Executive Summary Executive Summary 13 372000 376000 380000 384000 388000 ´ 0 0 0 0 0 0 2 2 7 7 3 3

Total Page:16

File Type:pdf, Size:1020Kb

Executive Summary Executive Summary 13 372000 376000 380000 384000 388000 ´ 0 0 0 0 0 0 2 2 7 7 3 3 0 379400 379600 379800 380000 0 0 0 4 4 1 1 7 535 7 3 A 3 Car Park Granada Arboretum ´ Executive Discovery Centre 0 0 0 0 2 2 1 1 7 7 Summary 3 3 Lovell Telescope State Party A4 or A3 size map(s) of world. Constructed between 1952 the nominated property, and 1957, its first act was to track the United Kingdom carrier rocket for Sputnik 1, the first 0 0 0 0 0 0 showing boundaries and 1 1 satellite ever launched into orbit and 7 7 State, Province or Region buffer zone (if present) humanity’s first step into space. The 3 3 Telescope was the largest of its kind England (Cheshire East administrative See maps enclosed in dossier. in the world for 15 years and inspired Square Kilometre authority) Array Headquarters the construction of many other Criteria under which instruments worldwide. Name of Property property is nominated The property encompasses a number Jodrell Bank Observatory (itemize criteria) of other radio telescopes, including Geographical Coordinates (i), (ii), (iv), (vi) the Mark II Telescope, and functional Bridge Farm 0 0 buildings on a 17.38-hectare site. Many 0 0 8 8 to the nearest second 0 0 Draft Statement of of these are original structures and 7 7 3 3 instruments, while remnants of earlier N 53° 14’ 05” W 2° 18’ 18” Outstanding Universal Value structures also persist, some of them Textual description of the a. Brief Synthesis below ground. boundary of the nominated Jodrell Bank Observatory is the earliest The character of the Observatory has property radio astronomy observatory in the been determined by the evolution of world that is still in existence. radio astronomy. Scientists first arrived The boundary of the nominated property at the southern boundary of the site in has been drawn so that it encompasses It is the one remaining site, worldwide, 1945, and then moved northwards as all of the areas and attributes that are that includes evidence of every stage 0 0 they made new discoveries, creating 0 5 0 6 53 6 of the post-1945 emergence of radio 0 A 0 a direct and tangible expression of its new equipment and experiments, 7 7 3 3 Outstanding Universal Value. astronomy, and, as such, played a thereby imprinting the development of pioneering role in a revolution in our the science on the landscape of the site. The property is 17.38 hectares in understanding of the Universe. size and encompasses the site of The Observatory is not solely a the Jodrell Bank Observatory, which Radio astronomy showed that there is scientific monument as it still carries B 5 r 3 far more to the Universe than meets id 5 is wholly owned by the University of out world-leading research. It currently g A e B5 L 3 a 92 the human eye, and that entirely new n Manchester. The University owns hosts the UK’s national array of 7 radio e further land around the boundary of information can be obtained by using telescopes, and collaborates with many the nominated property, which allows it radio waves – a revolution exemplified other radio telescopes worldwide. by a range of features across the site. 0 0 control of its immediate surroundings. 0 0 4 4 The scientific importance of the 0 0 The Buffer Zone has been established 7 7 Located in rural Cheshire in northwest 3 0 35 70 140 Meters 3 using the pre-existing radio silence property is demonstrated by the England, the Observatory, which is zone (similar to a ‘dark night sky’ zone influence of its work, evidenced by the part of the University of Manchester, 379400 379600 379800 380000 around an optical observatory), which data and scientific publications in its is dominated by the iconic Lovell is an area of 18569.22 hectares around archive, and its continuing research. Telescope, the first very large fully- Coordinate System: British National Grid KEY: Map of the Nominated Property the property. Projection: Transverse Mercator steerable radio telescope in the Datum: OSGB 1936 Nominated Property Boundary Scale: 1 : 3 , 0 0 0 at A3 © Crown copyright and database rights 2017 Figure 2 - Jodrell Bank Observatory Ordnance Survey 0100031673 Nominated Property Boundary 12 Executive Summary Executive Summary 13 372000 376000 380000 384000 388000 ´ 0 0 0 0 0 0 2 2 7 7 3 3 b. Justification for Criteria unique technological and landscape new information can be obtained by ensemble, globally, that exemplifies, using ‘invisible’ light, beyond the usual Criterion (i) represents a masterpiece through its surviving physical evidence, ‘rainbow’ of visible colours. Modern of human creative genius 0 0 the transition from traditional astrophysics now uses this ‘invisible 0 0 0 0 8 8 Jodrell Bank Observatory is an 6 6 optical astronomy to modern multi- light’ as a matter of course, to examine 3 3 outstanding example of supreme wavelength astrophysics that took the Universe, but the first major