A High-Frequency E-MERLIN Upgrade

Total Page:16

File Type:pdf, Size:1020Kb

A High-Frequency E-MERLIN Upgrade The Search for Extraterrestrial Intelligence (SETI) Mike Garrett Sire-MERLIN Bernard Lovell Chair,upgrade Prof. of Astrophysics. Director Jodrell Bank Centre for Astrophysics Mike Garrett Sir Bernard Lovell Chair of Astrophysics, Director Jodrell Bank Centre for Astrophysics (JBCA). The Search for Extraterrestrial Intelligence By Professor Mike Garrett, Director of Jodrell Bank Centre for Astrophysics In celebration of his appointment to the inaugural Sir Bernard Lovell Chair of Astrophysics Thursday 26 January, 1- 2pm Niels Bohr Seminar Room, 6th floor, Schuster Building, University of Manchester e-MERLIN e-MERLIN (SKA Pathfinder) operating at JBCA: telescopes we operate… cm-wavelengths and ~10-220 km baselines. e-MERLIN e-MERLIN (SKA Pathfinder) operating at JBCA: telescopes we operate… cm-wavelengths and ~10-220 km baselines. Current performance JBCA: telescopes we operate… ** Lovell Telescope included Proposed Upgrade Plan Full integration of Lovell Telescope into e-MERLIN.JBCA: telescopes we operate… Proposed Upgrade Plan Full integration of Lovell Telescope into e-MERLIN.JBCA: telescopes we operate… Lovell Telescope & e- MERLIN combined into one big dish. Proposed Upgrade Plan Full integration of Lovell Telescope into e-MERLIN.JBCA: telescopes we operate… Lovell Telescope & e- MERLIN combined into one big dish. New telescopes: - addition of Goonhilly (CUGA) - Goonhilly Modular Development Plan Full integration of Lovell Telescope into e-MERLIN.JBCA: telescopes we operate… Lovell Telescope & e- MERLIN combined into one big dish. New telescopes: Defford - addition of Goonhilly (CUGA) - replacement of Defford antenna with SKA telescope. Goonhilly Modular Development Plan New receivers, new frequency ranges: e-MERLIN NEW! NEW! e-MERLIN upgrade 1 GHz 10 GHz 100 GHz Modular Development Plan New receivers, new frequency ranges: e-MERLIN NEW! NEW! e-MERLIN upgrade 1 GHz 10 GHz 100 GHz New broader bandwidths: 2 GHz => 8 GHz Modular Development Plan New receivers, new frequency ranges: e-MERLIN NEW! NEW! e-MERLIN upgrade 1 GHz 10 GHz 100 GHz New broader bandwidths: Wider Field of View: 2 GHz => 8 GHz FoV ~ x9 With apologies… z=0.19 Javier Molden et al. e-MERLIN upgrade performance z=0.19 Javier Molden et al. Building on UK SKA Investment/Expertise JBCA: telescopes we operate… Building on UK SKA Investment/Expertise JBCA: telescopes we operate… Building on UK SKA Investment/Expertise JBCA: telescopes we operate… UK SKA Regional Science Node Main Science Case Pulsars, Gravity & Gravitational Waves JBCA: telescopes we operate… Transients Planet & Star formation Galaxy formation & evolution Cosmic shear & Gravitational lensing Science Case Pulsars, Gravity & Gravitational Waves JBCA: telescopes we operate… Transients Planet & Star formation Galaxy formation & evolution Cosmic shear & Gravitational lensing Proto-planetary Simulations Scaled HL Tau model with pebble concentrations… z=0.19 Javier Molden et al. Upgraded e-MERLIN An interesting ngVLA pathfinder telescope! - 25% of the collecting area of SKA1-mid - JBCA:New receivers with broad frequency range: 1-25 GHz telescopes we operate… - Instantaneous bandwidth of up to 8 GHz - Good imaging capability (incl. equatorial fields) - Superb sub-arcsecond angular resolution - Accessible to full community - excellent user support - a factor of 10x better sensitivity at highest frequencies - a factor of 10x better FoV at lowest frequncies Proposal submitted - 15 M GBP requested - should know by the end of the year if this will be funded. www.facebook.com/JodrellBankObservatory @JodrellBankObservatory www.jodcast.net .
