Unusual Organization of the Ansa Cervicalis: a Case Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy
ORIGINAL ARTICLE Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy Michael Friedman, MD; Phillip LoSavio, BS; Hani Ibrahim, MD Background: Injury to the external branch of the su- recorded and compared on an annual basis for both be- perior laryngeal nerve (EBSLN) can result in detrimen- nign and malignant disease. Overall results were also com- tal voice changes, the severity of which varies according pared with those found in previous series identified to the voice demands of the patient. Variations in its ana- through a 50-year literature review. tomic patterns and in the rates of identification re- ported in the literature have discouraged thyroid sur- Results: The 3 anatomic variations of the distal aspect geons from routine exploration and identification of this of the EBSLN as it enters the cricothyroid were encoun- nerve. Inconsistent with the surgical principle of pres- tered and are described. The total identification rate over ervation of critical structures through identification, mod- the 20-year period was 900 (85.1%) of 1057 nerves. Op- ern-day thyroidectomy surgeons still avoid the EBSLN erations performed for benign disease were associated rather than identifying and preserving it. with higher identification rates (599 [86.1%] of 696) as opposed to those performed for malignant disease Objectives: To describe the anatomic variations of the (301 [83.4%] of 361). Operations performed in recent EBSLN, particularly at the junction of the inferior con- years have a higher identification rate (over 90%). strictor and cricothyroid muscles; to propose a system- atic approach to identification and preservation of this Conclusions: Understanding the 3 anatomic variations nerve; and to define the identification rate of this nerve of the distal portion of the EBSLN and its relation to the during thyroidectomy. -
Neck Dissection Using the Fascial Planes Technique
OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY NECK DISSECTION USING THE FASCIAL PLANE TECHNIQUE Patrick J Bradley & Javier Gavilán The importance of identifying the presence larised in the English world in the mid-20th of metastatic neck disease with head and century by Etore Bocca, an Italian otola- neck cancer is recognised as a prominent ryngologist, and his colleagues 5. factor determining patients’ prognosis. The current available techniques to identify Fascial compartments allow the removal disease in the neck all have limitations in of cervical lymphatic tissue by separating terms of accuracy; thus, elective neck dis- and removing the fascial walls of these section is the usual choice for management “containers” along with their contents of the clinically N0 neck (cN0) when the from the underlying vascular, glandular, risk of harbouring occult regional metasta- neural, and muscular structures. sis is significant (≥20%) 1. Methods availa- ble to identify the N+ (cN+) neck include Anatomical basis imaging (CT, MRI, PET), ultrasound- guided fine needle aspiration cytology The basic understanding of fascial planes (USGFNAC), and sentinel node biopsy, in the neck is that there are two distinct and are used depending on resource fascial layers, the superficial cervical fas- availability, for the patient as well as the cia, and the deep cervical fascia (Figures local health service. In many countries, 1A-C). certainly in Africa and Asia, these facilities are not available or affordable. In such Superficial cervical fascia circumstances patients with head and neck cancer whose primary disease is being The superficial cervical fascia is a connec- treated surgically should also have the tive tissue layer lying just below the der- neck treated surgically. -
Unusual Morphology of the Superior Belly of Omohyoid Muscle
