Ansa Cervicalis Nerve: Review of the Topographic Anatomy and Morphology

Total Page:16

File Type:pdf, Size:1020Kb

Ansa Cervicalis Nerve: Review of the Topographic Anatomy and Morphology The Laryngoscope Lippincott-Raven Publishers, Philadelphia 0 1997 The American Laryn ological, Rhinological and Otological gociety, Inc. Ansa Cervicalis Nerve: Review of the Topographic Anatomy and Morphology ~ ~~ Dinesh K. Chhetri, MD; Gerald S. Berke, MD In recent years, there has been a proliferation its proximity to the larynx and because it is quite ac- of techniques utilizing the ansa cervicalis nerve to tive during phonation. Ansa is a Latin term mean- reinnervate the paralyzed larynx. The anatomic ing “handle of a cup” or “haft.”6 The ansa cervicalis course and morphology of the ansa cervicalis are nerve is formed by the junction of two main nerve complicated by the variable course and location along the great vessels of the neck, as well as the roots derived entirely from ventral cervical rami. A significant differences observed in the arrange- loop (summit) is formed at the point of their anasto- ment of its contributing roots and regional branch- mosis. For decades the superior root was called the ing patterns. Herein, we review the surgical descendens hypoglossi because it branches off from anatomic course of ansa cervicalis and its innerva- the hypoglossal nerve. In the past the ansa cervi- tion of the muscles of the neck, and develop specific calis was called the ansa hypoglossi.The branches of recommendations with respect to the use of this the ansa cervicalis innervate the infrahyoid (strap) nerve in laryngeal reinnervation. muscles of the neck. Laryngoscope, 107:1366-1372,1997 Recently, there has been an interesting debate as to which branch of the ansa cervicalis used for la- INTRODUCTION ryngeal reinnervation would result in the best vocal In the past few decades, laryngology has wit- quality, Frazier and Mosser7 were the first to report nessed a dramatic proliferation of surgical proce- the anastomosis of the ansa cervicalis nerve to the dures designed for the treatment of dysphonia sec- recurrent laryngeal nerve in humans. They utilized ondary to unilateral paralysis of the vocal cord. They the superior root of the ansa cervicalis and achieved include medialization procedures such as Teflon an “improved”surgical outcome in five of 10 patients. (DuPont, Wilmington, DE) injection,l thyroplasty,2 Crumley et a1.8 have recommended the ansa cervi- and arytenoid adduction,3 and reinnervation proce- calis branch to the sternothyroid. They reason that dures such as nerve-muscle pedicle implantation4 the branch to the sternothyroid is located very near and nerve-nerve anastomosis using ansa cervicalis the recurrent laryngeal nerve, and although the pat- nerve transfer to the recurrent laryngeal nerve.5 tern of sternothyroid activation is predominantly in- Reinnervation procedures are purported to work by spiratory, it discharges throughout the respiratory preventing vocal cord atrophy and maintaining cycle and would provide a certain degree of continu- symmetric vocal cord mass and tension.5 ous tone to the vocalis muscle after reinnervation. It is also thought that the subsequent paralysis of the The ansa cervicalis nerve has become a prime sternothyroid muscle relaxes tension on the thyroid choice for use in laryngeal reinnervation because of cartilage and further medializes the paralyzed cord. Some investigators, however, have argued against the use of the sternothyroid branch because the pat- Presented at the Meeting of the Western Section of the American Laryngological, Rhinological and Otological Society, Inc., January 12,1997, tern of activation from this nerve may result in cord Tucson, Arizona. adduction during inspiration rather than phona- From the Division of Head and Neck Surgery, UCLA School of Med- tion.9 The thyrohyoid is the most active strap mus- icine, Los Angeles, California. cle during phonation, with peak activity during ex- This research was supported by the VA Merit Review Funds. piration. Crumley,8Jo however, has advised against Send Correspondence to Gerald S. Berke, MD, Division of Head and Neck Surgery, 62-132 CHS, UCLA School of Medicine, Los Angeles, CA using the nerve branch to this muscle because it 90024, U.S.A. would require a cable graft to reach the recurrent la- Laryngoscope 107: October 1997 Chhetri and Berke: Ansa Cervicalis Nerve 1366 ryngeal nerve stump and the resulting paralysis of the carotid artery. It then passes laterally and downward thyrohyoid would eliminate the adductor properties of to lie against the posterior surface of the vagus nerve, this muscle on the vocal fold. where it exchanges branches of communication with The ansa cervicalis nerve formation is relatively this nerve and with the sympathetic trunks. It contin- complex, as its course and location along the great ves- ues downward between the jugular vein and the in- sels of the neck vary. Yet there is a remarkable paucity ternal carotid artery. Close to its exit from the skull it of information on this