Recommended publications
  • 50 Years of the Lovell Telescope Transcript
    50 years of the Lovell telescope Transcript Date: Wednesday, 5 December 2007 - 12:00AM 50 YEARS OF THE LOVELL TELESCOPE Professor Ian Morison The Early days at Jodrell Bank In late 1945 Dr Bernard Lovell (as he then was) returned to Manchester University after working on the development of radar during the war years. His aim was to continue his researches into cosmic rays - highly energetic particles that enter the Earth's atmosphere from outer space. He had the idea that sporadic echoes sometimes received by military radars might be the result of cosmic rays entering the atmosphere and thus radar observations might provide a new way to continue his researches. Radar observations were not practical in the centre of Manchester so he took his ex-army radar system out to the University's Botanical Grounds at Jodrell Bank, some 20 miles to the south. By the middle of December 1945, the system was operating and his team was soon able to prove that the echoes were coming not from cosmic rays but from ionized meteor trails left behind when small particles, released from comets, are burnt up in the upper atmosphere of the Earth. Radar Antenna in the Botany Grounds. The Jodrell Bank Experimental Station. The observations continued and, to house the expanding staff and equipment, the Jodrell Bank Experimental Station was built in the field next to the Botanic Grounds. Lovell realised that a much more sensitive radio telescope would be required to detect cosmic rays and so, in 1947, the researchers built a large parabolic reflector, 66-m across, pointing upwards to observe the sky passing overhead.
    [Show full text]
  • The Lovell Telescope … Through Its Surfaces Simon Garrington, JBO/University of Manchester
    The Lovell Telescope … through its surfaces Simon Garrington, JBO/University of Manchester • Original design & redesign: 1950-1957 • Radical modification & new surface: 1971 • Replacement of surface: 2001 • Replacement of original Picture A. Holloway surface: 2018 • Other consequences: foundations O1 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O2 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O3 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in
    [Show full text]
  • Jod Bank 1.Indd 56 23/10/2019 08:11 Feature
    Feature Radio Eye on the Sky (Part I) Dr Bruce Taylor HB9ANY Dr Bruce Taylor HB9ANY relates how chance, [email protected] skill, tenacity and the enthusiasm of a botanist n July 7th 2019 Jodrell Bank radio amateur created a technical masterpiece. Observatory, the home of what is surely the most iconic radio antenna in the world, was de- Oclared a World Heritage Site in the same cultural category as the Great Wall of China and the Pyramid Fields from Giza to Dahshur. It was recognised by UNESCO as “a masterpiece of human creative genius” because of its scientifi c achievements in advancing our understanding of the uni- verse. But as the champagne fl owed in cel- ebration of this magnifi cent accolade, few remembered that 62 years earlier its found- er, Bernard Lovell, endured immense per- sonal hardship and narrowly escaped incar- ceration during the technical, Political and fi nancial drama surrounding its creation. In 1939, 25 year-old Lovell was one of many talented university teachers and re- searchers who abandoned their Peaceful studies to join the war effort. They teamed uP with hundreds of radio amateurs and professional electronics experts who con- tributed their technical skills to the defence of the United Kingdom. Lovell was just about to set out from Manchester for the Pyrenees, in a small van loaded with equip- 1 ment for cosmic ray research, when he re- ceived a call to rePort to the Chain Home at which available thermionic valves could (CH) laboratories at Bawdsey Manor on generate signifi cant power was about the east coast of England.
    [Show full text]
  • Adventures in Radio Astronomy Instrumentation and Signal Processing
    Adventures in Radio Astronomy Instrumentation and Signal Processing by Peter Leonard McMahon Submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the University of Cape Town July 2008 Supervisor: Professor Michael Inggs Co-supervisors: Dr Dan Werthimer, CASPER1, University of California, Berkeley Dr Alan Langman, Karoo Array Telescope arXiv:1109.0416v1 [astro-ph.IM] 2 Sep 2011 1Center for Astronomy Signal Processing and Electronics Research Abstract This thesis describes the design and implementation of several instruments for digi- tizing and processing analogue astronomical signals collected using radio telescopes. Modern radio telescopes have significant digital signal processing demands that are typically best met using custom processing engines implemented in Field Pro- grammable Gate Arrays. These demands essentially stem from the ever-larger ana- logue bandwidths that astronomers wish to observe, resulting in large data volumes that need to be processed in real time. We focused on the development of spectrometers for enabling improved pulsar2 sci- ence on the Allen Telescope Array, the Hartebeesthoek Radio Observatory telescope, the Nan¸cay Radio Telescope, and the Parkes Radio Telescope. We also present work that we conducted on the development of real-time pulsar timing instrumentation. All the work described in this thesis was carried out using generic astronomy pro- cessing tools and hardware developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. We successfully deployed to several telescopes instruments that were built solely with CASPER technology, which has helped to validate the approach to developing radio astronomy instruments that CASPER advocates.