scientific and technical achievement, place during the 1940s and the years step towards this was taken by radio which revolutionised our understanding that followed. Developments at all astronomy. of the Universe. The post-1945 stages of this history took place within emergence of the science of radio its boundaries, with many of the earliest c. Statement of Integrity astronomy was a turning point in the features, or their locations, extant and All the tangible attributes of progress of 20th century astronomy. At 0 0 recognisable. This was a significant 0 0 0 0 4 4 the property sit within the site 6 6 Jodrell Bank, evidence of every stage stage in the history of understanding 3 3 boundaries. The nominated property of this is present in the property. This our place in the Universe. includes: the early use of recycled radar is solely owned by the University of equipment; the construction in 1947 of It was also a significant stage in the Manchester, and the boundaries of the Transit Telescope (then the world’s peacetime development of ‘Big the site are clearly identifiable in the Deeds of Ownership of the land. largest telescope); and the creation Science’, which followed the Second 0 0.5 1 2 Kilometers of the iconic Lovell Telescope in 1957 World War, and was characterised by a The property is generally in a good 372000 376000 380000 384000 388000 (superseding the Transit Telescope as leap in the scale of projects, paralleled state of conservation. The integrity the world’s largest). The development by a leap in scale of funding and in of some elements of the property Coordinate System: British National Grid KEY: Map showing the Nominated Property and Buffer Zone Projection: Transverse Mercator Nominated Property Boundary is compromised (for example, only Datum: OSGB 1936 of the Observatory, as a whole, was numbers of collaborating scientists Scale: 1 : 6 0 ,0 0 0 at A3 5-10% of some of the original scientific © Crown copyright and database rights 2017 Buffer Zone driven by the vision, determination and and engineers. While the size of the Ordnance Survey 0100031673 Figure 3 - Jodrell Bank Observatory Buffer Zone creative scientific genius of Sir Bernard Lovell Telescope means that it is the instruments remain, as traces below Lovell and the team that gathered most obvious feature of the site, it is, in ground). However, most of the around him. fact, the Observatory as an ensemble buildings in the property are in good that is at the heart of the property. The condition and the Grade 1 listing and e. Requirements for Protection and Manchester, which has a robust and Name and Contact Criterion (ii) exhibits an important character of the landscape and the continued research use of the Lovell Management successful management system in Information of official interchange of human values interrelation between buildings and Telescope and the Mark II Telescope place, including a site Governance The Jodrell Bank Observatory structures speaks of the revolutionary has ensured that the integrity and The Lovell Telescope was awarded Group, that takes oversight of all local institution/agency contains numerous examples of developments that took place there, function of the most iconic elements Grade 1 Listed status in 1988 and activities. physical evidence of the international and represent this significant stage in of the property have been retained. therefore enjoys full statutory Organisation: interchange of ideas at a significant human history. protection under this and other A Steering Group including all The University of Manchester time in history, as the new science of d. Statement of Authenticity planning regulations. In 2017, the Mark stakeholders will oversee the radio astronomy and the space age Criterion (vi) directly or tangibly II Telescope was also Grade I listed and management of the World Heritage Address: Despite the rapid and continuing developed during the 1940s-60s. This associated with events or living five other historical structures at the Site. It is also planned to establish a Professor Teresa Anderson MBE developments at Jodrell Bank, the is epitomised by the structures of the traditions, with ideas, or with beliefs, site were also listed at Grade II. deemed strategy of consent with all Director site preserves good evidence for the iconic Lovell Telescope and the Mark with artistic and literary works of relevant stakeholders in 2018/19. Jodrell Bank Discovery Centre emergence of the science of Radio II Telescope, which dominate the site outstanding universal significance The Buffer Zone for the property Astronomy and retains a high level The University of Manchester and effectively ‘bracket’ the property. Jodrell Bank Observatory is inextricably (which is 18569.28 hectares in area) The University of Manchester, owner of authenticity due to its function as Macclesfield It is also embodied in the character of linked to the fundamental concept has been set up using the radio of the property, is investing £15million an observatory.