nerve in the current otolaryn- is usually joined by branches of communication from gology literature. Therefore we have undertaken a lit- the first cervical nerve; it is these fibers which leave erature review on the anatomic course, morphologic the hypoglossal nerve as the superior root of the ansa variation, and regional branching patterns of this cervicalis, the nerve to the thyrohyoid, and the nerve nerve. We report our findings below and provide some to the geniohyoid. The fibers within the hypoglossal recommendations on the use of this nerve in laryngeal nerve itself supply only muscles of the tongue.11 reinnervation. At the level of the origin of the occipital artery from the external carotid arteq, the hypoglossal nerve METHODS forms an arc away from its vertical course to become The MEDLINE database was searched from 1966 to horizontal (Fig. 1).It passes forward, across the lateral 1996 for all publications with the keywords “ansa cervicalis.” surfaces of both the internal and the external carotid All relevant articles from search results were reviewed. In arteries, medial to the posterior belly of the digastric, addition, many major anatomical textbooks published in the and gives off the superior root of the ansa cervicalis.12 20th century were consulted for classical descriptions of the In a series of 20 adult dissections reported by Kuniak ansa cervicalis nerve. Any references in the textbooks were and Klacansky,l2 the average width of the hypoglossal further pursued. This information formed the core for the fol- nerve was 2.2 mm before the superior root of the ansa lowing review. cervicalis branched off and 2.05 mm afterward. RESULTS Nerve to the Thyrohyoid Hypogtossal Nerve The nerve to the thyrohyoid muscle branches The hypoglossal nerve emerges from the skull from the hypoglossal before the latter nerve dips be- base through the hypoglossal canal medial to the in- neath the stylohyoid muscle in close proximity to the te;mal jugular vein and posteromedial to the internal posterior border of the hyoglossus muscle (Fig. 1).Af- Fig. 1. Regional anatomy of the ansa cervicalis nerve. The nerve and its branches are illustrated in their most frequent morphologic and topographic form. The nerve to the thyrohyoid branches from the hypoglossal nerve and runs obliquely across the hyoid bone to innervate the thyrohyoid. The nerve to the superior belly of the omohyoid branches from the superior root and enters the muscle at a level between the thyroid notch and a horizontal plane 2 cm inferior to the notch. The nerves to the sternohyoid and sternothyroid share a common trunk, which branches from the loop. The nerve to the inferior belly of the omohyoid also branches from the loop. The loop is most frequently located just deep to the site where the superior belly (or tendon) of the omohyoid muscle crosses the internal jugular vein. Laryngoscope 107: October 1997 Chhetri and Berke: Ansa Cervicalis Nerve 1367 ter arising from the hypoglossal nerve, it runs The descent of the superior root of the ansa cer- obliquely across the greater cornu of the hyoid bone vicalis can be followed down the neck along its inti- to innervate the thyrohyoid muscle. Its fibers are de- mate relationship to the great vessels. Caliot and rived from the communication of the hypoglossal Dumontl5 observed its vertical descent on the exter- nerve with the first cervical nerve.13 The hypoglossal nal carotid in 60% of the cases, and on the internal nerve continues forward under cover of the sub- carotid in 40%. Further down and closer toward its mandibular gland, passing above the hyoid bone on anastomosis with the inferior root, the superior root its way to innervate the tongue.llJ3J4 In its course, is found in direct relation to the internal jugular the hypoglossal nerve passes within 4 to 5 mm of the vein and is most frequently observed passing later- intermediate tendon of the digastric muscle.15 ally to the anterolateral side of the internal jugular vein.12 As the nerve descends, it gets progressively Superior Root narrower. Kuniak and Klacanskylz measured the average diameter of the superior root at the point of Origin and course. The superior root of the separation from the hypoglossal nerve at 1.03 mm. ansa cervicalis is classically described as a long At the point of anastomosis to form the loop, the slender branch that emerges from the superior por- nerve width had decreased to 0.79 mm. Total length tion of the arc of the hypoglossal nerve as that nerve of the superior root on average was 7.1 cm. makes the turn around the occipital artery to as- sume a horizontal course toward the tongue.11J4J6J7 Innervation to the superior belly of the At its origin, the superior root is medial to the pos- omohyoid. Classically, the branch to the superior terior belly of the digastric muscle and lateral to the belly of the omohyoid was almost invariably re- internal and external carotid arteries.12 It descends ported to originate directly from the superior root of obliquely downward and slightly medially on the in- the ansa cervicalis (Fig.
