Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy

Total Page:16

File Type:pdf, Size:1020Kb

Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy ORIGINAL ARTICLE Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy Michael Friedman, MD; Phillip LoSavio, BS; Hani Ibrahim, MD Background: Injury to the external branch of the su- recorded and compared on an annual basis for both be- perior laryngeal nerve (EBSLN) can result in detrimen- nign and malignant disease. Overall results were also com- tal voice changes, the severity of which varies according pared with those found in previous series identified to the voice demands of the patient. Variations in its ana- through a 50-year literature review. tomic patterns and in the rates of identification re- ported in the literature have discouraged thyroid sur- Results: The 3 anatomic variations of the distal aspect geons from routine exploration and identification of this of the EBSLN as it enters the cricothyroid were encoun- nerve. Inconsistent with the surgical principle of pres- tered and are described. The total identification rate over ervation of critical structures through identification, mod- the 20-year period was 900 (85.1%) of 1057 nerves. Op- ern-day thyroidectomy surgeons still avoid the EBSLN erations performed for benign disease were associated rather than identifying and preserving it. with higher identification rates (599 [86.1%] of 696) as opposed to those performed for malignant disease Objectives: To describe the anatomic variations of the (301 [83.4%] of 361). Operations performed in recent EBSLN, particularly at the junction of the inferior con- years have a higher identification rate (over 90%). strictor and cricothyroid muscles; to propose a system- atic approach to identification and preservation of this Conclusions: Understanding the 3 anatomic variations nerve; and to define the identification rate of this nerve of the distal portion of the EBSLN and its relation to the during thyroidectomy. inferior constrictor muscle allows for high rates of iden- tification of this nerve. The EBSLN should be explored Materials and Methods: A retrospective review of thy- during thyroid surgery and identification is possible in roid lobectomies and total thyroidectomies performed be- most cases. Preservation of the EBSLN maintains opti- tween 1978 and 1997 was carried out. A total of 884 pa- mal function of the larynx. tients were included, with 1057 EBSLNs explored. Intraoperative findings of identification of the EBSLN were Arch Otolaryngol Head Neck Surg. 2002;128:296-303 HE CLINICAL significance of Most of these articles focus on the ana- the superior laryngeal nerve tomic relationship of the SLN to the su- (SLN) has been clearly over- perior thyroid artery. They discuss the like- shadowed by emphasis on lihood of the SLN being at risk for injury therecurrentlaryngealnerve. and the probability of identifying the SLN TThe principles of head and neck surgery during surgery; they suggest that the SLN are based on identification and preserva- often cannot be identified. Very little has tion as opposed to avoidance of impor- been written on the anatomy of the distal tant structures. These principles would set portion of the SLN as it enters the crico- identification and preservation of the thyroid muscle.3 From the Department of SLN as standard in all thyroid surgery. This study was undertaken to review Otolaryngology and The nerve is clearly at risk, and injury is the experience of the senior surgeon (M.F.) Bronchoesophagology, clearly detrimental to the patient. De- with the SLN in more than 1000 thyroid lo- Rush-Presbyterian-St Luke’s spite these facts, the SLN is not routinely bectomies over a 20-year period. The study Medical Center (Drs Friedman identified by most surgeons, and some reviews the anatomy of the distal end of the and Ibrahim and Mr LoSavio), and the Division of physicians have presented studies to jus- SLN as it relates to the practical aspect of Otolaryngology, Advocate tify this apparent inconsistency in opti- surgical identification. It also reviews the 1-3 Illinois Masonic Medical Center mal surgery. percentage of cases in which the SLN was (Drs Friedman and Ibrahim), Many articles deal with the variable actually identified. It presents a reliable Chicago, Ill. anatomy of the superior laryngeal nerve.3-11 technique for practical identification and (REPRINTED) ARCH OTOLARYNGOL HEAD NECK SURG/ VOL 128, MAR 2002 WWW.ARCHOTO.COM 296 ©2002 American Medical Association. All rights reserved. Downloaded From: http://archotol.jamanetwork.com/ by a Rush University User on 10/02/2015 MATERIALS AND METHODS The muscle response of the stimulated nerve is quite dif- ferent than the response of direct muscle stimulation. Ab- sence of identification by stimulation should direct the sur- This nonrandomized retrospective study reviews a 20- geon back to the region of the vessels to search for a missed year experience of thyroid lobectomies from the year 1978 type 1 nerve. to 1997. The charts of all patients who underwent thyroid- This classification is based on the terminal aspect