Recommended publications
  • Jodrell Bank Observatory
    UK Tentative List of Potential Sites for World Heritage Nomination: Application form Please save the application to your computer, fill in and email to: [email protected] The application form should be completed using the boxes provided under each question, and, where possible, within the word limit indicated. Please read the Information Sheets before completing the application form. It is also essential to refer to the accompanying Guidance Note for help with each question, and to the relevant paragraphs of UNESCO’s Operational Guidelines for the Implementation of the World Heritage Convention, (OG) available at: http://whc.unesco.org/en/guidelines Applicants should provide only the information requested at this stage. Further information may be sought in due course. (1) Name of Proposed World Heritage Site Jodrell Bank Observatory (2) Geographical Location Name of country/region United Kingdom Grid reference to centre of site SJ 798708 Please enclose a map preferably A4-size, a plan of the site, and 6 photographs, preferably electronically. page 1 (3) Type of Site Please indicate category: Natural Cultural Mixed Cultural Landscape (4) Description Please provide a brief description of the proposed site, including the physical characteristics. 200 words The Jodrell Bank Observatory, which is part of the University of Manchester’s School of Physics and Astronomy, is dominated by the monumental Lovell Telescope, the first large fully steerable radio telescope in the world - which still operates as the 3rd largest on the planet. The telescope, which is a Grade 1 listed structure, is 76m in diameter and stands 89m high. Despite its age (53 years in 2010), it is now more powerful than ever and remains at the forefront of Astrophysics research, working 24 hours a day, 365 days a year to observe distant galaxies and objects such as Pulsars and Quasars, far out across the Universe.
    [Show full text]
  • Introduction to Radio Astronomy
    Introduction to Radio Astronomy Greg Hallenbeck 2016 UAT Workshop @ Green Bank Outline Sources of Radio Emission Continuum Sources versus Spectral Lines The HI Line Details of the HI Line What is our data like? What can we learn from each source? The Radio Telescope How do we actually detect this stuff? How do we get from the sky to the data? I. Radio Emission Sources The Electromagnetic Spectrum Radio ← Optical Light → A Galaxy Spectrum (Apologies to the radio astronomers) Continuum Emission Radiation at a wide range of wavelengths ❖ Thermal Emission ❖ Bremsstrahlung (aka free-free) ❖ Synchrotron ❖ Inverse Compton Scattering Spectral Line Radiation at a wide range of wavelengths ❖ The HI Line Categories of Emission Continuum Emission — “The Background” Radiation at a wide range of wavelengths ❖ Thermal Emission ❖ Synchrotron ❖ Bremsstrahlung (aka free-free) ❖ Inverse Compton Scattering Spectral Lines — “The Spikes” Radiation at specific wavelengths ❖ The HI Line ❖ Pretty much any element or molecule has lines. Thermal Emission Hot Things Glow Emit radiation at all wavelengths The peak of emission depends on T Higher T → shorter wavelength Regulus (12,000 K) The Sun (6,000 K) Jupiter (100 K) Peak is 250 nm Peak is 500 nm Peak is 30 µm Thermal Emission How cold corresponds to a radio peak? A 3 K source has peak at 1 mm. Not getting any colder than that. Synchrotron Radiation Magnetic Fields Make charged particles move in circles. Accelerating charges radiate. Synchrotron Ingredients Strong magnetic fields High energies, ionized particles. Found in jets: ❖ Active galactic nuclei ❖ Quasars ❖ Protoplanetary disks Synchrotron Radiation Jets from a Protostar At right: an optical image.
    [Show full text]
  • 50 Years of the Lovell Telescope Transcript
    50 years of the Lovell telescope Transcript Date: Wednesday, 5 December 2007 - 12:00AM 50 YEARS OF THE LOVELL TELESCOPE Professor Ian Morison The Early days at Jodrell Bank In late 1945 Dr Bernard Lovell (as he then was) returned to Manchester University after working on the development of radar during the war years. His aim was to continue his researches into cosmic rays - highly energetic particles that enter the Earth's atmosphere from outer space. He had the idea that sporadic echoes sometimes received by military radars might be the result of cosmic rays entering the atmosphere and thus radar observations might provide a new way to continue his researches. Radar observations were not practical in the centre of Manchester so he took his ex-army radar system out to the University's Botanical Grounds at Jodrell Bank, some 20 miles to the south. By the middle of December 1945, the system was operating and his team was soon able to prove that the echoes were coming not from cosmic rays but from ionized meteor trails left behind when small particles, released from comets, are burnt up in the upper atmosphere of the Earth. Radar Antenna in the Botany Grounds. The Jodrell Bank Experimental Station. The observations continued and, to house the expanding staff and equipment, the Jodrell Bank Experimental Station was built in the field next to the Botanic Grounds. Lovell realised that a much more sensitive radio telescope would be required to detect cosmic rays and so, in 1947, the researchers built a large parabolic reflector, 66-m across, pointing upwards to observe the sky passing overhead.