    [Show full text]
  • High Resolution Radio Astronomy Using Very Long Baseline Interferometry
    IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 066901 (32pp) doi:10.1088/0034-4885/71/6/066901 High resolution radio astronomy using very long baseline interferometry Enno Middelberg1 and Uwe Bach2 1 Astronomisches Institut, Universitat¨ Bochum, 44801 Bochum, Germany 2 Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany E-mail: [email protected] and [email protected] Received 3 December 2007, in final form 11 March 2008 Published 2 May 2008 Online at stacks.iop.org/RoPP/71/066901 Abstract Very long baseline interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on active galactic nuclei, the number of observations concerned with other astronomical objects such as stars and masers, and with astrometric applications, is significant. In the last decade, much progress has been made in all of these fields. We give a brief introduction to the technique of radio interferometry, focusing on the particularities of VLBI observations, and review recent results which would not have been possible without VLBI observations. This article was invited by Professor J Silk. Contents 1. Introduction 1 2.9. The future of VLBI: eVLBI, VLBI in space and 2. The theory of interferometry and aperture the SKA 10 synthesis 2 2.10. VLBI arrays around the world and their 2.1. Fundamentals 2 capabilities 10 2.2. Sources of error in VLBI observations 7 3. Astrophysical applications 11 2.3. The problem of phase calibration: 3.1. Active galactic nuclei and their jets 12 self-calibration 7 2.4.
    [Show full text]
  • Table of Contents - 1 - - 2
    Table of contents - 1 - - 2 - Table of Contents Foreword 5 1. The European Consortium for VLBI 7 2. Scientific highlights on EVN research 9 3. Network Operations 35 4. VLBI technical developments and EVN operations support at member institutes 47 5. Joint Institute for VLBI in Europe (JIVE) 83 6. EVN meetings 105 7. EVN publications in 2007-2008 109 - 3 - - 4 - Foreword by the Chairman of the Consortium The European VLBI Network (EVN) is the result of a collaboration among most major radio observatories in Europe, China, Puerto Rico and South Africa. The large radio telescopes hosted by these observatories are operated in a coordinated way to perform very high angular observations of cosmic radio sources. The data are then correlated by using the EVN correlator at the Joint Institute for VLBI in Europe (JIVE). The EVN, when operating as a single astronomical instrument, is the most sensitive VLBI array and constitutes one of the major scientific facilities in the world. The EVN also co-observes with the Very Long Baseline Array (VLBA) and other radio telescopes in the U.S., Australia, Japan, Russia, and with stations of the NASA Deep Space Network to form a truly global array. In the past, the EVN also operated jointly with the Japanese space antenna HALCA in the frame of the VLBI Space Observatory Programme (VSOP). The EVN plans now to co-observe with the Japanese space 10-m antenna ASTRO-G, to be launched by 2012, within the frame of the VSOP-2 project. With baselines in excess of 25.000 km, the space VLBI observations provide the highest angular resolution ever achieved in Astronomy.