of ectomy and/or lobectomy were reviewed to assess if the ex- the EBSLN and is provided as a practical guide for identi- ternal branch of the SLN (EBSLN) was identified and pre- fication. It does not replace previously described classifi- served or not identified at surgery. Cases were categorized cations by Kierner et al4 and Cernea et al5 that focus on the into benign or malignant as determined by pathology re- EBSLN and the superior thyroid vessels’ relationship. The ports at the time of surgery, and the percent identification percentage of patients with anatomy corresponding to 1 of was compared for each calendar year. Overall, 884 patient these 3 types has not been studied in detail by us or by other cases were reviewed with a total of 1057 EBSLNs put at risk investigators. Lennquist et al3 studied the percentage of their (696 nerves [65.8%] in cases with benign tumors and 361 patients with type 3 distribution and found it to be 20%. nerves [34.2%] with malignant tumors). A full literature Although the retrospective review of the data was not de- search was performed on the OVIDWEB-MEDLINE data- tailed enough in that study to identify which type was pres- base looking for all relevant articles since 1950 that com- ent in every case, all 3 types were frequently identified. ment on the identification, preservation, anatomy, surgi- cal technique, and injury rate to the EBSLN. SURGICAL TECHNIQUE SURGICAL ANATOMY A previously described systematic approach14 was used consistently in all of our cases. After raising subplatysmal The SLN is classically described as originating from the flaps, care was taken to maintain meticulous hemostasis middle of the nodose ganglion. In addition, it receives as the sternohyoid and sternothyroid muscles were indi- contributions from the superior cervical sympathetic gan- vidually elevated laterally (Figure 4 and Figure 5). The glion. Its path of descent initially begins posteriorly and sternohyoid muscle was elevated laterally up to the hyoid proceeds medially to the internal carotid artery where it to allow visualization of the sternothyroid muscle inser- bifurcates into an internal (sensory and autonomic) and tion into the oblique line of the thyroid cartilage. The external laryngeal branch (motor).12,13 The internal sternothyroid muscle was then elevated laterally until the branch proceeds to pierce the thyrohyoid membrane with lateral edge of the thyroid gland was reached. The medial the superior laryngeal artery and subsequently divides edge of the superior attachment of the sternothyroid into an upper and lower branch. The external branch con- muscle was transected with a bipolar cautery for a dis- tinues to travel inferiorly, passing superficially to the infe- tance of 5 mm (Figure 6), which provided better expo- rior constrictor and then piercing it to finally reach the sure of the inferior constrictor–cricothyroid junction. The cricothryoid muscle.12 While this level of description can horizontal and oblique bellies of the cricothyroid muscle suffice for the nonsurgical observer, more detailed were identified as was the anterior edge of the inferior descriptions have helped to elucidate the variations in the constrictor. anatomy of the EBSLN to aid the surgeon operating in A disposable nerve stimulator (set on 2 mA) was used this area.3-11 to identify the terminal branches of the EBSLN as they en- This study focused on the anatomy of the EBSLN at ter the cricothyroid bellies. The stimulator was first used its insertion into the cricothyroid muscle. Terminal directly on the cricothyroid muscle to assess the response branches of the EBSLN penetrate the horizontal and of direct muscle stimulation. This helps differentiate muscle oblique bellies of the cricothyroid muscle as well as the stimulation from nerve stimulation. If the EBSLN was iden- inferior constrictor. However, 3 variations have been tified over the inferior constrictor (type 1, Figure 1), it was described for the main trunk of the EBSLN prior to its ter- followed in a retrograde direction. Identification of the nerve minal branching. In the type 1 variation, it runs its whole in this location allows for preservation of the nerve. This course superficially or laterally to the inferior constrictor, anatomic variant is usually associated with an EBSLN that descending with the superior thyroid vessels until it termi- crosses the superior thyroid artery at or below the supe- nates in the cricothyroid muscle (Figure 1). In the type 2 rior thyroid pole. This scenario places the nerve at risk not variation, the EBSLN penetrates the inferior constrictor in only during ligation of the superior thyroid vessels but dur- the lower portion of the muscle (Figure 2). In this case it ing dissection of the loose areolar tissue adjacent to the su- is only partially protected by the inferior constrictor. And perior pole. Routinely, the superior pole vessels and the loose finally, the type 3 nerve dives under the superiormost areolar tissue surrounding them are not dissected until the fibers of the inferior constrictor, remaining covered by this EBSLN is explored.