    [Show full text]
  • The E-MERLIN Notebook
    The e-MERLIN Notebook IRIS Collaboration F2F Meeting - 4 April 2019 Dr. Rachael Ainsworth Jodrell Bank Centre for Astrophysics University of Manchester @rachaelevelyn Overview ● Motivation ● Brief intro to e-MERLIN ● Pieces of the puzzle: ○ e-MERLIN CASA Pipeline ○ Data Archive ○ Open Notebooks ● Putting everything together: ○ e-MERLIN @ IRIS Motivation (Whitaker 2018, https://doi.org/10.6084/m9.figshare.7140050.v2 ) “Computational science has led to exciting new developments, but the nature of the work has exposed limitations in our ability to evaluate published findings. Reproducibility has the potential to serve as a minimum standard for judging scientific claims when full independent replication of a study is not possible.” (Peng 2011; https://doi.org/10.1126/science.1213847) e-MERLIN (e)MERLIN ● enhanced Multi Element Remotely Linked Interferometer Network ● An array of 7 radio telescopes spanning 217 km across the UK ● Connected by a superfast optical fibre network to its headquarters at Jodrell Bank Observatory. ● Has a unique position in the world with an angular resolution comparable to that of the Hubble Space Telescope and carrying out centimetre wavelength radio astronomy with micro-Jansky sensitivities. http://www.e-merlin.ac.uk/ (e)MERLIN ● Does not have a publicly accessible data archive. http://www.e-merlin.ac.uk/ Radio Astronomy Software: CASA ● The CASA infrastructure consists of a set of C++ tools bundled together under an iPython interface as data reduction tasks. ● This structure provides flexibility to process the data via task interface or as a python script. ● https://casa.nrao.edu/ Pieces of the puzzle e-MERLIN CASA Pipeline ● Developed openly on GitHub (Moldon, et al.) ● Python package composed of different modules that can be run together sequentially to produce calibration tables, calibrated data, assessment plots and a summary weblog.
    [Show full text]
  • The Merlin - Phase 2
    Radio Interferometry: Theory, Techniques and Applications, 381 IAU Coll. 131, ASP Conference Series, Vol. 19, 1991, T.J. Comwell and R.A. Perley (eds.) THE MERLIN - PHASE 2 P.N. WILKINSON University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, Cheshire, SKll 9DL, United Kingdom ABSTRACT The Jodrell Bank MERLIN is currently being upgraded to produce higher sensitivity and higher resolving power. The major capital item has been a new 32m telescope located at MRAO Cambridge which will operate to at least 50 GHz. A brief outline of the upgraded MERLIN and its performance is given. INTRODUCTION The MERLIN (Multi-Element Radio-Linked Interferometer Network), based at Jodrell Bank, was conceived in the mid-1970s and first became operational in 1980. It was a bold concept; no one had made a real-time long-baseline interferometer array with phase-stable local oscillator links before. Six remotely operated telescopes, controlled via telephone lines, are linked to a control computer at Jodrell Bank. The rf signals are transmitted to Jodrell via commercial multi-hop microwave links operating at 7.5 GHz. The local oscillators are coherently slaved to a master oscillator via go-and- return links operating at L-band, the change in the link path-length being taken out in software. This single-frequency L-band link can transfer phase to the equivalent of < 1 picosec (< 0.3 mm of path length) on timescales longer than a few seconds. A detailed description of the MERLIN system has been given by Thomasson (1986). The MERLIN has provided the UK with a unique astronomical facility, one which has made important contributions to extragalactic radio source and OH maser studies.