Case Report http://dx.doi.org/10.5115/acb.2014.47.4.271 pISSN 2093-3665 eISSN 2093-3673 Unusual morphology of the superior belly of omohyoid muscle Rajesh Thangarajan, Prakashchandra Shetty, Srinivasa Rao Sirasanagnadla, Melanie Rose D’souza Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, Karnataka, India Abstract: Though anomalies of the superior belly of the omohyoid have been described in medical literature, absence of superior belly of omohyoid is rarely reported. Herein, we report a rare case of unilateral absence of muscular part of superior belly of omohyoid. During laboratory dissections for medical undergraduate students, unusual morphology of the superior belly of the omohyoid muscle has been observed in formalin embalmed male cadaver of South Indian origin. The muscular part of the superior belly of the omohyoid was completely absent. The inferior belly originated normally from the upper border of scapula, and continued with a fibrous tendon which ran vertically lateral to sternohyoid muscle and finally attached to the lower border of the body of hyoid bone. The fibrous tendon was about 1 mm thick and received a nerve supply form the superior root of the ansa cervicalis. As omohyoid mucle is used to achieve the reconstruction of the laryngeal muscles and bowed vocal folds, the knowledge of the possible anomalies of the omohyoid muscle is important during neck surgeries. Key words: Superior belly, Fibrous tendon, Omohyoid, Neck surgery Received March 12, 2014; Revised April 3, 2014; Accepted April 28, 2014 Introduction bellies, absence and adhesion to sternohyoid are the reported anomalies of the superior belly of the OH [2]. -
Levator Claviculae Muscle: a Case Report Konstantinos Natsis*, Stylianos Apostolidis, Elisavet Nikolaidou, Georgios Noussios, Trifon Totlis and Nikolaos Lazaridis
Open Access Case report Levator claviculae muscle: a case report Konstantinos Natsis*, Stylianos Apostolidis, Elisavet Nikolaidou, Georgios Noussios, Trifon Totlis and Nikolaos Lazaridis Address: Department of Anatomy, Medical School, Aristotle University of Thessaloniki, P.O. Box: 300, 54124 Thessaloniki, Greece Email: KN* - [email protected]; SA - [email protected]; EN - [email protected]; GN - [email protected]; TT - [email protected]; NL - [email protected] * Corresponding author Published: 15 May 2009 Received: 12 February 2008 Accepted: 8 April 2009 Cases Journal 2009, 2:6712 doi: 10.1186/1757-1626-2-6712 This article is available from: http://casesjournal.com/casesjournal/article/view/6712 © 2009 Natsis et al; licensee Cases Network Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In the current study a levator claviculae muscle, found in a 65-year old male cadaver, is presented. We describe the topography and morphology of this accessory muscle, which may be found in 1-3% of the population. Moreover, we discuss the embryologic origin of the muscle along with its clinical importance. Introduction In the current study we present a case of a levator Levator claviculae or cleidocervical muscle is a super- claviculae muscle found in a cadaver and we discuss the numerary muscle in humans, in contrast to anthropoids embryologic origin of the muscle along with its clinical and lower mammals where this muscle is found normally importance. -
EDS Awareness in the TMJ Patient
EDS Awareness in the TMJ Patient TMJ and CCI with the EDS Patient “The 50/50” Myofascial Pain Syndrome EDNF, Baltimore, MD August 14,15, 2015 Generation, Diagnosis and Treatment of Head Pain of Musculoskeletal Origin Head pain generated by: • Temporomandibular joint dysfunction • Cervicocranial Instability • Mandibular deviation • Deflection of the Pharyngeal Constrictor Structures Parameters & Observations . The Myofascial Pain Syndrome (MPS) is a description of pain tracking in 200 Ehlers-Danlos patients. Of the 200 patients, 195 were afflicted with this pain referral syndrome pattern. The MPS is in direct association and correlation to Temporomandibular Joint dysfunction and Cervico- Cranial Instability syndromes. Both syndromes are virtually and always correlated. Evaluation of this syndrome was completed after testing was done to rule out complex or life threatening conditions. The Temporomandibular Joint TMJ Dysfunction Symptoms: Deceptively Simple, with Complex Origins 1) Mouth opening, closing with deviation of mandibular condyles. -Menisci that maybe subluxated causing mandibular elevation. -Jaw locking “open” or “closed”. -Inability to “chew”. 2) “Headaches”/”Muscles spasms” (due to decreased vertical height)generated in the temporalis muscle, cheeks areas, under the angle of the jaw. 3) Osseous distortion Pain can be generated in the cheeks, floor of the orbits and/or sinuses due to osseous distortion associated with “bruxism”. TMJ dysfunction cont. (Any of the following motions may produce pain) Pain With: . Limited opening(closed lock): . Less than 33 mm of rotation in either or both joints . Translation- or lack of . Deviations – motion of the mandible to the affected side or none when both joints are affected . Over joint pain with or without motion around or . -
