Carcinoma Showing Thymus-Like Elements Invading the Trachea

Total Page:16

File Type:pdf, Size:1020Kb

Carcinoma Showing Thymus-Like Elements Invading the Trachea View metadata, citation and similar papers at core.ac.uk brought to you by CORE Brief Communications provided by Elsevier - Publisher Connector Carcinoma showing thymus-like elements invading the trachea Marco Alifano, MD,a Mohamed Sadok Boudaya, MD,a Carmen Dinu, MD,b Habiba Kadiri, MD,b Jean-François Regnard, MD,a Paris, France arcinoma showing thymus-like elements (CASTLE)removed is secondarily under jet ventilation. A termino-terminal a rare cervical tumor. Approximately 30 casestracheal have anastomosis was performed after laryngeal and tracheal been reported in the English language 1 Inliterature.release with dissection of both mainstem bronchi. 1985, Miyauchi and colleagues2 reported the first se- Pathologic examination (Figure 1) showed a tumoral prolifer- Cries dealing with this type of tumor. Although generallyation thought invading to the tracheal cartilage (without involvement of the have a less-marked malignant behavior compared with mucosa),thyroid the lower pole of the left thyroid lobe, the left superior carcinomas, CASTLE may progress and result in death. horn of the thymus, and the sternothyroid muscle. The surgical margins were free. Nodal metastases were found in 4 cervical Clinical Summary lymph nodes. At light microscopy, tumor growth in the form of A 63-year-old woman had anterior cervical swelling 6variably months sized islands separated by thick fibrous trabeculae was before admission to our unit. Assessment in another institutionobserved. byCytoplasm was abundant and eosinophilic, whereas nu- ultrasonography and computed tomography (CT) scan showedclei werea oval with distinct nucleoli and granular chromatin. Nu- tumor close to the lower pole of the left thyroid lobe,clear causing atypia wasright moderate, and some areas of necrosis were observed. and backward tracheal dislocation. There were no enlargedMitotic lymph figures were also present. The cells were immunohistochemi- nodes. The lesion was misdiagnosed as a thyroid goiter,cally KL1andϩ, EMAϩ, CD5ϩ, CD117ϩ, chromogranin Aϩ, and cervicotomy was planned. At surgery a tumor was foundTTF1 infiltrat-Ϫ. ing the strap muscles and trachea, but independent of theThe thyroid postoperative course was uneventful. Adjuvant cervicome- and thymus. No resection was attempted. Because of thediastinal absence radiotherapy (55 Gy) was performed because of the of a preoperative diagnosis and inconclusive data from presencethe frozen- of nodal metastases. The patient showed no sign of section examination, only biopsies were taken. The pathologicrecurrence at the 6-month follow-up. diagnosis was thymic carcinoma. The patient was referred to our institution for subsequent management. Discussion A novel CT scan was consistent with tumoral progression,CASTLE is an extrathymic tumor occurring at the cervical level in compared with the first CT scan performed 3 months thepreviously. trajectory of embryonal migration of the thymus (between the Fiberoptic bronchoscopy showed an extrinsic compression mandibularof the angle and the retrosternal region). The lesion may arise trachea starting 3 cm caudally to the vocal cords andeither involving inside the4 thyroid gland (in this case it was located in the tracheal rings. 