    [Show full text]
  • The Lovell Telescope … Through Its Surfaces Simon Garrington, JBO/University of Manchester
    The Lovell Telescope … through its surfaces Simon Garrington, JBO/University of Manchester • Original design & redesign: 1950-1957 • Radical modification & new surface: 1971 • Replacement of surface: 2001 • Replacement of original Picture A. Holloway surface: 2018 • Other consequences: foundations O1 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O2 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O3 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in
    [Show full text]
  • Measurement of the Cosmic Microwave Background Radiation at 19 Ghz
    Measurement of the Cosmic Microwave Background Radiation at 19 GHz 1 Introduction Measurements of the Cosmic Microwave Background (CMB) radiation dominate modern experimental cosmology: there is no greater source of information about the early universe, and no other single discovery has had a greater impact on the theories of the formation of the cosmos. Observation of the CMB confirmed the Big Bang model of the origin of our universe and gave us a look into the distant past, long before the formation of the very first stars and galaxies. In this lab, we seek to recreate this founding pillar of modern physics. The experiment consists of a temperature measurement of the CMB, which is actually “light” left over from the Big Bang. A radiometer is used to measure the intensity of the sky signal at 19 GHz from the roof of the physics building. A specially designed horn antenna allows you to observe microwave noise from isolated patches of sky, without interference from the relatively hot (and high noise) ground. The radiometer amplifies the power from the horn by a factor of a billion. You will calibrate the radiometer to reduce systematic effects: a cryogenically cooled reference load is periodically measured to catch changes in the gain of the amplifier circuit over time. 2 Overview 2.1 History The first observation of the CMB occurred at the Crawford Hill NJ location of Bell Labs in 1965. Arno Penzias and Robert Wilson, intending to do research in radio astronomy at 21 cm wavelength using a special horn antenna designed for satellite communications, noticed a background noise signal in all of their radiometric measurements.
    [Show full text]
  • Dynamics of the Arecibo Radio Telescope
    DYNAMICS OF THE ARECIBO RADIO TELESCOPE Ramy Rashad 110030106 Department of Mechanical Engineering McGill University Montreal, Quebec, Canada February 2005 Under the supervision of Professor Meyer Nahon Abstract The following thesis presents a computer and mathematical model of the dynamics of the tethered subsystem of the Arecibo Radio Telescope. The computer and mathematical model for this part of the Arecibo Radio Telescope involves the study of the dynamic equations governing the motion of the system. It is developed in its various components; the cables, towers, and platform are each modeled in succession. The cable, wind, and numerical integration models stem from an earlier version of a dynamics model created for a different radio telescope; the Large Adaptive Reflector (LAR) system. The study begins by converting the cable model of the LAR system to the configuration required for the Arecibo Radio Telescope. The cable model uses a lumped mass approach in which the cables are discretized into a number of cable elements. The tower motion is modeled by evaluating the combined effective stiffness of the towers and their supporting backstay cables. A drag model of the triangular truss platform is then introduced and the rotational equations of motion of the platform as a rigid body are considered. The translational and rotational governing equations of motion, once developed, present a set of coupled non-linear differential equations of motion which are integrated numerically using a fourth-order Runge-Kutta integration scheme. In this manner, the motion of the system is observed over time. A set of performance metrics of the Arecibo Radio Telescope is defined and these metrics are evaluated under a variety of wind speeds, directions, and turbulent conditions.
    [Show full text]
  • The Meerkat Radio Telescope Rhodes University SKA South Africa E-Mail: a B Pos(Meerkat2016)001 Justin L
    The MeerKAT Radio Telescope PoS(MeerKAT2016)001 Justin L. Jonas∗ab and the MeerKAT Teamb aRhodes University bSKA South Africa E-mail: [email protected] This paper is a high-level description of the development, implementation and initial testing of the MeerKAT radio telescope and its subsystems. The rationale for the design and technology choices is presented in the context of the requirements of the MeerKAT Large-scale Survey Projects. A technical overview is provided for each of the major telescope elements, and key specifications for these components and the overall system are introduced. The results of selected receptor qual- ification tests are presented to illustrate that the MeerKAT receptor exceeds the original design goals by a significant margin. MeerKAT Science: On the Pathway to the SKA, 25-27 May, 2016, Stellenbosch, South Africa ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ MeerKAT Justin L. Jonas 1. Introduction The MeerKAT radio telescope is a precursor for the Square Kilometre Array (SKA) mid- frequency telescope, located in the arid Karoo region of the Northern Cape Province in South Africa. It will be the most sensitive decimetre-wavelength radio interferometer array in the world before the advent of SKA1-mid. The telescope and its associated infrastructure is funded by the government of South Africa through the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST). Construction and commissioning of the telescope has been the responsibility of the SKA South Africa Project Office, which is a business unit of the PoS(MeerKAT2016)001 NRF.