The Role of Strap Muscles in Phonation Laryngeal Model in Vivo
Journal of Voice Vol. 11, No. 1, pp. 23-32 © 1997 Lippincott-Raven Publishers, Philadelphia The Role of Strap Muscles in Phonation In Vivo Canine Laryngeal Model Ki Hwan Hong, *Ming Ye, *Young Mo Kim, *Kevin F. Kevorkian, and *Gerald S. Berke Department of Otolaryngology, Chonbuk National University, Medical School, Chonbuk, Korea; and *Division of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, California, U.S.A. Summary: In spite of the presumed importance of the strap muscles on laryn- geal valving and speech production, there is little research concerning the physiological role and the functional differences among the strap muscles. Generally, the strap muscles have been shown to cause a decrease in the fundamental frequency (Fo) of phonation during contraction. In this study, an in vivo canine laryngeal model was used to show the effects of strap muscles on the laryngeal function by measuring the F o, subglottic pressure, vocal in- tensity, vocal fold length, cricothyroid distance, and vertical laryngeal move- ment. Results demonstrated that the contraction of sternohyoid and sternothy- roid muscles corresponded to a rise in subglottic pressure, shortened cricothy- roid distance, lengthened vocal fold, and raised F o and vocal intensity. The thyrohyoid muscle corresponded to lowered subglottic pressure, widened cricothyroid distance, shortened vocal fold, and lowered F 0 and vocal inten- sity. We postulate that the mechanism of altering F o and other variables after stimulation of the strap muscles is due to the effects of laryngotracheal pulling, upward or downward, and laryngotracheal forward bending, by the external forces during strap muscle contraction. -
Deep Neck Infections 55
Deep Neck Infections 55 Behrad B. Aynehchi Gady Har-El Deep neck space infections (DNSIs) are a relatively penetrating trauma, surgical instrument trauma, spread infrequent entity in the postpenicillin era. Their occur- from superfi cial infections, necrotic malignant nodes, rence, however, poses considerable challenges in diagnosis mastoiditis with resultant Bezold abscess, and unknown and treatment and they may result in potentially serious causes (3–5). In inner cities, where intravenous drug or even fatal complications in the absence of timely rec- abuse (IVDA) is more common, there is a higher preva- ognition. The advent of antibiotics has led to a continu- lence of infections of the jugular vein and carotid sheath ing evolution in etiology, presentation, clinical course, and from contaminated needles (6–8). The emerging practice antimicrobial resistance patterns. These trends combined of “shotgunning” crack cocaine has been associated with with the complex anatomy of the head and neck under- retropharyngeal abscesses as well (9). These purulent col- score the importance of clinical suspicion and thorough lections from direct inoculation, however, seem to have a diagnostic evaluation. Proper management of a recog- more benign clinical course compared to those spreading nized DNSI begins with securing the airway. Despite recent from infl amed tissue (10). Congenital anomalies includ- advances in imaging and conservative medical manage- ing thyroglossal duct cysts and branchial cleft anomalies ment, surgical drainage remains a mainstay in the treat- must also be considered, particularly in cases where no ment in many cases. apparent source can be readily identifi ed. Regardless of the etiology, infection and infl ammation can spread through- Q1 ETIOLOGY out the various regions via arteries, veins, lymphatics, or direct extension along fascial planes. -
Tentorium Cerebelli: the Bridge Between the Central and Peripheral Nervous System, Part 2