    [Show full text]
  • Pos(10Th EVN Symposium)097
    La Luna: Lovell Attempts LUnar Neutrino Acquisition PoS(10th EVN Symposium)097 Ralph Spencer 1, Alan Macfarlane, Owen Mills and Lucio Piccirillo School of Physics and Astronomy, The University of Manchester Oxford Rd., Manchester M13 9PL, UK E-mail: [email protected] Recent measurements by the Pierre Auger array have found evidence for the Greisen-Zatsepin- Kuzmin (GZK) cut off in the high energy spectrum of cosmic rays. Interactions of cosmic rays with energies of greater than ~0.05 ZeV with the cosmic microwave background are expected to produce high energy neutrinos. It has been suggested that neutrino interactions in the Moon can give rise to showers of particles, which through the Askar’yan charge excess mechanism can produce Cherenkov emission in the radio, detectable from the Earth. Here we describe a preliminary experiment at 21 cm with the Lovell telescope, which produces limits comparable with those from other radio telescopes. Use of VLBI telescopes in coincidence would eliminate local impulsive RFI and also possibly be able to measure the width of the Cherenkov cone 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the new generation of radio arrays Manchester, UK September 20-24 1 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it Short title Speaker Name 1.Introduction The study of ultra-high-energy (UHE) neutrinos has the potential to be an important tool in the study of many energetic astronomical phenomena. Neutrinos with energies in excess of 10 20 eV are predicted to be produced by processes such as gamma-ray bursts, active galactic nuclei, topological defects and decays of massive relic particles [1].
    [Show full text]
  • Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today
    17_SWARUP (G-L)chiuso_074-092.QXD_Layout 1 01/08/11 10:06 Pagina 74 The Scientific Legacy of the 20th Century Pontifical Academy of Sciences, Acta 21, Vatican City 2011 www.pas.va/content/dam/accademia/pdf/acta21/acta21-swarup.pdf Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today Govind Swarup 1. Introduction An important window to the Universe was opened in 1933 when Karl Jansky discovered serendipitously at the Bell Telephone Laboratories that radio waves were being emitted towards the direction of our Galaxy [1]. Jansky could not pursue investigations concerning this discovery, as the Lab- oratory was devoted to work primarily in the field of communications. This discovery was also not followed by any astronomical institute, although a few astronomers did make proposals. However, a young electronics engi- neer, Grote Reber, after reading Jansky’s papers, decided to build an inno- vative parabolic dish of 30 ft. diameter in his backyard in 1935 and made the first radio map of the Galaxy in 1940 [2]. The rapid developments of radars during World War II led to the dis- covery of radio waves from the Sun by Hey in 1942 at metre wavelengths in UK and independently by Southworth in 1942 at cm wavelengths in USA. Due to the secrecy of the radar equipment during the War, those re- sults were published by Southworth only in 1945 [3] and by Hey in 1946 [4]. Reber reported detection of radio waves from the Sun in 1944 [5]. These results were noted by several groups soon after the War and led to intensive developments in the new field of radio astronomy.
    [Show full text]
  • Jodrell Bank Observatoryvisitreport
    U3A Jodrell Bank Observatory Visit, March 2015 I’m sure you will all instantly recognise the equation z = a(x 2 + y 2) as that of an elliptical parabaloid. This of course, we were informed by Jodrell Bank, describes the shape of the dish of a radio-telescope, so that distant radio waves will be focussed on a receiver in the centre. And who am I to argue with them. 24 intrepid trekkers braved the rain on the 13 th March and climbed the many steps of Hednesford Travel’s coach, to arrive at the Observatory in rural Cheshire. Now part of Manchester University, it was located there on purpose, to be in a better “radio quiet” area, if that is possible these days. Switching off mobile phones was our first request on entering. The obvious landmark that greeted us was the enormous Lovell radio-telescope, 76 metres in diameter, which started receiving signals from outer space in 1957. Although we couldn’t get close enough to touch it, nor get in the control room, we did manage to get a few group photos in front of it before leaving. At least we did see it pan across the sky and rotate on its axis with quite loud grumbling noises. Well, it is an old timer now after all. Lovell managed to get the huge telescope up and running after his wartime development into radar, thinking that the receiving equipment developed could be put to other uses. During a talk from a physicist who also doubles as an educator, we were told about the parts of the electromagnetic spectrum that the Lovell telescope receives, which was from microwave frequencies upwards towards the infra-red bands.