Recommended publications
  • Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy
    ORIGINAL ARTICLE Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy Michael Friedman, MD; Phillip LoSavio, BS; Hani Ibrahim, MD Background: Injury to the external branch of the su- recorded and compared on an annual basis for both be- perior laryngeal nerve (EBSLN) can result in detrimen- nign and malignant disease. Overall results were also com- tal voice changes, the severity of which varies according pared with those found in previous series identified to the voice demands of the patient. Variations in its ana- through a 50-year literature review. tomic patterns and in the rates of identification re- ported in the literature have discouraged thyroid sur- Results: The 3 anatomic variations of the distal aspect geons from routine exploration and identification of this of the EBSLN as it enters the cricothyroid were encoun- nerve. Inconsistent with the surgical principle of pres- tered and are described. The total identification rate over ervation of critical structures through identification, mod- the 20-year period was 900 (85.1%) of 1057 nerves. Op- ern-day thyroidectomy surgeons still avoid the EBSLN erations performed for benign disease were associated rather than identifying and preserving it. with higher identification rates (599 [86.1%] of 696) as opposed to those performed for malignant disease Objectives: To describe the anatomic variations of the (301 [83.4%] of 361). Operations performed in recent EBSLN, particularly at the junction of the inferior con- years have a higher identification rate (over 90%). strictor and cricothyroid muscles; to propose a system- atic approach to identification and preservation of this Conclusions: Understanding the 3 anatomic variations nerve; and to define the identification rate of this nerve of the distal portion of the EBSLN and its relation to the during thyroidectomy.
    [Show full text]
  • Larynx Anatomy
    LARYNX ANATOMY Elena Rizzo Riera R1 ORL HUSE INTRODUCTION v Odd and median organ v Infrahyoid region v Phonation, swallowing and breathing v Triangular pyramid v Postero- superior base àpharynx and hyoid bone v Bottom point àupper orifice of the trachea INTRODUCTION C4-C6 Tongue – trachea In women it is somewhat higher than in men. Male Female Length 44mm 36mm Transverse diameter 43mm 41mm Anteroposterior diameter 36mm 26mm SKELETAL STRUCTURE Framework: 11 cartilages linked by joints and fibroelastic structures 3 odd-and median cartilages: the thyroid, cricoid and epiglottis cartilages. 4 pair cartilages: corniculate cartilages of Santorini, the cuneiform cartilages of Wrisberg, the posterior sesamoid cartilages and arytenoid cartilages. Intrinsic and extrinsic muscles THYROID CARTILAGE Shield shaped cartilage Right and left vertical laminaà laryngeal prominence (Adam’s apple) M:90º F: 120º Children: intrathyroid cartilage THYROID CARTILAGE Outer surface à oblique line Inner surface Superior border à superior thyroid notch Inferior border à inferior thyroid notch Superior horns à lateral thyrohyoid ligaments Inferior horns à cricothyroid articulation THYROID CARTILAGE The oblique line gives attachement to the following muscles: ¡ Thyrohyoid muscle ¡ Sternothyroid muscle ¡ Inferior constrictor muscle Ligaments attached to the thyroid cartilage ¡ Thyroepiglottic lig ¡ Vestibular lig ¡ Vocal lig CRICOID CARTILAGE Complete signet ring Anterior arch and posterior lamina Ridge and depressions Cricothyroid articulation
    [Show full text]
  • Neck Dissection Using the Fascial Planes Technique
    OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY NECK DISSECTION USING THE FASCIAL PLANE TECHNIQUE Patrick J Bradley & Javier Gavilán The importance of identifying the presence larised in the English world in the mid-20th of metastatic neck disease with head and century by Etore Bocca, an Italian otola- neck cancer is recognised as a prominent ryngologist, and his colleagues 5. factor determining patients’ prognosis. The current available techniques to identify Fascial compartments allow the removal disease in the neck all have limitations in of cervical lymphatic tissue by separating terms of accuracy; thus, elective neck dis- and removing the fascial walls of these section is the usual choice for management “containers” along with their contents of the clinically N0 neck (cN0) when