Open Access Review Article DOI: 10.7759/cureus.5679 Tentorium Cerebelli: the Bridge Between the Central and Peripheral Nervous System, Part 2 Bruno Bordoni 1 , Marta Simonelli 2 , Maria Marcella Lagana 3 1. Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA 2. Osteopathy, French-Italian School of Osteopathy, Pisa, ITA 3. Radiology, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, ITA Corresponding author: Bruno Bordoni, [email protected] Abstract The tentorium cerebelli is a meningeal portion in relation to the skull, the nervous system, and the cervical tract. In this second part, the article discusses the systematic tentorial relationships, such as the central and cervical neurological connections, the venous circulation and highlights possible clinical alterations that could cause pain. To understand the function of anatomy, we should always remember that every area of the human body is never a segment, but a functional continuum. Categories: Physical Medicine & Rehabilitation, Anatomy, Osteopathic Medicine Keywords: tentorium cerebelli, fascia, pain, venous circulation, neurological connections, cranio Introduction And Background Cervical neurological connections The ansa cervicalis characterizes the first cervical roots and connects all anterior cervical nerve exits with the inferior floor of the oral cavity, the trigeminal system, the respiratory control system, and the sympathetic system. The descending branch of the hypoglossal nerve anastomoses with C1, forming the ansa hypoglossi or ansa cervicalis superior [1]. The inferior root of the ansa cervicalis, also known as descendens cervicalis, is formed by ascendant fibers from spinal nerves C2-C3 and occasionally fibers C4, lying anteriorly to the common carotid artery (it passes laterally or medially to the internal jugular vein upon anatomical variations) [1]. -
Variation of the Infrahyoid Muscle: Duplicated Omohyoid and Appearance of the Levator Glandulae Thyroideae Muscles
DOI 10.3349/ymj.2010.51.6.984 Case Report pISSN: 0513-5796, eISSN: 1976-2437 Yonsei Med J 51(6):984-986, 2010 Variation of the Infrahyoid Muscle: Duplicated Omohyoid and Appearance of the Levator Glandulae Thyroideae Muscles Deog-Im Kim,1 Ho-Jeong Kim,2 Jae-Young Park,2 and Kyu-Seok Lee2 1Department of Anatomy, Catholic Institution for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul; 2Department of Anatomy, Kwandong University College of Medicine, Gangneung, Korea. Received: November 21, 2008 The embryologic origin of the omohyoid muscle is different from that of the other Revised: March 23, 2009 neck muscles. A number of variations such as the absence of muscle, variable sites Accepted: March 27, 2009 of origin and insertion, and multiple bellies have been reported. However, varia- Corresponding author: Dr. Kyu-Seok Lee, tions in the inferior belly of the omohyoid muscle are rare. There have been no Department of Anatomy, Kwandong University reports of the combined occurrence of the omohyoid muscle variation with the College of Medicine, 522 Naegok-dong, appearance of the levator glandulase thyroideae muscle. Routine dissection of a 51- Gangneung 210-701, Korea. year-old female cadaver revealed a duplicated omohyoid muscle and the appea- Tel: 82-33-649-7473, Fax: 82-33-641-1074 rance of the levator glandulae thyroideae muscle. In this case, the two inferior E-mail: [email protected] bellies of the omohyoid muscle were found to originate inferiorly from the superior border of the scapula. One of the inferior bellies generally continued to the superior ∙The authors have no financial conflicts of belly with the tendinous intersection. -
An Anomalous Digastric Muscle in the Carotid Sheath: a Case Report with Its
Short Communication 2020 iMedPub Journals Journal of Stem Cell Biology and Transplantation http://journals.imedpub.com Vol. 4 ISS. 4 : sc 37 ISSN : 2575-7725 DOI : 10.21767/2575-7725.4.4.37 8th Edition of International Conference on Clinical and Medical Case Reports - An anomalous digastric muscle in the carotid sheath: a case report with its embryological perspective and clinical relevance Srinivasa Rao Sirasanagandla Sultan Qaboos University, Oman Abstract Key words: Although infrahyoid muscles show considerable variations in Anterior belly, Posterior belly, Variation, Stylohyoid muscle, My- their development, existence of an anomalous digastric muscle lohyoid muscle, Hyoid bone in the neck was seldom reported. During dissection of trian- Anatomy gles of the neck for medical undergraduate students, we came across an anomalous digastric muscle in