Bernard Lovell (1913-2012) Physicist and Radar Pioneer Who Created the Famous Jodrell Bank Radio Telescope

Total Page:16

File Type:pdf, Size:1020Kb

Bernard Lovell (1913-2012) Physicist and Radar Pioneer Who Created the Famous Jodrell Bank Radio Telescope COMMENT OBITUARY Bernard Lovell (1913-2012) Physicist and radar pioneer who created the famous Jodrell Bank radio telescope. ith vision, inspiration and deter- a small team built a parabolic reflector in the Western world. Suddenly everyone mination, Bernard Lovell created 66 metres in diameter, made of wires stretched realized the telescope’s importance. Lord the Jodrell Bank Observatory in between scaffold poles. Robert Hanbury Nuffield paid off the debt, half personally WCheshire, UK, and the great radio telescope Brown used this dish to discover radio waves and half from the Nuffield Foundation, and there that bears his name. Through his lead- from the Andromeda galaxy. It was the start serious astronomy could begin. ership, generations of astronomers developed of astronomy at Jodrell Bank. That dish was The telescope fulfilled Lovell’s vision of the tools of radio astronomy that have revo- fixed and could only stare upwards. Lovell’s opening a new window on the Universe. It lutionized astrophysics and cosmology. had illustrious roles in early space explo- Lovell was born in Oldland Common ration, in the discovery of quasars and the near Bristol, UK, and educated at the local first gravitational lens, and in the discov- Kingswood Grammar School. He was ery and study of pulsars, or neutron stars, PHOTOSHOT PHOTOSHOT attracted to science through a lecture by which have provided the most precise physicist Arthur Tyndall. He joined Tyn- tests of Einstein’s general theory of rela- dall as a research student at the University tivity. After 55 years and two major refur- of Bristol, where his meticulous work on bishments, the telescope is still working at the resistance of thin metallic films earned the frontiers of knowledge. him a PhD in 1936. Taking up a lectureship Jodrell Bank Observatory, the aca- at the University of Manchester, UK, Lovell demic institution set up in the telescope’s became interested in research on cosmic shadow, is established as an international rays, joining the group of Patrick Blackett, centre for astrophysics and technology. who was developing cloud-chamber tech- It was chosen last year to host the head- niques for the rays’ detection. quarters of the Square Kilometre Array, Lovell followed Blackett into govern- which will be the world’s largest radio tel- ment science, becoming a key figure in escope when it is built in South Africa and the development of radar in the Second Australia in coming decades. World War. Lovell’s group designed an Warm and generous, Lovell took par- airborne radar system that operated at a ticular pleasure in the millions of people wavelength of 10 centimetres, with high who came to the observatory’s visitor cen- positional accuracy. Lovell also designed tre, which he initiated 41 years ago. His large, airborne scanning antennas that instinct for good science and his empathy required big holes to be cut in aircraft fuse- ambition was to build a steerable reflector at with staff and students led him to allocate lages. The radars, vital for navigation and able least as big. He started on plans for the iconic telescope time without controversy. He to detect surfaced German U-boats, were 76-metre-diameter dish that we know as the retained a close interest in the observatory installed in the aircraft of Coastal Command Lovell Telescope. after he retired, but as the directors who suc- and Bomber Command and had a dramatic Building such an innovative, huge instru- ceeded him, we can attest that he never told effect in the battle of the Atlantic. ment required extraordinary determination us what to do with his telescope. While working at one of the Chain Home and powers of persuasion. The telescope’s Lovell received many honours, and served radar stations that guarded the UK coast, original cost more than doubled from as president of the Royal Astronomical Society Lovell saw the background of sporadic ech- £259,000 in 1952 to £640,000 in 1956 (today (1969–71) and of the British Association for oes against which the aircraft signals had equivalent to £13 million, or US$21 million). the Advancement of Science (1975–76). But to be distinguished, and wondered where This was mainly because the discovery by he was most pleased when the telescope was they came from. He discussed with Black- Dutch astronomers in 1951 of a spectral line given his name to mark its 30th anniversary. ett whether they might be reflections from at the relatively short wavelength of 21 cen- Outside science, Lovell was an accom- ionized clouds in the atmosphere, perhaps timetres from hydrogen in interstellar space plished musician, playing the organ regularly formed by cosmic-ray showers, an idea he demanded a more precise reflecting surface. in the church of his home village of Swetten- pursued after the war. The UK government and the