18-FDG positron emission tomography showedlower portionan of the lobes) or in the latero-tracheal region. isolated hypermetabolic focus corresponding to the cervical tumor.In our patient, the tumor did not have any contact with the We decided to perform another surgical exploration. At thyroidcervico- at the time of the first surgical exploration. The spontane- sternotomy, invasion of the sternothyroid muscle and tracheaous evolutionby a of this tumor at 3 months was responsible for the 6-cm tumor was confirmed. The lesion infiltrated the uppersubsequent portion limited invasion of both the thymus and thyroid. of left thymic lobe and was in close contact with the lower aspect of the left lobe of the thyroid. An en bloc resection of the thymus, sternothyroid muscle, trachea (8 rings), and lower aspect of the left thyroid lobe was performed. For technical reasons, the tumor was removed en bloc with the cartilaginous portion of the trachea. The membranous part, which was completely free of the tumor, was From the Unité de Chirurgie Thoracique,a Service d’Anatomie et de Cy- tologie Pathologiques,b Hôpital Hôtel-Dieu, AP-HP, Université Paris V, Paris, France. Received for publication Feb 6, 2006; accepted for publication March 15, 2006. Address for reprints: Marco Alifano, MD, Unité de Chirurgie Thoracique, Hôtel-Dieu 1, place du Parvis Notre Dame, 75181 PARIS Cedex 04, France (E-mail: [email protected]). J Thorac Cardiovasc Surg 2006;132:191-2 0022-5223/$32.00 Figure 1. Gross section after formalin fixation. Relationships Copyright © 2006 by The American Association for Thoracic Surgery among the tumor (dotted arrow), cartilaginous portion of the doi:10.1016/j.jtcvs.2006.03.020 trachea (arrow), and left lobe of the thymus (double arrow) are evident in this section. The Journal of Thoracic and Cardiovascular Surgery ● Volume 132, Number 1 191 Brief Communications C o m pared with patients with thyroid carcinoma, patients with References CASTLE seem to have a better prognosis. However, CASTLE has a 1. Luo CM, Hsueh C, Chen TM. Extrathyroid carcinoma showing thymus- potentially invasive behavior, and invasion of neighboring cervicallike differentiation (CASTLE) tumor: a new case report and review of 2 3 structures is possible. In particular, ortracheal laryngotrachealre- literature. Head Neck. 2005;27:927-33. sections have been necessary to excise the lesion. The 2.extent Miyauchi of A,this Kuma K, Matsuzuka F, Matsubayashi S, Kobayashi A, invasion may sometimes prevent a complete1 orresection require Tamai H, et al. Intrathyroidal epithelial thymoma: an entity distinct surgically challenging procedures, as in our experience. The fromparietal squamous cells carcinoma of the thyroid. World J Surg. 1985;9: 4,5 128-35. invasion can involve the muscles, connective tissue, and 3.skin. Mizukami Y, Kurumaya H, Yamada T, Minato H, Nonomura A, Nogu- Nodal involvement is probably a negative prognostic factor,chi M, et al. Thymic carcinoma involving the thyroid gland: report of because it has been associated with the occurrence 3of locoregionaltwo cases. Hum Pathol. 1995;26:576-9. or systemic spread.1,2 Adjuvant radiotherapy is generally- advo4. Bayer-Garner IB, Kozovska ME, Schwartz MR, Reed JA. Carcinoma cated in case of nodal metastasis. On the other hand, withlocal thymus-like recur- differentiation arising in the dermis of the head and neck. J Cutan Pathol. 2004;31:625-9. rence is possible in the absence of nodal disease, thus5. Ahujasuggesting AT, Chan ESY, Allen PW, Lau KY, King W, Metreweli C. Carci- a role for systematic adjuvant radiotherapy because of the radio- noma showing thymic-like differentiation (CASTLE tumor). AJNR Am J sensitivity of this tumor.1 Neuroradiol. 1998;19:1225-8. A new technique for prosthetic reconstruction of the superior vena cava Antonio D’Andrilli, MD,a Anna Maria Ciccone, MD,a Mohsen Ibrahim, MD,a Federico Venuta, MD,b and Erino A. Rendina, MD,a Rome, Italy lthough the feasibility of resection and prosthetic re- eration. A right-sleeve pneumonectomy associated with resection placement of the superior vena cava (SVC) has been and prosthetic reconstruction of the SVC was performed. Patho- largely proven,1 the type of vessel reconstruction is logic examination documented epithelioid leiomyosarcoma. still an object of debate and the search for improved Twenty-nine hilar and mediastinal nodes were removed. Only 3 