Recommended publications
  • Identification of the External Branch of the Superior Laryngeal Nerve During Thyroidectomy
    ORIGINAL ARTICLE Identification of the External Branch of the Superior Laryngeal Nerve During Thyroidectomy Nitin A. Pagedar, MD; Jeremy L. Freeman, MD, FRCSC Objectives: To determine the feasibility of identifica- sition according to Cernea classification and correlation tion of the external branch of the superior laryngeal nerve with patient and gland characteristics. (EBSLN) during routine thyroidectomy and to describe the EBSLN position according to the Cernea classifica- Results: Three of 178 EBSLNs (1.7%) could not be iden- tion system. tified using the routine technique. The EBSLN was found in the highest-risk position (Cernea type 2b, crossing the Design: Prospective case series. superior vascular pedicle below the upper border of the gland) in 48.3% of cases, and in the lowest-risk position Setting: Academic tertiary care center. (Cernea type 1, crossing more than 1 cm above the up- per border) in 7.3%. Specimens larger in weight and in Patients: One hundred twelve consecutive patients un- dimension were correlated with type 2b nerves. dergoing hemithyroidectomy or total thyroidectomy by the senior author between August 15 and December 31, Conclusions: The EBSLN can be routinely identified dur- 2007. ing thyroidectomy. Moreover, many EBSLNs are in po- sition to be at high risk of injury during ligation of the Interventions: None. superior vascular pedicle. Main Outcome Measure: Proportion of EBSLNs iden- tified. Secondary outcome measures included EBSLN po- Arch Otolaryngol Head Neck Surg. 2009;135(4):360-362 TUDIES HAVE SHOWN THAT SUB- identified than in cases in which no search jective voice disturbance after was performed. thyroidectomy is very com- Anatomic studies have sought to delin- mon,1,2 even without injury to eate the course of the nerve near the supe- the recurrent laryngeal nerves.
    [Show full text]
  • Larynx Anatomy
    LARYNX ANATOMY Elena Rizzo Riera R1 ORL HUSE INTRODUCTION v Odd and median organ v Infrahyoid region v Phonation, swallowing and breathing v Triangular pyramid v Postero- superior base àpharynx and hyoid bone v Bottom point àupper orifice of the trachea INTRODUCTION C4-C6 Tongue – trachea In women it is somewhat higher than in men. Male Female Length 44mm 36mm Transverse diameter 43mm 41mm Anteroposterior diameter 36mm 26mm SKELETAL STRUCTURE Framework: 11 cartilages linked by joints and fibroelastic structures 3 odd-and median cartilages: the thyroid, cricoid and epiglottis cartilages. 4 pair cartilages: corniculate cartilages of Santorini, the cuneiform cartilages of Wrisberg, the posterior sesamoid cartilages and arytenoid cartilages. Intrinsic and extrinsic muscles THYROID CARTILAGE Shield shaped cartilage Right and left vertical laminaà laryngeal prominence (Adam’s apple) M:90º F: 120º Children: intrathyroid cartilage THYROID CARTILAGE Outer surface à oblique line Inner surface Superior border à superior thyroid notch Inferior border à inferior thyroid notch Superior horns à lateral thyrohyoid ligaments Inferior horns à cricothyroid articulation THYROID CARTILAGE The oblique line gives attachement to the following muscles: ¡ Thyrohyoid muscle ¡ Sternothyroid muscle ¡ Inferior constrictor muscle Ligaments attached to the thyroid cartilage ¡ Thyroepiglottic lig ¡ Vestibular lig ¡ Vocal lig CRICOID CARTILAGE Complete signet ring Anterior arch and posterior lamina Ridge and depressions Cricothyroid articulation