the from the underlying vascular, glandular, risk of harbouring occult regional metasta- neural, and muscular structures. sis is significant (≥20%) 1. Methods availa- ble to identify the N+ (cN+) neck include Anatomical basis imaging (CT, MRI, PET), ultrasound- guided fine needle aspiration cytology The basic understanding of fascial planes (USGFNAC), and sentinel node biopsy, in the neck is that there are two distinct and are used depending on resource fascial layers, the superficial cervical fas- availability, for the patient as well as the cia, and the deep cervical fascia (Figures local health service. In many countries, 1A-C). certainly in Africa and Asia, these facilities are not available or affordable. In such Superficial cervical fascia circumstances patients with head and neck cancer whose primary disease is being The superficial cervical fascia is a connec- treated surgically should also have the tive tissue layer lying just below the der- neck treated surgically.
    [Show full text]
  • Unusual Morphology of the Superior Belly of Omohyoid Muscle
    Case Report http://dx.doi.org/10.5115/acb.2014.47.4.271 pISSN 2093-3665 eISSN 2093-3673 Unusual morphology of the superior belly of omohyoid muscle Rajesh Thangarajan, Prakashchandra Shetty, Srinivasa Rao Sirasanagnadla, Melanie Rose D’souza Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, Karnataka, India Abstract: Though anomalies of the superior belly of the omohyoid have been described in medical literature, absence of superior belly of omohyoid is rarely reported. Herein, we report a rare case of unilateral absence of muscular part of superior belly of omohyoid. During laboratory dissections for medical undergraduate students, unusual morphology of the superior belly of the omohyoid muscle has been observed in formalin embalmed male cadaver of South Indian origin. The muscular part of the superior belly of the omohyoid was completely absent. The inferior belly originated normally from the upper border of scapula, and continued with a fibrous tendon which ran vertically lateral to sternohyoid muscle and finally attached to the lower border of the body of hyoid bone. The fibrous tendon was about 1 mm thick and received a nerve supply form the superior root of the ansa cervicalis. As omohyoid mucle is used to achieve the reconstruction of the laryngeal muscles and bowed vocal folds, the knowledge of the possible anomalies of the omohyoid muscle is important during neck surgeries. Key words: Superior belly, Fibrous tendon, Omohyoid, Neck surgery Received March 12, 2014; Revised April 3, 2014; Accepted April 28, 2014 Introduction bellies, absence and adhesion to sternohyoid are the reported anomalies of the superior belly of the OH [2].
    [Show full text]
  • Levator Claviculae Muscle: a Case Report Konstantinos Natsis*, Stylianos Apostolidis, Elisavet Nikolaidou, Georgios Noussios, Trifon Totlis and Nikolaos Lazaridis
    Open Access Case report Levator claviculae muscle: a case report Konstantinos Natsis*, Stylianos Apostolidis, Elisavet Nikolaidou, Georgios Noussios, Trifon Totlis and Nikolaos Lazaridis Address: Department of Anatomy, Medical School, Aristotle University of Thessaloniki, P.O. Box: 300, 54124 Thessaloniki, Greece Email: KN* - [email protected]; SA - [email protected]; EN - [email protected]; GN - [email protected]; TT - [email protected]; NL - [email protected] * Corresponding author Published: 15 May 2009 Received: 12 February 2008 Accepted: 8 April 2009 Cases Journal 2009, 2:6712 doi: 10.1186/1757-1626-2-6712 This article is available from: http://casesjournal.com/casesjournal/article/view/6712 © 2009 Natsis et al; licensee Cases Network Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In the current study a levator claviculae muscle, found in a 65-year old male cadaver, is presented. We describe the topography and morphology of this accessory muscle, which may be found in 1-3% of the population. Moreover, we discuss the embryologic origin of the muscle along with its clinical importance. Introduction In the current study we present a case of a levator Levator claviculae or cleidocervical muscle is a super- claviculae muscle found in a cadaver and we discuss the numerary muscle in humans, in contrast to anthropoids embryologic origin of the muscle along with its clinical and lower mammals where this muscle is found normally importance.