Atechnical devices is currently active. peribronchial nodes resulted at pathologic analysis. We describe a new technique for the construction of the peri- Case 2 was a 55-year-old woman who presented with an cardial tube that we have successfully used in 2 cases of recon- endoluminal tumor of the SVC with complete vascular obstruction struction of the SVC. for a longitudinal extension of approximately 7 cm, confirming SVC syndrome. The patient underwent radical removal of the Clinical Summary tumor by a complete resection and reconstruction of the SVC. A Case 1 was a 50-year-old man who presented with a large right metastatic tumor of an unidentified origin was found at the patho- pulmonary mass (11 cm in diameter) invading the carina, SVC, logic examination. No intraoperative or postoperative major complications oc- pulmonary artery, and superior pulmonary vein. Histologic diag- curred. Both patients are well and without evidence of disease 16 nosis achieved by endobronchial biopsy was mesenchymal prolif- months (case 1) and 13 months (case 2) after surgery. eration of uncertain behavior. After laser recanalization of the right main bronchus by rigid bronchoscopy, the patient underwent op- Surgical Technique From the Department of Thoracic Surgery, University of Rome “La The surgical approach was posterolateral thoracotomy in case 1 Sapienza,” “Sant’Andrea” Hospital,a Rome; Department of Thoracic and muscle sparing lateral thoracotomy in case 2. Surgery, University of Rome “La Sapienza,” Policlinico “Umberto I,”b After complete isolation and distal and proximal clamping of Rome, Italy. the SVC, the caval segment infiltrated by the tumor was resected Received for publication Feb 17, 2006; accepted for publication March 15, and vascular continuity was restored by interposition of a heterol- 2006. ogous pericardial prosthetic tube. Intravenous sodium heparin (0.5 Address for reprints: Erino A. Rendina, MD, Division of Thoracic Surgery,
Recommended publications
  • Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy
    ORIGINAL ARTICLE Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy Michael Friedman, MD; Phillip LoSavio, BS; Hani Ibrahim, MD Background: Injury to the external branch of the su- recorded and compared on an annual basis for both be- perior laryngeal nerve (EBSLN) can result in detrimen- nign and malignant disease. Overall results were also com- tal voice changes, the severity of which varies according pared with those found in previous series identified to the voice demands of the patient. Variations in its ana- through a 50-year literature review. tomic patterns and in the rates of identification re- ported in the literature have discouraged thyroid sur- Results: The 3 anatomic variations of the distal aspect geons from routine exploration and identification of this of the EBSLN as it enters the cricothyroid were encoun- nerve. Inconsistent with the surgical principle of pres- tered and are described. The total identification rate over ervation of critical structures through identification, mod- the 20-year period was 900 (85.1%) of 1057 nerves. Op- ern-day thyroidectomy surgeons still avoid the EBSLN erations performed for benign disease were associated rather than identifying and preserving it. with higher identification rates (599 [86.1%] of 696) as opposed to those performed for malignant disease Objectives: To describe the anatomic variations of the (301 [83.4%] of 361). Operations performed in recent EBSLN, particularly at the junction of the inferior con- years have a higher identification rate (over 90%). strictor and cricothyroid muscles; to propose a system- atic approach to identification and preservation of this Conclusions: Understanding the 3 anatomic variations nerve; and to define the identification rate of this nerve of the distal portion of the EBSLN and its relation to the during thyroidectomy.