    [Show full text]
  • Unusual Morphology of the Superior Belly of Omohyoid Muscle
    Case Report http://dx.doi.org/10.5115/acb.2014.47.4.271 pISSN 2093-3665 eISSN 2093-3673 Unusual morphology of the superior belly of omohyoid muscle Rajesh Thangarajan, Prakashchandra Shetty, Srinivasa Rao Sirasanagnadla, Melanie Rose D’souza Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, Karnataka, India Abstract: Though anomalies of the superior belly of the omohyoid have been described in medical literature, absence of superior belly of omohyoid is rarely reported. Herein, we report a rare case of unilateral absence of muscular part of superior belly of omohyoid. During laboratory dissections for medical undergraduate students, unusual morphology of the superior belly of the omohyoid muscle has been observed in formalin embalmed male cadaver of South Indian origin. The muscular part of the superior belly of the omohyoid was completely absent. The inferior belly originated normally from the upper border of scapula, and continued with a fibrous tendon which ran vertically lateral to sternohyoid muscle and finally attached to the lower border of the body of hyoid bone. The fibrous tendon was about 1 mm thick and received a nerve supply form the superior root of the ansa cervicalis. As omohyoid mucle is used to achieve the reconstruction of the laryngeal muscles and bowed vocal folds, the knowledge of the possible anomalies of the omohyoid muscle is important during neck surgeries. Key words: Superior belly, Fibrous tendon, Omohyoid, Neck surgery Received March 12, 2014; Revised April 3, 2014; Accepted April 28, 2014 Introduction bellies, absence and adhesion to sternohyoid are the reported anomalies of the superior belly of the OH [2].
    [Show full text]
  • Unusual Organization of the Ansa Cervicalis: a Case Report
    CASE REPORT ISSN- 0102-9010 UNUSUAL ORGANIZATION OF THE ANSA CERVICALIS: A CASE REPORT Ranjana Verma1, Srijit Das2 and Rajesh Suri3 Department of Anatomy, Maulana Azad Medical College, New Delhi-110002, India. ABSTRACT The superior root of the ansa cervicalis is formed by C1 fibers carried by the hypoglossal nerve, whereas the inferior root is contributed by C2 and C3 nerves. We report a rare finding in a 40-year-old male cadaver in which the vagus nerve fused with the hypoglossal nerve immediately after its exit from the skull on the left side. The vagus nerve supplied branches to the sternohyoid, sternothyroid and superior belly of the omohyoid muscles and also contributed to the formation of the superior root of the ansa cervicalis. In this arrangement, paralysis of the infrahyoid muscles may result following lesion of the vagus nerve anywhere in the neck. The cervical location of the vagus nerve was anterior to the common carotid artery within the carotid sheath. This case report may be of clinical interest to surgeons who perform laryngeal reinnervation and neurologists who diagnose nerve disorders. Key words: Ansa cervicalis, hypoglossal nerve, vagus nerve, variations INTRODUCTION cadaver. The right side was normal. The neck region The ansa cervicalis is a nerve loop formed was dissected and the neural structures in the carotid by the union of superior and inferior roots. The and muscular triangle regions were exposed, with superior root is a branch of the hypoglossal nerve particular attention given to the organization of the containing C1 fibers, whereas the inferior root is ansa cervicalis.