    [Show full text]
  • 3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations
    3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations Bharat R. Dave, D. Devanand, and Gautam Zaveri Introduction This chapter analyzes the problems of dysphagia, dysphonia, and esophageal tears during the Pathology involving the anterior subaxial anterior approach to the cervical spine and cervical spine is most commonly accessed suggests ways of prevention and management. through an anterior retropharyngeal approach (Fig. 3.1). While this approach uses tissue planes to access the anterior cervical spine, visceral Dysphagia structures such as the trachea and esophagus and nerves such as the recurrent laryngeal Dysphagia or difficulty in swallowing is a nerve (RLN), superior laryngeal nerve (SLN), and symptom indicative of impairment in the ability pharyngeal plexus are vulnerable to direct or to swallow because of neurologic or structural traction injury (Table 3.1). Complaints such as problems that alter the normal swallowing dysphagia and dysphonia are not rare following process. Postoperative dysphagia is labeled as anterior cervical spine surgery. The treating acute if the patient presents with difficulty in surgeon must be aware of these possible swallowing within 1 week following surgery, complications, must actively look for them in intermediate if the presentation is within 1 to the postoperative period, and deal with them 6 weeks, and chronic if the presentation is longer expeditiously to avoid secondary complications. than 6 weeks after surgery. Common carotid artery Platysma muscle Sternohyoid muscle Vagus nerve Recurrent laryngeal nerve Longus colli muscle Internal jugular artery Anterior scalene muscle Middle scalene muscle External jugular vein Posterior scalene muscle Fig. 3.1 Anterior retropharyngeal approach to the cervical spine.
    [Show full text]
  • Unusual Organization of the Ansa Cervicalis: a Case Report
    CASE REPORT ISSN- 0102-9010 UNUSUAL ORGANIZATION OF THE ANSA CERVICALIS: A CASE REPORT Ranjana Verma1, Srijit Das2 and Rajesh Suri3 Department of Anatomy, Maulana Azad Medical College, New Delhi-110002, India. ABSTRACT The superior root of the ansa cervicalis is formed by C1 fibers carried by the hypoglossal nerve, whereas the inferior root is contributed by C2 and C3 nerves. We report a rare finding in a 40-year-old male cadaver in which the vagus nerve fused with the hypoglossal nerve immediately after its exit from the skull on the left side. The vagus nerve supplied branches to the sternohyoid, sternothyroid and superior belly of the omohyoid muscles and also contributed to the formation of the superior root of the ansa cervicalis. In this arrangement, paralysis of the infrahyoid muscles may result following lesion of the vagus nerve anywhere in the neck. The cervical location of the vagus nerve was anterior to the common carotid artery within the carotid sheath. This case report may be of clinical interest to surgeons who perform laryngeal reinnervation and neurologists who diagnose nerve disorders. Key words: Ansa cervicalis, hypoglossal nerve, vagus nerve, variations INTRODUCTION cadaver. The right side was normal. The neck region The ansa cervicalis is a nerve loop formed was dissected and the neural structures in the carotid by the union of superior and inferior roots. The and muscular triangle regions were exposed, with superior root is a branch of the hypoglossal nerve particular attention given to the organization of the containing C1 fibers, whereas the inferior root is ansa cervicalis.