    [Show full text]
  • Larynx Anatomy
    LARYNX ANATOMY Elena Rizzo Riera R1 ORL HUSE INTRODUCTION v Odd and median organ v Infrahyoid region v Phonation, swallowing and breathing v Triangular pyramid v Postero- superior base àpharynx and hyoid bone v Bottom point àupper orifice of the trachea INTRODUCTION C4-C6 Tongue – trachea In women it is somewhat higher than in men. Male Female Length 44mm 36mm Transverse diameter 43mm 41mm Anteroposterior diameter 36mm 26mm SKELETAL STRUCTURE Framework: 11 cartilages linked by joints and fibroelastic structures 3 odd-and median cartilages: the thyroid, cricoid and epiglottis cartilages. 4 pair cartilages: corniculate cartilages of Santorini, the cuneiform cartilages of Wrisberg, the posterior sesamoid cartilages and arytenoid cartilages. Intrinsic and extrinsic muscles THYROID CARTILAGE Shield shaped cartilage Right and left vertical laminaà laryngeal prominence (Adam’s apple) M:90º F: 120º Children: intrathyroid cartilage THYROID CARTILAGE Outer surface à oblique line Inner surface Superior border à superior thyroid notch Inferior border à inferior thyroid notch Superior horns à lateral thyrohyoid ligaments Inferior horns à cricothyroid articulation THYROID CARTILAGE The oblique line gives attachement to the following muscles: ¡ Thyrohyoid muscle ¡ Sternothyroid muscle ¡ Inferior constrictor muscle Ligaments attached to the thyroid cartilage ¡ Thyroepiglottic lig ¡ Vestibular lig ¡ Vocal lig CRICOID CARTILAGE Complete signet ring Anterior arch and posterior lamina Ridge and depressions Cricothyroid articulation
    [Show full text]
  • The Role of Strap Muscles in Phonation Laryngeal Model in Vivo
    Journal of Voice Vol. 11, No. 1, pp. 23-32 © 1997 Lippincott-Raven Publishers, Philadelphia The Role of Strap Muscles in Phonation In Vivo Canine Laryngeal Model Ki Hwan Hong, *Ming Ye, *Young Mo Kim, *Kevin F. Kevorkian, and *Gerald S. Berke Department of Otolaryngology, Chonbuk National University, Medical School, Chonbuk, Korea; and *Division of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, California, U.S.A. Summary: In spite of the presumed importance of the strap muscles on laryn- geal valving and speech production, there is little research concerning the physiological role and the functional differences among the strap muscles. Generally, the strap muscles have been shown to cause a decrease in the fundamental frequency (Fo) of phonation during contraction. In this study, an in vivo canine laryngeal model was used to show the effects of strap muscles on the laryngeal function by measuring the F o, subglottic pressure, vocal in- tensity, vocal fold length, cricothyroid distance, and vertical laryngeal move- ment. Results demonstrated that the contraction of sternohyoid and sternothy- roid muscles corresponded to a rise in subglottic pressure, shortened cricothy- roid distance, lengthened vocal fold, and raised F o and vocal intensity. The thyrohyoid muscle corresponded to lowered subglottic pressure, widened cricothyroid distance, shortened vocal fold, and lowered F 0 and vocal inten- sity. We postulate that the mechanism of altering F o and other variables after stimulation of the strap muscles is due to the effects of laryngotracheal pulling, upward or downward, and laryngotracheal forward bending, by the external forces during strap muscle contraction.
    [Show full text]
  • Chapter Anatomy
    Chapter Anatomy 1 Kyriakos Anastasiadis and Chandi Ratnatunga Chapter Location of extensions of the upper lobes, as well as relationships to the innominate vein, have been described (Figs. 1.3). The thymus gland is located in the anterosuperior me- Thus, rather than being located in its classical anterior po- diastinum. It usually extends from the thyroid gland to sition, one or both of the upper lobe thymus may even lie the level of the fourth costal cartilage. It lies posterior to behind the innominate vein. Moreover, it has to be noted the pretracheal fascia, the sternohyoid and sternothyroid that besides the classical location of the gland, ectopic muscles and the sternum (mostly behind the manubrium thymic tissue could be found in the mediastinal fat of the and the upper part of its body). It is located anteriorly majority of patients. This is now accepted as the normal to the innominate vein and is found between the pari- etal pleura and extrapleural fat and central to the phrenic nerves. It lies on the pericardium, with the ascending aorta and aortic arch behind it, while in the neck it lies over the trachea. Parallel to the gland on each side lie the phrenic nerves, which converge towards the gland at its middle segment (particularly important issue in thymec- tomy procedures). The gland consists classically of two lobes, even though other lobular structures may be pres- ent (Figs. 1.1, 1.2). The thyrothymic ligament connects the upper parts of its lobes to the thyroid gland. A variety Fig. 1.2 Midline cervicothoracic sagittal section material de- monstrating the thymus gland location (1=thyroid isthmus, 2=superficial layer of cervical fascia, 3=pretracheal cervical fa- scia, 4=brachiocephalic trunk, 5=pretracheal space, 6=left bra- chiocephalic vein, 7=sternothyroid muscle, 8=anterior wall of Fig.