    [Show full text]
  • High-Resolution Radio Observations of Submillimetre Galaxies
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 7 November 2018 (MN LATEX style file v2.2) High-resolution radio observations of submillimetre galaxies A. D. Biggs1⋆ and R.J. Ivison1,2 1UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ 2Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ Accepted 2007 December 17. Received 2007 December 14; in original form 2007 September 11 ABSTRACT We have produced sensitive, high-resolution radio maps of 12 submillimetre (submm) galax- ies (SMGs) in the Lockman Hole using combined Multi-Element Radio-Linked Interferom- eter Network (MERLIN) and Very Large Array (VLA) data at a frequency of 1.4GHz. Inte- grating for 350hr yielded an r.m.s. noise of 6.0 µJybeam−1 and a resolution of 0.2–0.5arcsec. For the first time, wide-field data from the two arrays have been combined in the (u, v) plane and the bandwidthsmearing response of the VLA data has been removed.All of the SMGs are detected in our maps as well as sources comprising a non-submm luminous control sample. We find evidence that SMGs are more extended than the general µJy radio population and that therefore, unlike in local ultraluminous infrared galaxies (ULIRGs), the starburst compo- nent of the radio emission is extended and not confined to the galactic nucleus. For the eight sources with redshifts we measure linear sizes between 1 and 8kpc with a median of 5kpc. Therefore, they are in general larger than local ULIRGs which may support an early-stage merger scenario for the starburst trigger.
    [Show full text]
  • Adventures in Radio Astronomy Instrumentation and Signal Processing
    Adventures in Radio Astronomy Instrumentation and Signal Processing by Peter Leonard McMahon Submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the University of Cape Town July 2008 Supervisor: Professor Michael Inggs Co-supervisors: Dr Dan Werthimer, CASPER1, University of California, Berkeley Dr Alan Langman, Karoo Array Telescope arXiv:1109.0416v1 [astro-ph.IM] 2 Sep 2011 1Center for Astronomy Signal Processing and Electronics Research Abstract This thesis describes the design and implementation of several instruments for digi- tizing and processing analogue astronomical signals collected using radio telescopes. Modern radio telescopes have significant digital signal processing demands that are typically best met using custom processing engines implemented in Field Pro- grammable Gate Arrays. These demands essentially stem from the ever-larger ana- logue bandwidths that astronomers wish to observe, resulting in large data volumes that need to be processed in real time. We focused on the development of spectrometers for enabling improved pulsar2 sci- ence on the Allen Telescope Array, the Hartebeesthoek Radio Observatory telescope, the Nan¸cay Radio Telescope, and the Parkes Radio Telescope. We also present work that we conducted on the development of real-time pulsar timing instrumentation. All the work described in this thesis was carried out using generic astronomy pro- cessing tools and hardware developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. We successfully deployed to several telescopes instruments that were built solely with CASPER technology, which has helped to validate the approach to developing radio astronomy instruments that CASPER advocates.
    [Show full text]
  • High Resolution Radio Astronomy Using Very Long Baseline Interferometry
    IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 066901 (32pp) doi:10.1088/0034-4885/71/6/066901 High resolution radio astronomy using very long baseline interferometry Enno Middelberg1 and Uwe Bach2 1 Astronomisches Institut, Universitat¨ Bochum, 44801 Bochum, Germany 2 Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany E-mail: [email protected] and [email protected] Received 3 December 2007, in final form 11 March 2008 Published 2 May 2008 Online at stacks.iop.org/RoPP/71/066901 Abstract Very long baseline interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on active galactic nuclei, the number of observations concerned with other astronomical objects such as stars and masers, and with astrometric applications, is significant. In the last decade, much progress has been made in all of these fields. We give a brief introduction to the technique of radio interferometry, focusing on the particularities of VLBI observations, and review recent results which would not have been possible without VLBI observations. This article was invited by Professor J Silk. Contents 1. Introduction 1 2.9. The future of VLBI: eVLBI, VLBI in space and 2. The theory of interferometry and aperture the SKA 10 synthesis 2 2.10. VLBI arrays around the world and their 2.1. Fundamentals 2 capabilities 10 2.2. Sources of error in VLBI observations 7 3. Astrophysical applications 11 2.3. The problem of phase calibration: 3.1. Active galactic nuclei and their jets 12 self-calibration 7 2.4.
    [Show full text]