    [Show full text]
  • EDS Awareness in the TMJ Patient
    EDS Awareness in the TMJ Patient TMJ and CCI with the EDS Patient “The 50/50” Myofascial Pain Syndrome EDNF, Baltimore, MD August 14,15, 2015 Generation, Diagnosis and Treatment of Head Pain of Musculoskeletal Origin Head pain generated by: • Temporomandibular joint dysfunction • Cervicocranial Instability • Mandibular deviation • Deflection of the Pharyngeal Constrictor Structures Parameters & Observations . The Myofascial Pain Syndrome (MPS) is a description of pain tracking in 200 Ehlers-Danlos patients. Of the 200 patients, 195 were afflicted with this pain referral syndrome pattern. The MPS is in direct association and correlation to Temporomandibular Joint dysfunction and Cervico- Cranial Instability syndromes. Both syndromes are virtually and always correlated. Evaluation of this syndrome was completed after testing was done to rule out complex or life threatening conditions. The Temporomandibular Joint TMJ Dysfunction Symptoms: Deceptively Simple, with Complex Origins 1) Mouth opening, closing with deviation of mandibular condyles. -Menisci that maybe subluxated causing mandibular elevation. -Jaw locking “open” or “closed”. -Inability to “chew”. 2) “Headaches”/”Muscles spasms” (due to decreased vertical height)generated in the temporalis muscle, cheeks areas, under the angle of the jaw. 3) Osseous distortion Pain can be generated in the cheeks, floor of the orbits and/or sinuses due to osseous distortion associated with “bruxism”. TMJ dysfunction cont. (Any of the following motions may produce pain) Pain With: . Limited opening(closed lock): . Less than 33 mm of rotation in either or both joints . Translation- or lack of . Deviations – motion of the mandible to the affected side or none when both joints are affected . Over joint pain with or without motion around or .
    [Show full text]
  • The Role of Strap Muscles in Phonation Laryngeal Model in Vivo
    Journal of Voice Vol. 11, No. 1, pp. 23-32 © 1997 Lippincott-Raven Publishers, Philadelphia The Role of Strap Muscles in Phonation In Vivo Canine Laryngeal Model Ki Hwan Hong, *Ming Ye, *Young Mo Kim, *Kevin F. Kevorkian, and *Gerald S. Berke Department of Otolaryngology, Chonbuk National University, Medical School, Chonbuk, Korea; and *Division of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, California, U.S.A. Summary: In spite of the presumed importance of the strap muscles on laryn- geal valving and speech production, there is little research concerning the physiological role and the functional differences among the strap muscles. Generally, the strap muscles have been shown to cause a decrease in the fundamental frequency (Fo) of phonation during contraction. In this study, an in vivo canine laryngeal model was used to show the effects of strap muscles on the laryngeal function by measuring the F o, subglottic pressure, vocal in- tensity, vocal fold length, cricothyroid distance, and vertical laryngeal move- ment. Results demonstrated that the contraction of sternohyoid and sternothy- roid muscles corresponded to a rise in subglottic pressure, shortened cricothy- roid distance, lengthened vocal fold, and raised F o and vocal intensity. The thyrohyoid muscle corresponded to lowered subglottic pressure, widened cricothyroid distance, shortened vocal fold, and lowered F 0 and vocal inten- sity. We postulate that the mechanism of altering F o and other variables after stimulation of the strap muscles is due to the effects of laryngotracheal pulling, upward or downward, and laryngotracheal forward bending, by the external forces during strap muscle contraction.
    [Show full text]
  • Chapter Anatomy
    Chapter Anatomy 1 Kyriakos Anastasiadis and Chandi Ratnatunga Chapter Location of extensions of the upper lobes, as well as relationships to the innominate vein, have been described (Figs. 1.3). The thymus gland is located in the anterosuperior me- Thus, rather than being located in its classical anterior po- diastinum. It usually extends from the thyroid gland to sition, one or both of the upper lobe thymus may even lie the level of the fourth costal cartilage. It lies posterior to behind the innominate vein. Moreover, it has to be noted the pretracheal fascia, the sternohyoid and sternothyroid that besides the classical location of the gland, ectopic muscles and the sternum (mostly behind the manubrium thymic tissue could be found in the mediastinal fat of the and the upper part of its body). It is located anteriorly majority of patients. This is now accepted as the normal to the innominate vein and is found between the pari- etal pleura and extrapleural fat and central to the phrenic nerves. It lies on the pericardium, with the ascending aorta and aortic arch behind it, while in the neck it lies over the trachea. Parallel to the gland on each side lie the phrenic nerves, which converge towards the gland at its middle segment (particularly important issue in thymec- tomy procedures). The gland consists classically of two lobes, even though other lobular structures may be pres- ent (Figs. 1.1, 1.2). The thyrothymic ligament connects the upper parts of its lobes to the thyroid gland. A variety Fig. 1.2 Midline cervicothoracic sagittal section material de- monstrating the thymus gland location (1=thyroid isthmus, 2=superficial layer of cervical fascia, 3=pretracheal cervical fa- scia, 4=brachiocephalic trunk, 5=pretracheal space, 6=left bra- chiocephalic vein, 7=sternothyroid muscle, 8=anterior wall of Fig.