    [Show full text]
  • Anatomy Module 3. Muscles. Materials for Colloquium Preparation
    Section 3. Muscles 1 Trapezius muscle functions (m. trapezius): brings the scapula to the vertebral column when the scapulae are stable extends the neck, which is the motion of bending the neck straight back work as auxiliary respiratory muscles extends lumbar spine when unilateral contraction - slightly rotates face in the opposite direction 2 Functions of the latissimus dorsi muscle (m. latissimus dorsi): flexes the shoulder extends the shoulder rotates the shoulder inwards (internal rotation) adducts the arm to the body pulls up the body to the arms 3 Levator scapula functions (m. levator scapulae): takes part in breathing when the spine is fixed, levator scapulae elevates the scapula and rotates its inferior angle medially when the shoulder is fixed, levator scapula flexes to the same side the cervical spine rotates the arm inwards rotates the arm outward 4 Minor and major rhomboid muscles function: (mm. rhomboidei major et minor) take part in breathing retract the scapula, pulling it towards the vertebral column, while moving it upward bend the head to the same side as the acting muscle tilt the head in the opposite direction adducts the arm 5 Serratus posterior superior muscle function (m. serratus posterior superior): brings the ribs closer to the scapula lift the arm depresses the arm tilts the spine column to its' side elevates ribs 6 Serratus posterior inferior muscle function (m. serratus posterior inferior): elevates the ribs depresses the ribs lift the shoulder depresses the shoulder tilts the spine column to its' side 7 Latissimus dorsi muscle functions (m. latissimus dorsi): depresses lifted arm takes part in breathing (auxiliary respiratory muscle) flexes the shoulder rotates the arm outward rotates the arm inwards 8 Sources of muscle development are: sclerotome dermatome truncal myotomes gill arches mesenchyme cephalic myotomes 9 Muscle work can be: addacting overcoming ceding restraining deflecting 10 Intrinsic back muscles (autochthonous) are: minor and major rhomboid muscles (mm.
    [Show full text]
  • Anatomy and Physiology Model Guide Book
    Anatomy & Physiology Model Guide Book Last Updated: August 8, 2013 ii Table of Contents Tissues ........................................................................................................................................................... 7 The Bone (Somso QS 61) ........................................................................................................................... 7 Section of Skin (Somso KS 3 & KS4) .......................................................................................................... 8 Model of the Lymphatic System in the Human Body ............................................................................. 11 Bone Structure ........................................................................................................................................ 12 Skeletal System ........................................................................................................................................... 13 The Skull .................................................................................................................................................. 13 Artificial Exploded Human Skull (Somso QS 9)........................................................................................ 14 Skull ......................................................................................................................................................... 15 Auditory Ossicles ....................................................................................................................................
    [Show full text]
  • FIPAT-TA2-Part-2.Pdf
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems
    [Show full text]
  • Head and Neck of the Mandible
    Relationships The parotid duct passes lateral (superficial) and anterior to the masseter muscle. The parotid gland is positioned posterior and lateral (superficial) to the masseter muscle. The branches of the facial nerve pass lateral (superficial) to the masseter muscle. The facial artery passes lateral (superficial) to the mandible (body). On the face, the facial vein is positioned posterior to the facial artery. The sternocleidomastoid muscle is positioned superficial to both the omohyoid muscle and the carotid sheath. The external jugular vein passes lateral (superficial) to the sternocleidomastoid muscle. The great auricular and transverse cervical nerves pass posterior and lateral (superficial) to the sternocleidomastoid muscle. The lesser occipital nerve passes posterior to the sternocleidomastoid muscle. The accessory nerve passes medial (deep) and then posterior to the sternocleidomastoid muscle. The hyoid bone is positioned superior to the thyroid cartilage. The omohyoid muscle is positioned anterior-lateral to the sternothyroid muscle and passes superficial to the carotid sheath. At the level of the thyroid cartilage, the sternothyroid muscle is positioned deep and lateral to the sternohyoid muscle. The submandibular gland is positioned posterior and inferior to the mylohyoid muscle. The digastric muscle (anterior belly) is positioned superficial (inferior-lateral) to the mylohyoid muscle. The thyroid cartilage is positioned superior to the cricoid cartilage. The thyroid gland (isthmus) is positioned directly anterior to the trachea. The thyroid gland (lobes) is positioned directly lateral to the trachea. The ansa cervicalis (inferior root) is positioned lateral (superficial) to the internal jugular vein. The ansa cervicalis (superior root) is positioned anterior to the internal jugular vein. The vagus nerve is positioned posterior-medial to the internal jugular vein and posterior-lateral to the common carotid artery.
