dichlorethan (Ethylendichlorid oder EDC) ist.

22. Verfahren gemäß Anspruch 17, wobei die Reaktionstemperatur im Bereich von 100 °C bis 150 °C liegt.

23. Verfahren gemäß Anspruch 22, wobei die Reaktionstemperatur im Bereich von 110 °C bis 130 °C liegt. 20 24. Verfahren gemäß Anspruch 1, wobei der über Atmosphärendruck liegende Reaktionsdruck bis zu 482,79 kPa (70 psig) beträgt.

25. Verfahren gemäß Anspruch 24, wobei der Reaktionsdruck im Bereich von 137,94 kPa bis 344,85 kPa (20 - 50 25 psig) liegt.

26. Verfahren gemäß Anspruch 1, wobei das Lösungsmittel aus der Gruppe ausgewählt ist, bestehend aus 1,2-Dich- lorethan (Ethylendichlorid oder EDC), 1,1-Dichlorethan (Ethylidenchlorid), 1,1,1-Trichlorethan (Methylchloroform), Trichlormethan (Chloroform), Tetrachlormethan (Tetrachlorkohlenstoff), 1,1-Dichlorpropan, 1-Brompropan (n-Pro- 30 pylbromid), 2-Brompropan (Isopropylbromid), Iodethan (Ethyliodid), 2-Iodpropan (Isopropyliodid) und Bromchlor- methan.

Revendications 35 1. Procédé pour la production de phosphate de pentaérythritol-alcool (PEPA), qui comprend la réaction en phase liquide d'oxychlorure de phosphore (POCl3) avec du pentaérythritol (PE), à une température de réaction d'au moins 100 °C, en présence d'un solvant qui est un alcane substitué par au moins un atome d'halogène et ayant un point d'ébullition à la pression atmosphérique de 40 à 150 °C, ledit point d'ébullition à la pression atmosphérique étant 40 inférieur à ladite température de réaction et la pression de réaction étant supérieure à la pression atmosphérique et suffisamment élevée pour maintenir le solvant à l'état liquide, la réaction conduisant à la production de PEPA et de HCl comme sous-produit.

2. Procédé selon la revendication 1, dans lequel ledit alcane est le méthane, l'éthane ou le propane. 45 3. Procédé selon la revendication 2, dans lequel ledit atome d'halogène est un atome de chlore.

4. Procédé selon la revendication 3, dans lequel ledit solvant est le 1,2-dichloroéthane (dichlorure d'éthylène ou DCE).

50 5. Procédé selon la revendication 1, dans lequel la température de réaction est comprise dans l'intervalle allant de 100 à 150 °C.

6. Procédé selon la revendication 5, dans lequel la température de réaction est comprise dans l'intervalle allant de 110 à 130 °C. 55 7. Procédé selon la revendication 1, dans lequel la pression de la réaction supérieure à la pression atmosphérique a une valeur pouvant aller jusqu'à 482,79 kPa (70 livres par pouce carré au manomètre).

9 EP 1 399 456 B1

8. Procédé selon la revendication 7, dans lequel la pression de réaction est comprise dans l'intervalle allant de 137,94 kPa à 344,85 kPa (20 à 50 livres par pouce carré au manomètre).

9. Procédé selon la revendication 1, dans lequel le solvant est un solvant ayant un point d'ébullition à la pression 5 atmosphérique qui est compris dans l'intervalle allant de 80 à 120°C.

10. Procédé selon la revendication 1, dans lequel le rapport molaire de POCl3 à PE est compris dans l'intervalle allant de 0,9 à 1,10 mole de POCl3 pour 1 mole de PE.