    [Show full text]
  • The Role of Strap Muscles in Phonation Laryngeal Model in Vivo
    Journal of Voice Vol. 11, No. 1, pp. 23-32 © 1997 Lippincott-Raven Publishers, Philadelphia The Role of Strap Muscles in Phonation In Vivo Canine Laryngeal Model Ki Hwan Hong, *Ming Ye, *Young Mo Kim, *Kevin F. Kevorkian, and *Gerald S. Berke Department of Otolaryngology, Chonbuk National University, Medical School, Chonbuk, Korea; and *Division of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, California, U.S.A. Summary: In spite of the presumed importance of the strap muscles on laryn- geal valving and speech production, there is little research concerning the physiological role and the functional differences among the strap muscles. Generally, the strap muscles have been shown to cause a decrease in the fundamental frequency (Fo) of phonation during contraction. In this study, an in vivo canine laryngeal model was used to show the effects of strap muscles on the laryngeal function by measuring the F o, subglottic pressure, vocal in- tensity, vocal fold length, cricothyroid distance, and vertical laryngeal move- ment. Results demonstrated that the contraction of sternohyoid and sternothy- roid muscles corresponded to a rise in subglottic pressure, shortened cricothy- roid distance, lengthened vocal fold, and raised F o and vocal intensity. The thyrohyoid muscle corresponded to lowered subglottic pressure, widened cricothyroid distance, shortened vocal fold, and lowered F 0 and vocal inten- sity. We postulate that the mechanism of altering F o and other variables after stimulation of the strap muscles is due to the effects of laryngotracheal pulling, upward or downward, and laryngotracheal forward bending, by the external forces during strap muscle contraction.
    [Show full text]
  • Chapter Anatomy
    Chapter Anatomy 1 Kyriakos Anastasiadis and Chandi Ratnatunga Chapter Location of extensions of the upper lobes, as well as relationships to the innominate vein, have been described (Figs. 1.3). The thymus gland is located in the anterosuperior me- Thus, rather than being located in its classical anterior po- diastinum. It usually extends from the thyroid gland to sition, one or both of the upper lobe thymus may even lie the level of the fourth costal cartilage. It lies posterior to behind the innominate vein. Moreover, it has to be noted the pretracheal fascia, the sternohyoid and sternothyroid that besides the classical location of the gland, ectopic muscles and the sternum (mostly behind the manubrium thymic tissue could be found in the mediastinal fat of the and the upper part of its body). It is located anteriorly majority of patients. This is now accepted as the normal to the innominate vein and is found between the pari- etal pleura and extrapleural fat and central to the phrenic nerves. It lies on the pericardium, with the ascending aorta and aortic arch behind it, while in the neck it lies over the trachea. Parallel to the gland on each side lie the phrenic nerves, which converge towards the gland at its middle segment (particularly important issue in thymec- tomy procedures). The gland consists classically of two lobes, even though other lobular structures may be pres- ent (Figs. 1.1, 1.2). The thyrothymic ligament connects the upper parts of its lobes to the thyroid gland. A variety Fig. 1.2 Midline cervicothoracic sagittal section material de- monstrating the thymus gland location (1=thyroid isthmus, 2=superficial layer of cervical fascia, 3=pretracheal cervical fa- scia, 4=brachiocephalic trunk, 5=pretracheal space, 6=left bra- chiocephalic vein, 7=sternothyroid muscle, 8=anterior wall of Fig.
    [Show full text]
  • 6. the Pharynx the Pharynx, Which Forms the Upper Part of the Digestive Tract, Consists of Three Parts: the Nasopharynx, the Oropharynx and the Laryngopharynx
    6. The Pharynx The pharynx, which forms the upper part of the digestive tract, consists of three parts: the nasopharynx, the oropharynx and the laryngopharynx. The principle object of this dissection is to observe the pharyngeal constrictors that form the back wall of the vocal tract. Because the cadaver is lying face down, we will consider these muscles from the back. Figure 6.1 shows their location. stylopharyngeus suuperior phayngeal constrictor mandible medial hyoid bone phayngeal constrictor inferior phayngeal constrictor Figure 6.1. Posterior view of the muscles of the pharynx. Each of the three pharyngeal constrictors has a left and right part that interdigitate (join in fingerlike branches) in the midline, forming a raphe, or union. This raphe forms the back wall of the pharynx. The superior pharyngeal constrictor is largely in the nasopharynx. It has several origins (some texts regard it as more than one muscle) one of which is the medial pterygoid plate. It assists in the constriction of the nasopharynx, but has little role in speech production other than helping form a site against which the velum may be pulled when forming a velic closure. The medial pharyngeal constrictor, which originates on the greater horn of the hyoid bone, also has little function in speech. To some extent it can be considered as an elevator of the hyoid bone, but its most important role for speech is simply as the back wall of the vocal tract. The inferior pharyngeal constrictor also performs this function, but plays a more important role constricting the pharynx in the formation of pharyngeal consonants.