the carotid sheath of There is a pair of digastric muscles in the neck, and each digas- left side of neck. It was observed in a middle-aged cadaver at tric muscle has the anterior belly and the posterior belly. The College of Medicine and Health Sciences, Sultan Qaboos Uni- anterior belly is attached to the digastric fossa on the base of versity, Muscat, Oman. Digastric muscle was located within the the mandible close to the midline and runs toward the hyoid carotid sheath between the common and internal carotid arter- bone. The posterior belly is attached to the notch of the mas- ies and internal jugular vein. It had two bellies; cranial belly and toid process of the temporal bone and also runs toward the caudal belly which were connected by an intermediate tendon. -
The Anomalous Human Levator Claviculae Muscle: a Case Report
Central Annals of Vascular Medicine & Research Case Report *Corresponding author Kunwar P Bhatnagar, Department of Anatomical Sciences and Neurobiology, University of Louisville, 7000 Creekton, USA, Tel: 150-2456-4779; Email: bhatnagar@ The Anomalous Human Levator louisville.edu Submitted: 08 February 2021 Claviculae Muscle: A Case Accepted: 20 February 2021 Published: 24 February 2021 ISSN: 2378-9344 Report Copyright © 2021 Bhatnagar KP, et al. Kunwar P Bhatnagar1* and Timothy D Smith2 OPEN ACCESS 1Department of Anatomical Sciences and Neurobiology, University of Louisville, USA 2School of Physical Therapy, Slippery Rock University, USA Keywords • Anomalous muscle • Levator claviculae Abstract • omo-trachelien • Omocervicalis This case report describes the observation of a unilaterally present anomalous levator claviculae muscle in a 66 -year-old human male. The observations were made during routine laboratory dissections. In our 80- • Sternomastoideus some years of cumulative human dissection education prior to this detection, this was the first observation (with about 45 cadavers dissected yearly) of this muscle. The levator claviculae muscle was observed with intact nerve supply from the ventral ramus of C3, indicating its functional status. The muscle was lambda (λ)-shaped with its stem oriented cranially, attaching to the fascia of the longus capitis muscle at the level of the transverse process of the fourth cervical vertebra. More inferiorly, the stem splits into a pars medialis and pars lateralis each with fascial attachments to the clavicle within the middle third of the bone. Both parts had fascial attachments to the clavicle within the middle third of the bone, and the lateral part passed medial to the external jugular vein. -
Cervical Spine and Cervicothoracic Junction Alexander R
46 Cervical Spine and Cervicothoracic Junction Alexander R. Riccio, Tyler J. Kenning, John W. German SUMMARY OF KEY POINTS the approximate cervical spinal levels for the purposes of the skin incision. These include the hyoid bone (C3), thyroid • Understanding the anatomy of the cervical spine and cartilage (C4-5), cricoid cartilage (C6), and carotid tubercle neck is of the utmost importance for the surgeon (C6). These landmarks, however, may not be universally reli- operating in this region. able because, depending on a patient’s body habitus, they may be difficult to palpate reliably; moreover, the relationships are • The anatomy of this region can be classified from only an estimate and variability exists. superficial to deep and further analyzed by system, The most prominent structure of the upper dorsal surface including muscle, bone, nerves, vasculature, and soft of the nuchal region is the inion, or occipital protuberance. tissue. This may be palpated in the midline and is a part of the • Regarding the nerves in the neck, more focused occipital bone. The spinous processes of the cervical vertebrae consideration is taken for surgical purposes when may then be followed caudally to the vertebral prominence, discussing the laryngeal nerve as a result of the variably corresponding to the spinous process of C6, C7 (most potential morbidity associated with iatrogenic injury common), or T1. to this nerve. The prominent surface structure of the ventral neck is the • The vertebral artery is discussed in specific detail as laryngeal prominence, which is produced by the underlying well due to its clinical importance and proximity to thyroid cartilage.