10 11. Procédé selon la revendication 1, que l'on conduit en ajoutant la quantité totale de PE au solvant, en chauffant la suspension résultante dans la zone de réaction à une température proche de la température de réaction désirée tout en laissant la pression s'élever dans la zone de réaction jusqu'à une pression de réaction supérieure à la pression atmosphérique, en introduisant le POCl3 par portions dans la zone de réaction, en maintenant la tempé- rature de réaction au niveau désiré, et en poursuivant la réaction pratiquement jusqu'à la fin de la libération de 15 HCl gazeux qui se dégage.

12. Procédé selon la revendication 11, dans lequel on laisse la pression s'élever dans la zone de réaction jusqu'à une valeur supérieure à la pression atmosphérique grâce à l'accumulation de HCl qui se dégage.

20 13. Procédé selon la revendication 1, dans lequel la durée de réaction est de 0,5 à 8 heures.

14. Procédé selon la revendication 13, dans lequel la durée de réaction est de 1 à 3 heures.

15. Procédé selon la revendication 11, dans lequel on introduit ledit POCl3 en un laps de temps de 5 minutes à 2 heures. 25 16. Procédé selon la revendication 11, dans lequel on produit, avant purification ultérieure, du PEPA avec un rende- ment d'au moins 95 % du rendement théorique basé sur le réactif présent en quantité limitante, et avec une pureté d'au moins 80 %.

30 17. Procédé de production de phosphate de pentaérythritol-alcool (PEPA), qui comprend la réaction en phase liquide d'oxychlorure de phosphore (POCl3) avec du pentaérythritol (PE) selon un rapport molaire ne dépassant pas 1,20 mole de POCl3 pour 1 mole de PE, à une température de réaction d'au moins 100°C, en présence d'un solvant qui est un alcane substitué par au moins un atome d'halogène et ayant un point d'ébullition à la pression atmos- phérique de 40 à 150°C, ledit point d'ébullition à la pression atmosphérique étant inférieur à ladite température 35 de réaction et la pression de réaction étant supérieure à la pression atmosphérique et suffisamment élevée pour maintenir le solvant à l'état liquide, la réaction conduisant à la production de PEPA et de HCl comme sous-produit.

18. Procédé selon la revendication 17, dans lequel ledit rapport molaire ne dépasse pas 1,15.

40 19. Procédé selon la revendication 17, dans lequel ledit alcane est le méthane, l'éthane ou le propane.

20. Procédé selon la revendication 19, dans lequel ledit atome d'halogène est un atome de chlore.

21. Procédé selon la revendication 20, dans lequel ledit solvant est le 1,2-dichloroéthane (dichlorure d'éthylène ou 45 DCE).

22. Procédé selon la revendication 17, dans lequel la température de réaction est comprise dans l'intervalle allant de 100 à 150 °C.

50 23. Procédé selon la revendication 22, dans lequel la température de réaction est comprise dans l'intervalle allant de 110 à 130 °C.

24. Procédé selon la revendication 1, dans lequel la pression de réaction supérieure à la pression atmosphérique peut aller jusqu'à 482,79 kPa (70 livres par pouce carré au manomètre). 55 25. Procédé selon la revendication 24, dans lequel la pression de réaction a une valeur comprise dans l'intervalle allant de 137,94 kPa à 344,85 kPa (20 à 50 livres par pouce carré au manomètre).

10 EP 1 399 456 B1

26. Procédé selon la revendication 1, dans lequel ledit solvant est un solvant choisi parmi le 1,2-dichloroéthane(di- chlorure d'éthylène ou DCE), le 1,1-dichloroéthane(chlorure d'éthylidène), le 1,1,1-trichloroéthane(méthylchloro- forme), le trichlorométhane(chloroforme), le tétrachlorométhane(tétrachlorure de carbone), le 1,1-dichloropropa- ne, le 1-bromopropane(bromure de n-propyle), le 2-bromopropane(bromure d'isopropyle), l'iodoéthane(iodure 5 d'éthyle), le 2-iodopropane(iodure d'isopropyle), et le bromochlorométhane.

10

15

20

25

30

35

40

45

50

55

11