    [Show full text]
  • Cranial Nerves - Iii (Cn Ix, X, Xi & Xii)
    CRANIAL NERVES - III (CN IX, X, XI & XII) DR. SANGEETA KOTRANNAVAR ASSISTANT PROFESSOR DEPT. OF ANATOMY USM KLE IMP BELAGAVI OBJECTIVES • Describe the functional component, nuclei of origin, course, distribution and functional significance of cranial nerves IX, X, XI and XII • Describe the applied anatomy of cranial nerves IX, X, XI and XII overview Relationship of the last four cranial nerves at the base of the skull The last four cranial nerves arise from medulla & leave the skull close together, the glossopharyngeal, vagus & accessory through jugular foramen, and the hypoglossal nerve through the hypoglossal canal Functional components OF CN Afferent Efferent General General somatic afferent fibers General somatic efferent fibers Somatic (GSA): transmit exteroceptive & (GSE): innervate skeletal muscles proprioceptive impulses from skin of somatic origin & muscles to somatic sensory nuclei General General visceral afferent General visceral efferent(GVE): transmit visceral fibers (GVA): transmit motor impulses from general visceral interoceptive impulses motor nuclei &relayed in parasympathetic from the viscera to the ganglions. Postganglionic fibers supply visceral sensory nuclei glands, smooth muscles, vessels & viscera Special Special somatic afferent fibers (SSA): ------------ Somatic transmit sensory impulses from special sense organs eye , nose & ear to brain Special Special visceral afferent fibers Special visceral efferent fibers (SVE): visceral (SVA): transmit sensory transmit motor impulses from the impulses from special sense brain to skeletal muscles derived from taste (tounge) to the brain pharyngeal arches : include muscles of mastication, face, pharynx & larynx Cranial Nerve Nuclei in Brainstem: Schematic picture Functional components OF CN GLOSSOPHARYNGEAL NERVE • Glossopharyngeal nerve is the 9th cranial nerve. • It is a mixed nerve, i.e., composed of both the motor and sensory fibres, but predominantly it is sensory.
    [Show full text]
  • Vocal Cord Paralysis
    Vocal Cord Paralysis What Is Vocal Fold (cord) Paresis And Paralysis? Vocal fold (or cord) paresis and paralysis result from abnormal nerve input to the voice box muscles (laryngeal muscles). Paralysis is the total interruption of nerve impulse resulting in no movement of the muscle; Paresis is the partial interruption of nerve impulse resulting in weak or abnormal motion of laryngeal muscle(s). Vocal fold paresis/paralysis can happen at any age – from birth to advanced age, in males and females alike, from a variety of causes. The effect on patients may vary greatly depending on the patient’s use of his or her voice: A mild vocal fold paresis can be the end to a singer's career, but have only a marginal effect on a computer programmer's career. What Nerves Are Involved In Vocal Fold Paresis/Paralysis? Vocal fold movements are a result of the coordinated contraction of various muscles. These muscles are controlled by the brain through a specific set of nerves. The nerves that receive these signals are the: Superior laryngeal nerve (SLN), which carries signals to the cricothyroid muscle, located between the cricoid and thyroid cartilages. Since the cricothyroid muscle adjusts the tension of the vocal fold for high notes during singing, SLN paresis and paralysis result in abnormalities in voice pitch and the inability to sing with smooth change to each higher note. Sometimes, patients with SLN paresis/paralysis may have a normal speaking voice but an abnormal singing voice. The recurrent laryngeal nerve (RLN) carries signals to different voice box muscles responsible for opening vocal folds (as in breathing, coughing), closing vocal folds for vocal fold vibration during voice use, and closing vocal folds during swallowing.