    [Show full text]
  • TOTAL LARYNGECTOMY Johan Fagan
    OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY TOTAL LARYNGECTOMY Johan Fagan Total laryngectomy is generally done for meet, unless there is tumour in the pre- advanced cancers of the larynx and hypo- epiglottic space or vallecula or base of pharynx, recurrence following (chemo)rad- tongue. iation, and occasionally for intractable as- piration and advanced thyroid cancer inva- 2. Is thyroidectomy required? Both hypo- ding the larynx. thyroidism and hypoparathyroidism are common sequelae of total laryngecto- Although it is an excellent oncologic pro- my, particularly following postoperati- cedure and secures good swallowing with- ve radiation therapy, and may be dif- out aspiration, it has disadvantages such as ficult to manage in a developing world having a permanent tracheostomy; that setting. Twenty-five percent of laryn- verbal communication is dependent on gectomy patients become hypothyroid oesophageal speech, and/or tracheoesopha- following hemithyroidectomy; and geal fistula speech or an electrolarynx; 75% if postoperative radiation is hyposmia; and the psychological and fi- added. However, both thyroid lobes nancial/ employment implications. Even in may be preserved unless Level 6 nodes the best centers, about 20% of patients do need to be resected with subglottic and not acquire useful verbal communication. pyriform fossa carcinoma, or when there is intraoperative or radiological Prelaryngectomy decision making evidence of direct tumour extension to involve the thyroid gland. The surgeon needs to consider the follow- ing issues before embarking on a laryngec- 3. Will a pectoralis major flap be tomy. required? A capacious pharynx is es- sential for good swallowing and fistula 1. What will be the tumour resection speech.
    [Show full text]
  • Pig Dissection Slides
    Contents Pig Dissection •• ContentsContents External Features Sex Determination Mouth and Maxillary Nerve Muscles Index Internal Systems Index External features Contents Answers Sex determination Contents Male Answers Female Male Contents Answers to External anatomy 1. Pinna 2. External auditory meatus 3. Nictitating membrane 4. Rooter 5. Vibrissae 6. Umbilical cord 7. Genital papilla 8. Urogential orifice Sex Determination 9. Scrotum Back to externals 10. Mammary papilla 11. Anus Mouth and Maxillary nerve Contents Answers Contents Answers to Mouth and Facial nerve 1. Hard palate 2. Epiglottis 3. Canine teeth 4. Soft palate 5. Eustachian tube 6. Nasopharynx 7. Oral pharynx 8. Glottis 9. External nostril Mouth and Facial 10. Maxillary nerve 11. Infraorbital foramen 12. Opening to nasopharynx Contents Muscle Index • Neck and shoulder muscles Ventral view neck Lateral view neck Lateral view neck and shoulder Lateral view shoulder and leg muscles Lower limb Lateral view Medial view 1 Medial view 2 Neck and Shoulder Muscles 1 Contents Answers Back to Muscle index Neck and Shoulder Muscles 2 Contents Answers Back to Muscle index Neck and Shoulder Muscles 3 Contents Answers Back to Muscle index Lateral view Shoulder Contents and leg muscles Answers Back to Muscle index Lower limb lateral muscles Contents Answers Back to Muscle index Lower limb medial muscles 1 Contents Answers Back to Muscle index Lower limb medial muscles 2 Contents Answers Back to Muscle index Answers to Muscles Contents Neck and shoulder Lower limb 1. Masseter 18. Biceps femoris muscle 2. Submaxillary gland (Mandibular gland) 19. Tensor fasciae latae 3. Parotid gland 20. Gluteus medius muscle 4.