university met ham in Cheshire. He was a keen cricketer and Returning to Manchester in 1945, Lovell most of the increase, leaving a debt of £50,000 horticulturalist, establishing arboretums adja- used his wartime experiences to develop the for which Lovell became personally respon- cent to the telescope and to his home. He was Jodrell Bank Observatory. An army radar sible. He was faced with an enquiry by the much loved and respected by his colleagues. ■ brought to Manchester was moved some government’s Public Accounts Committee, 30 kilometres out of the city to a university and with the possibility of imprisonment. Francis Graham Smith, Rodney Davies botany site to escape electrical interference The launch of the Sputnik satellite by and Andrew Lyne are emeritus professors from trams. The source of the echoes Lovell the Soviet Union in 1957 transformed this of physics at the University of Manchester, had seen while at the Chain Home radar was embarrassing situation. Typically, Lovell UK, and former directors of the Jodrell Bank soon revealed: meteor trails. (No echoes have rose to the occasion. The new telescope Observatory (in 1981–88, 1988–97 and ever been detected from cosmic rays.) obtained echoes from the Sputnik launch 1997–2006, respectively). Lovell wanted a larger antenna. He and vehicle, a feat unmatched anywhere else e-mail: [email protected] 592 | NATURE | VOL 488 | 30 AUGUST 2012 © 2012 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Jodrell Bank Observatory
    UK Tentative List of Potential Sites for World Heritage Nomination: Application form Please save the application to your computer, fill in and email to: [email protected] The application form should be completed using the boxes provided under each question, and, where possible, within the word limit indicated. Please read the Information Sheets before completing the application form. It is also essential to refer to the accompanying Guidance Note for help with each question, and to the relevant paragraphs of UNESCO’s Operational Guidelines for the Implementation of the World Heritage Convention, (OG) available at: http://whc.unesco.org/en/guidelines Applicants should provide only the information requested at this stage. Further information may be sought in due course. (1) Name of Proposed World Heritage Site Jodrell Bank Observatory (2) Geographical Location Name of country/region United Kingdom Grid reference to centre of site SJ 798708 Please enclose a map preferably A4-size, a plan of the site, and 6 photographs, preferably electronically. page 1 (3) Type of Site Please indicate category: Natural Cultural Mixed Cultural Landscape (4) Description Please provide a brief description of the proposed site, including the physical characteristics. 200 words The Jodrell Bank Observatory, which is part of the University of Manchester’s School of Physics and Astronomy, is dominated by the monumental Lovell Telescope, the first large fully steerable radio telescope in the world - which still operates as the 3rd largest on the planet. The telescope, which is a Grade 1 listed structure, is 76m in diameter and stands 89m high. Despite its age (53 years in 2010), it is now more powerful than ever and remains at the forefront of Astrophysics research, working 24 hours a day, 365 days a year to observe distant galaxies and objects such as Pulsars and Quasars, far out across the Universe.
    [Show full text]
  • 50 Years of the Lovell Telescope Transcript
    50 years of the Lovell telescope Transcript Date: Wednesday, 5 December 2007 - 12:00AM 50 YEARS OF THE LOVELL TELESCOPE Professor Ian Morison The Early days at Jodrell Bank In late 1945 Dr Bernard Lovell (as he then was) returned to Manchester University after working on the development of radar during the war years. His aim was to continue his researches into cosmic rays - highly energetic particles that enter the Earth's atmosphere from outer space. He had the idea that sporadic echoes sometimes received by military radars might be the result of cosmic rays entering the atmosphere and thus radar observations might provide a new way to continue his researches. Radar observations were not practical in the centre of Manchester so he took his ex-army radar system out to the University's Botanical Grounds at Jodrell Bank, some 20 miles to the south. By the middle of December 1945, the system was operating and his team was soon able to prove that the echoes were coming not from cosmic rays but from ionized meteor trails left behind when small particles, released from comets, are burnt up in the upper atmosphere of the Earth. Radar Antenna in the Botany Grounds. The Jodrell Bank Experimental Station. The observations continued and, to house the expanding staff and equipment, the Jodrell Bank Experimental Station was built in the field next to the Botanic Grounds. Lovell realised that a much more sensitive radio telescope would be required to detect cosmic rays and so, in 1947, the researchers built a large parabolic reflector, 66-m across, pointing upwards to observe the sky passing overhead.