    [Show full text]
  • Cervical Spine and Cervicothoracic Junction Alexander R
    46 Cervical Spine and Cervicothoracic Junction Alexander R. Riccio, Tyler J. Kenning, John W. German SUMMARY OF KEY POINTS the approximate cervical spinal levels for the purposes of the skin incision. These include the hyoid bone (C3), thyroid • Understanding the anatomy of the cervical spine and cartilage (C4-5), cricoid cartilage (C6), and carotid tubercle neck is of the utmost importance for the surgeon (C6). These landmarks, however, may not be universally reli- operating in this region. able because, depending on a patient’s body habitus, they may be difficult to palpate reliably; moreover, the relationships are • The anatomy of this region can be classified from only an estimate and variability exists. superficial to deep and further analyzed by system, The most prominent structure of the upper dorsal surface including muscle, bone, nerves, vasculature, and soft of the nuchal region is the inion, or occipital protuberance. tissue. This may be palpated in the midline and is a part of the • Regarding the nerves in the neck, more focused occipital bone. The spinous processes of the cervical vertebrae consideration is taken for surgical purposes when may then be followed caudally to the vertebral prominence, discussing the laryngeal nerve as a result of the variably corresponding to the spinous process of C6, C7 (most potential morbidity associated with iatrogenic injury common), or T1. to this nerve. The prominent surface structure of the ventral neck is the • The vertebral artery is discussed in specific detail as laryngeal prominence, which is produced by the underlying well due to its clinical importance and proximity to thyroid cartilage.
    [Show full text]
  • Surgical Anatomy of the Recurrent Laryngeal Nerve
    Ann Orol Rhinol Laryngo! 112:2003 SURGICAL ANATOMY OFTHE RECURRENT LARYNGEAL NERVE: IMPLICATIONS FOR LARYNGEAL REINNERVATION EDWARD J. DAMROSE, MD ROBERT Y. HUANG, MD MING YE, MD GERALD S. BERKE, MD JOEL A. SERCARZ, MD Los ANGELES, CALIFORNIA Functional laryngeal reinnervation depends upon theprecise reinnervation ofthe laryngeal abductor and adductor muscle groups. While simple end-to-end anastomosis of the recurrent laryngeal nerve (RLN) main trunk results in synkinesis, functional reinnerva­ tion canbeachieved byselective anastomosis oftheabductor and adductor RLN divisions. Few previous studies have examined the intralaryngeal anatomy of theRLN to ascertain thecharacteristics that may lend themselves to laryngeal reinnervation. Ten human larynges without known laryngeal disorders were obtained from human cadavers forRLN microdissection. The bilateral intralaryngeal RLN branching patterns were determined, and thediameters and lengths oftheabductor and adductor divisions were measured. The mean diameters of the abductor and adductor divisions were 0.8 and 0.7 rnm, while their mean lengths were 5.7 and 6.1 rnm, respectively. The abductor division usually consisted of one branch to the posterior cricoarytenoid muscle; however, in cases in which multiple branches were seen, at least onedominant branch could usually be identified. We conclude that theabductor and adductor divisions of the human RLN can be readily identified by an extralaryngeal approach. Several key landmarks aid in the identification of the branches to individual muscles.
    [Show full text]
  • The Five Diaphragms in Osteopathic Manipulative Medicine: Neurological Relationships, Part 1
    Open Access Review Article DOI: 10.7759/cureus.8697 The Five Diaphragms in Osteopathic Manipulative Medicine: Neurological Relationships, Part 1 Bruno Bordoni 1 1. Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA Corresponding author: Bruno Bordoni, [email protected] Abstract In osteopathic manual medicine (OMM), there are several approaches for patient assessment and treatment. One of these is the five diaphragm model (tentorium cerebelli, tongue, thoracic outlet, diaphragm, and pelvic floor), whose foundations are part of another historical model: respiratory-circulatory. The myofascial continuity, anterior and posterior, supports the notion the human body cannot be divided into segments but is a continuum of matter, fluids, and emotions. In this first part, the neurological relationships of the tentorium cerebelli and the lingual muscle complex will be highlighted, underlining the complex interactions and anastomoses, through the most current scientific data and an accurate review of the topic. In the second part, I will describe the neurological relationships of the thoracic outlet, the respiratory diaphragm and the pelvic floor, with clinical reflections. In literature, to my knowledge, it is the first time that the different neurological relationships of these anatomical segments have been discussed, highlighting the constant neurological continuity of the five diaphragms. Categories: Medical Education, Anatomy, Osteopathic Medicine Keywords: diaphragm, osteopathic, fascia, myofascial, fascintegrity,
    [Show full text]