    [Show full text]
  • Surgical Approaches to Retrosternal Tumours of the Thyroid
    wjpmr, 2017,3(8), 425-430 SJIF Impact Factor: 4.103 Review Article Jaspreet et al. WORLD JOURNAL OF PHARMACEUTICAL World Journal of Pharmaceutical and Medical Research AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr.com WJPMR SURGICAL APPROACHES TO RETROSTERNAL TUMOURS OF THE THYROID Dr. Jaspreet Singh Badwal* Head and Neck Surgeon, FUICC (Europe). *Corresponding Author: Dr. Jaspreet Singh Badwal Head and Neck Surgeon, FUICC (Europe). Article Received on 19/07/2017 Article Revised on 09/08/2017 Article Accepted on 31/08/2017 ABSTRACT Though surgery is the undisputed choice of treatment for large substernal masses of the thyroid gland, the debate focuses on the ideal choice between a transcervical approach and a sternotomy approach. The cervical route is appropriate for most of the substernal thyroid masses. The present manuscript will discuss both the surgical approaches in detail. KEYWORDS: Thyroid cancer, tumours of thyroid, substernal extension, retrosternal goiter. INTRODUCTION glands, and tracheoesophageal and mediastinal node Although surgery is the undisputed choice of treatment exploration in all cases of malignancy. for large substernal masses of the thyroid gland, the debate focuses on the ideal choice between a Preoperative anaesthetic evaluation is routine. In the transcervical approach and a sternotomy approach. past, undue emphasis has been placed on tracheal Substernal or mediastinal extension of a cervical tumour deviation. In the vast majority of cases, the larynx is warrants an approach different from that used for routine relatively undisplaced; therefore, intubation is usually thyroidectomies. uneventful. On the other hand, preoperative identification of tracheal compression from a large The Transcervical Approach thyroid mass is critical.
    [Show full text]
  • PEQULIARITIES of MORPHOGENESYS and TOPOGRAPHY of INFRAHYOID TRIANGLES in HUMAN PREFETUSES and FETUSES 10.36740/Wlek202101120
    Wiadomości Lekarskie, VOLUME LXXIV, ISSUE 1, JANUARY 2021 © Aluna Publishing ORIGINAL ARTICLE PEQULIARITIES OF MORPHOGENESYS AND TOPOGRAPHY OF INFRAHYOID TRIANGLES IN HUMAN PREFETUSES AND FETUSES 10.36740/WLek202101120 Olexandr V. Tsyhykalo1, Iryna S. Popova2, Olga Ya. Skrynchuk3, Tetiana D. Dutka-Svarychevska4, Larysa Ya. Fedoniuk5 1DEPARTMENT OF HISTOLOGY, CYTOLOGY AND EMBRYOLOGY, BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE 2DEPARTMENT OF HISTOLOGY, CYTOLOGY AND EMBRYOLOGY, BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE 3DEPARTMENT OF PHARMACY, BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE 4DEPARTMENT OF HISTOLOGY, CYTOLOGY AND EMBRYOLOGY, BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE 5MEDICAL BIOLOGY DEPARTMENT OF THE I. HORBACHEVSKY STATE MEDICAL UNIVERSITY, TERNOPIL, UKRAINE ABSTRACT The aim: To investigate morphology and developmental features of anatomical structures in the infrahyoid triangles of human neck during prefetal and fetal periods of human ontogenesis. Materials and methods: We have studied 30 specimens of human prefetuses from 7th till 12th week (16,0-82,0 mm of parieto-coccygeal length (PCL)) and 30 human fetuses aged from 4th till 10th month (84,0-360,0 mm PCL) of intrauterine development by the means of macro-, microscopy, morphometry, three-dimensional remodeling and statistical analyses. Results: We can observe anterior triangle in human fetuses after the time when common precursor muscular mass splits into two: the anterior and posterior portions which will give rise to the sternocleidomastoid and trapezoid muscles accordingly. The area index of the central triangle in human fetuses 4th – 10th month of intrauterine development shows the increasing tendency with the highest rates at 8th–10th months period – 1100-1200 mm2. The angulated course of omohyoid muscle is visible at late prefetal and early fetal periods (3-4th month; 80,0-130,0 PCL) as well as the presence of intermediate tendon.
    [Show full text]