    [Show full text]
  • The Lovell Telescope … Through Its Surfaces Simon Garrington, JBO/University of Manchester
    The Lovell Telescope … through its surfaces Simon Garrington, JBO/University of Manchester • Original design & redesign: 1950-1957 • Radical modification & new surface: 1971 • Replacement of surface: 2001 • Replacement of original Picture A. Holloway surface: 2018 • Other consequences: foundations O1 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O2 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O3 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in
    [Show full text]
  • Jod Bank 1.Indd 56 23/10/2019 08:11 Feature
    Feature Radio Eye on the Sky (Part I) Dr Bruce Taylor HB9ANY Dr Bruce Taylor HB9ANY relates how chance, [email protected] skill, tenacity and the enthusiasm of a botanist n July 7th 2019 Jodrell Bank radio amateur created a technical masterpiece. Observatory, the home of what is surely the most iconic radio antenna in the world, was de- Oclared a World Heritage Site in the same cultural category as the Great Wall of China and the Pyramid Fields from Giza to Dahshur. It was recognised by UNESCO as “a masterpiece of human creative genius” because of its scientifi c achievements in advancing our understanding of the uni- verse. But as the champagne fl owed in cel- ebration of this magnifi cent accolade, few remembered that 62 years earlier its found- er, Bernard Lovell, endured immense per- sonal hardship and narrowly escaped incar- ceration during the technical, Political and fi nancial drama surrounding its creation. In 1939, 25 year-old Lovell was one of many talented university teachers and re- searchers who abandoned their Peaceful studies to join the war effort. They teamed uP with hundreds of radio amateurs and professional electronics experts who con- tributed their technical skills to the defence of the United Kingdom. Lovell was just about to set out from Manchester for the Pyrenees, in a small van loaded with equip- 1 ment for cosmic ray research, when he re- ceived a call to rePort to the Chain Home at which available thermionic valves could (CH) laboratories at Bawdsey Manor on generate signifi cant power was about the east coast of England.
    [Show full text]
  • Adventures in Radio Astronomy Instrumentation and Signal Processing
    Adventures in Radio Astronomy Instrumentation and Signal Processing by Peter Leonard McMahon Submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the University of Cape Town July 2008 Supervisor: Professor Michael Inggs Co-supervisors: Dr Dan Werthimer, CASPER1, University of California, Berkeley Dr Alan Langman, Karoo Array Telescope arXiv:1109.0416v1 [astro-ph.IM] 2 Sep 2011 1Center for Astronomy Signal Processing and Electronics Research Abstract This thesis describes the design and implementation of several instruments for digi- tizing and processing analogue astronomical signals collected using radio telescopes. Modern radio telescopes have significant digital signal processing demands that are typically best met using custom processing engines implemented in Field Pro- grammable Gate Arrays. These demands essentially stem from the ever-larger ana- logue bandwidths that astronomers wish to observe, resulting in large data volumes that need to be processed in real time. We focused on the development of spectrometers for enabling improved pulsar2 sci- ence on the Allen Telescope Array, the Hartebeesthoek Radio Observatory telescope, the Nan¸cay Radio Telescope, and the Parkes Radio Telescope. We also present work that we conducted on the development of real-time pulsar timing instrumentation. All the work described in this thesis was carried out using generic astronomy pro- cessing tools and hardware developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. We successfully deployed to several telescopes instruments that were built solely with CASPER technology, which has helped to validate the approach to developing radio astronomy instruments that CASPER advocates.
    [Show full text]
  • High Resolution Radio Astronomy Using Very Long Baseline Interferometry
    IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 066901 (32pp) doi:10.1088/0034-4885/71/6/066901 High resolution radio astronomy using very long baseline interferometry Enno Middelberg1 and Uwe Bach2 1 Astronomisches Institut, Universitat¨ Bochum, 44801 Bochum, Germany 2 Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany E-mail: [email protected] and [email protected] Received 3 December 2007, in final form 11 March 2008 Published 2 May 2008 Online at stacks.iop.org/RoPP/71/066901 Abstract Very long baseline interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on active galactic nuclei, the number of observations concerned with other astronomical objects such as stars and masers, and with astrometric applications, is significant. In the last decade, much progress has been made in all of these fields. We give a brief introduction to the technique of radio interferometry, focusing on the particularities of VLBI observations, and review recent results which would not have been possible without VLBI observations. This article was invited by Professor J Silk. Contents 1. Introduction 1 2.9. The future of VLBI: eVLBI, VLBI in space and 2. The theory of interferometry and aperture the SKA 10 synthesis 2 2.10. VLBI arrays around the world and their 2.1. Fundamentals 2 capabilities 10 2.2. Sources of error in VLBI observations 7 3. Astrophysical applications 11 2.3. The problem of phase calibration: 3.1. Active galactic nuclei and their jets 12 self-calibration 7 2.4.