    [Show full text]
  • Deep Neck Infections 55
    Deep Neck Infections 55 Behrad B. Aynehchi Gady Har-El Deep neck space infections (DNSIs) are a relatively penetrating trauma, surgical instrument trauma, spread infrequent entity in the postpenicillin era. Their occur- from superfi cial infections, necrotic malignant nodes, rence, however, poses considerable challenges in diagnosis mastoiditis with resultant Bezold abscess, and unknown and treatment and they may result in potentially serious causes (3–5). In inner cities, where intravenous drug or even fatal complications in the absence of timely rec- abuse (IVDA) is more common, there is a higher preva- ognition. The advent of antibiotics has led to a continu- lence of infections of the jugular vein and carotid sheath ing evolution in etiology, presentation, clinical course, and from contaminated needles (6–8). The emerging practice antimicrobial resistance patterns. These trends combined of “shotgunning” crack cocaine has been associated with with the complex anatomy of the head and neck under- retropharyngeal abscesses as well (9). These purulent col- score the importance of clinical suspicion and thorough lections from direct inoculation, however, seem to have a diagnostic evaluation. Proper management of a recog- more benign clinical course compared to those spreading nized DNSI begins with securing the airway. Despite recent from infl amed tissue (10). Congenital anomalies includ- advances in imaging and conservative medical manage- ing thyroglossal duct cysts and branchial cleft anomalies ment, surgical drainage remains a mainstay in the treat- must also be considered, particularly in cases where no ment in many cases. apparent source can be readily identifi ed. Regardless of the etiology, infection and infl ammation can spread through- Q1 ETIOLOGY out the various regions via arteries, veins, lymphatics, or direct extension along fascial planes.
    [Show full text]
  • Tentorium Cerebelli: the Bridge Between the Central and Peripheral Nervous System, Part 2
    Open Access Review Article DOI: 10.7759/cureus.5679 Tentorium Cerebelli: the Bridge Between the Central and Peripheral Nervous System, Part 2 Bruno Bordoni 1 , Marta Simonelli 2 , Maria Marcella Lagana 3 1. Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA 2. Osteopathy, French-Italian School of Osteopathy, Pisa, ITA 3. Radiology, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, ITA Corresponding author: Bruno Bordoni, [email protected] Abstract The tentorium cerebelli is a meningeal portion in relation to the skull, the nervous system, and the cervical tract. In this second part, the article discusses the systematic tentorial relationships, such as the central and cervical neurological connections, the venous circulation and highlights possible clinical alterations that could cause pain. To understand the function of anatomy, we should always remember that every area of the human body is never a segment, but a functional continuum. Categories: Physical Medicine & Rehabilitation, Anatomy, Osteopathic Medicine Keywords: tentorium cerebelli, fascia, pain, venous circulation, neurological connections, cranio Introduction And Background Cervical neurological connections The ansa cervicalis characterizes the first cervical roots and connects all anterior cervical nerve exits with the inferior floor of the oral cavity, the trigeminal system, the respiratory control system, and the sympathetic system. The descending branch of the hypoglossal nerve anastomoses with C1, forming the ansa hypoglossi or ansa cervicalis superior [1]. The inferior root of the ansa cervicalis, also known as descendens cervicalis, is formed by ascendant fibers from spinal nerves C2-C3 and occasionally fibers C4, lying anteriorly to the common carotid artery (it passes laterally or medially to the internal jugular vein upon anatomical variations) [1].
    [Show full text]