    [Show full text]
  • 2020 the Pathfinder View of the Sky LEGEND Canadian Hydrogen Intensity Mapping European VLBI Experiment (CHIME) - Network (EVN) - Canada Europe
    Calendar 2020 The Pathfinder View of the Sky LEGEND Canadian Hydrogen Intensity Mapping European VLBI Experiment (CHIME) - Network (EVN) - Canada Europe enhanced Multi Element Remotely NenuFAR - France Linked Interferometer Network (e-MERLIN) - United Kingdom Low Frequency Array (LOFAR) - the MeerKAT Radio Netherlands Telescope - South Africa Five-hundred-meter Aperture Spherical Australian SKA Telescope (FAST) - Pathfinder (ASKAP) - China Australia (CHIME) Giant Metrewave Murchison Widefield Radio Telescope Array (MWA) - (GMRT) - India Australia VLBI Exploration of Effelsberg 100m Members of the SKA Organisation African Partner Countries Radio Astrometry Radio Telescope - Host Countries: Australia, South Africa, United Kingdom (VERA) - Japan Germany In the lead up to the SKA, many new groundbreaking radio elusive Fast Radio Bursts. They’re also allowing engineers The 2020 SKA calendar, called The Pathfinder View of the astronomy facilities have sprung up around the world in to develop new technical solutions like aperture arrays or Sky and featuring a small selection of the results already the past 10 years. These facilities are part of a global Phased Array Feeds. In so doing, they are paving the way coming out of 12 of these telescopes, is our tribute to effort to design and build ever-more sensitive instruments for the world’s largest radio telescope, the SKA. the pathfinder family as a whole, the people who have built to detect some of the faintest signals in the universe them and the people who are using them. The knowledge These facilities are now open to the community or going and grow new scientific and technical communities while and experience they’ve accumulated will guide us through through commissioning, and already they are providing benefiting society through cutting-edge R&D.
    [Show full text]
  • The Second World War Papers of Sir Bernard Lovell OBE FRS
    The Second World War Papers of Sir Bernard Lovell OBE FRS Alfred Charles Bernard Lovell was born on 31 August 1913 in Oldland Common, Bristol, and was educated at Kingswood Grammar School and at the university in that city. Between 1936 and 1939 he was Assistant Lecturer in Physics at the University of Manchester, where he was closely associated with Professor Patrick Blackett, an influential government advisor on defence matters during the Second World War and a member of the Tizard Committee. Between 1939 and 1945, Lovell worked in the Air Ministry Research Establishment (AMRE) and its successor organizations, the Ministry of Aircraft Production Research Establishment (MAPRE) and the Telecommunications Research Establishment (TRE), where he collaborated in the development of the early airborne radar systems with A P Rowe, E G Bowen, P I Dee and other pioneers in the field. After the war, Lovell pursued a distinguished academic career at the University of Manchester, becoming Professor of Radio Astronomy there and Director of the Nuffield Radio Astronomy Laboratories at Jodrell Bank, Cheshire. The papers donated by Sir Bernard to the Imperial War Museum relate mainly to the development of airborne radar systems for the Royal Air Force during the Second World War, in particular the AIF/AISF and H2S systems (night fighter `lock-on' radar and navigational/blind-bombing radar, respectively). Many of the files are highly technical in content, others afford a more personal, `unofficial' insight into the work of Lovell and his colleagues at TRE. Researchers who wish to obtain more background information concerning this subject are advised to consult Lovell's own accounts - the autobiography Astronomer by Chance (Basic Books, New York 1990) and Echoes of War: The Story of H2S Radar (Adam Hilger, Bristol 1991).
    [Show full text]
  • ASTRONET ERTRC Report
    Radio Astronomy in Europe: Up to, and beyond, 2025 A report by ASTRONET’s European Radio Telescope Review Committee ! 1!! ! ! ! ERTRC report: Final version – June 2015 ! ! ! ! ! ! 2!! ! ! ! Table of Contents List%of%figures%...................................................................................................................................................%7! List%of%tables%....................................................................................................................................................%8! Chapter%1:%Executive%Summary%...............................................................................................................%10! Chapter%2:%Introduction%.............................................................................................................................%13! 2.1%–%Background%and%method%............................................................................................................%13! 2.2%–%New%horizons%in%radio%astronomy%...........................................................................................%13! 2.3%–%Approach%and%mode%of%operation%...........................................................................................%14! 2.4%–%Organization%of%this%report%........................................................................................................%15! Chapter%3:%Review%of%major%European%radio%telescopes%................................................................%16! 3.1%–%Introduction%...................................................................................................................................%16!
    [Show full text]