    [Show full text]
  • Table of Contents - 1 - - 2
    Table of contents - 1 - - 2 - Table of Contents Foreword 5 1. The European Consortium for VLBI 7 2. Scientific highlights on EVN research 9 3. Network Operations 35 4. VLBI technical developments and EVN operations support at member institutes 47 5. Joint Institute for VLBI in Europe (JIVE) 83 6. EVN meetings 105 7. EVN publications in 2007-2008 109 - 3 - - 4 - Foreword by the Chairman of the Consortium The European VLBI Network (EVN) is the result of a collaboration among most major radio observatories in Europe, China, Puerto Rico and South Africa. The large radio telescopes hosted by these observatories are operated in a coordinated way to perform very high angular observations of cosmic radio sources. The data are then correlated by using the EVN correlator at the Joint Institute for VLBI in Europe (JIVE). The EVN, when operating as a single astronomical instrument, is the most sensitive VLBI array and constitutes one of the major scientific facilities in the world. The EVN also co-observes with the Very Long Baseline Array (VLBA) and other radio telescopes in the U.S., Australia, Japan, Russia, and with stations of the NASA Deep Space Network to form a truly global array. In the past, the EVN also operated jointly with the Japanese space antenna HALCA in the frame of the VLBI Space Observatory Programme (VSOP). The EVN plans now to co-observe with the Japanese space 10-m antenna ASTRO-G, to be launched by 2012, within the frame of the VSOP-2 project. With baselines in excess of 25.000 km, the space VLBI observations provide the highest angular resolution ever achieved in Astronomy.
    [Show full text]
  • Jodrell Bank Discovery Centre Classroom Materials for Schools
    Jodrell Bank Discovery Centre Classroom Materials for schools GCSE/BTEC: Inflatable Planetarium Links to resources The resources below are suggested activities your class could complete before or after this workshop. Please note these are recommended activities; it is not compulsory that students complete them. Some of the resources require access to ICT. The University of Manchester cannot be held responsible for the content of external sites. 1. Institute of Physics: Life Cycle of Stars https://www.youtube.com/watch?v=PM9CQDlQI0A Explains how we believe stars are born, live and die and the different ends to different sized stars. Features Professor Tim O’Brien; Associate Director of the Jodrell Bank Observatory. 2. Institute of Physics: How big is the Universe? https://www.youtube.com/watch?v=K_xZuopg4Sk Explains how astronomers have learnt to measure the distance to the stars. How many stars are in the observable universe and is it possible to comprehend the size of it all? 3. Institute of Physics: The Expanding Universe https://www.youtube.com/watch?v=jms_vklUeHA The expansion of the universe, the big bang and dark matter. Astronomers talk us through what we know and don't know about the universe. 4. Institute of Physics: Classroom demonstration: Colour and temperature of stars http://www.youtube.com/watch?v=oZve8FQhLOI Using a variable resistor and a light bulb, it is possible to demonstrate how the colour of a star is related to its temperature. 5. Institute of Physics: Classroom demonstration: H-R diagram https://www.youtube.com/watch?v=bL3tt-fJC1k How to illustrate the life cycle of stars using a Hertzsprung-Russell diagram, a large sheet, and some students.
    [Show full text]
  • Pos(10Th EVN Symposium)097
    La Luna: Lovell Attempts LUnar Neutrino Acquisition PoS(10th EVN Symposium)097 Ralph Spencer 1, Alan Macfarlane, Owen Mills and Lucio Piccirillo School of Physics and Astronomy, The University of Manchester Oxford Rd., Manchester M13 9PL, UK E-mail: [email protected] Recent measurements by the Pierre Auger array have found evidence for the Greisen-Zatsepin- Kuzmin (GZK) cut off in the high energy spectrum of cosmic rays. Interactions of cosmic rays with energies of greater than ~0.05 ZeV with the cosmic microwave background are expected to produce high energy neutrinos. It has been suggested that neutrino interactions in the Moon can give rise to showers of particles, which through the Askar’yan charge excess mechanism can produce Cherenkov emission in the radio, detectable from the Earth. Here we describe a preliminary experiment at 21 cm with the Lovell telescope, which produces limits comparable with those from other radio telescopes. Use of VLBI telescopes in coincidence would eliminate local impulsive RFI and also possibly be able to measure the width of the Cherenkov cone 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the new generation of radio arrays Manchester, UK September 20-24 1 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it Short title Speaker Name 1.Introduction The study of ultra-high-energy (UHE) neutrinos has the potential to be an important tool in the study of many energetic astronomical phenomena. Neutrinos with energies in excess of 10 20 eV are predicted to be produced by processes such as gamma-ray bursts, active galactic nuclei, topological defects and decays of massive relic particles [1].
    [Show full text]
  • Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today
    17_SWARUP (G-L)chiuso_074-092.QXD_Layout 1 01/08/11 10:06 Pagina 74 The Scientific Legacy of the 20th Century Pontifical Academy of Sciences, Acta 21, Vatican City 2011 www.pas.va/content/dam/accademia/pdf/acta21/acta21-swarup.pdf Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today Govind Swarup 1. Introduction An important window to the Universe was opened in 1933 when Karl Jansky discovered serendipitously at the Bell Telephone Laboratories that radio waves were being emitted towards the direction of our Galaxy [1]. Jansky could not pursue investigations concerning this discovery, as the Lab- oratory was devoted to work primarily in the field of communications. This discovery was also not followed by any astronomical institute, although a few astronomers did make proposals. However, a young electronics engi- neer, Grote Reber, after reading Jansky’s papers, decided to build an inno- vative parabolic dish of 30 ft. diameter in his backyard in 1935 and made the first radio map of the Galaxy in 1940 [2]. The rapid developments of radars during World War II led to the dis- covery of radio waves from the Sun by Hey in 1942 at metre wavelengths in UK and independently by Southworth in 1942 at cm wavelengths in USA. Due to the secrecy of the radar equipment during the War, those re- sults were published by Southworth only in 1945 [3] and by Hey in 1946 [4]. Reber reported detection of radio waves from the Sun in 1944 [5]. These results were noted by several groups soon after the War and led to intensive developments in the new field of radio astronomy.
    [Show full text]
  • A Relativistic Helical Jet in the Gamma-Ray AGN 1156+
    Astronomy & Astrophysics manuscriptno.ms3548-hong-final November20,2018 (DOI: will be inserted by hand later) A relativistic helical jet in the γ-ray AGN 1156+295 X. Y. Hong1,2, D. R. Jiang1,2, L. I. Gurvits3, M. A. Garrett3, S. T. Garrington4, R. T. Schilizzi5,6, R. D. Nan2, H. Hirabayashi7, W. H. Wang1,2, and G. D. Nicolson8 1 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China 2 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 3 Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, The Netherlands 4 Jodrell Bank Observatory, University of Manchester, Macclesfield, Cheshire SK11–9DL, UK 5 ASTRON, Postbus 2, 7990 AA Dwingeloo, The Netherlands 6 Leiden Observatory, PO Box 9513, 2300, RA Leiden, The Netherlands 7 Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan 8 Hartebeesthoek Radio Astronomy Observatory, Krugersdorp 1740, South Africa Received 31 January 2003/ accepted 19 November 2003 Abstract. We present the results of a number of high resolution radio observations of the AGN 1156+295. These include multi-epoch and multi-frequency VLBI, VSOP, MERLIN and VLA observations made over a period of ′′ ◦ 50 months. The 5 GHz MERLIN images trace a straight jet extending to ∼ 2 at P.A. ∼ −18 . Extended low brightness emission was detected in the MERLIN observation at 1.6 GHz and the VLA observation at 8.5 GHz ◦ with a bend of ∼ 90 at the end of the 2 arcsecond jet. A region of similar diffuse emission is also seen about 2 arcseconds south of the radio core.
    [Show full text]
  • Cosmic Times Teachers' Guide Table of Contents
    Cosmic Times Teachers’ Guide Table of Contents Cosmic Times Teachers’ Guide ....................................................................................... 1 1919 Cosmic Times ........................................................................................................... 3 Summary of the 1919 Articles...................................................................................................4 Sun’s Gravity Bends Starlight .................................................................................................4 Sidebar: Why a Total Eclipse?.................................................................................................4 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............4 Expanding or Contracting? ......................................................................................................4 In Their Own Words................................................................................................................4 Notes on the 1919 Articles .........................................................................................................5 Sun's Gravity Bends Starlight..................................................................................................5 Sidebar: Why a Total Eclipse?.................................................................................................7 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............7 Expanding or Contracting? ......................................................................................................8
    [Show full text]