Comparison of Occlusal Area and Postcanine Mesiodistal Length In

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Occlusal Area and Postcanine Mesiodistal Length In Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2015 Comparison of Occlusal Area and Postcanine Mesiodistal Length in Old World and New World Monkeys Ashley Marie Franklin Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Social and Behavioral Sciences Commons Recommended Citation Franklin, Ashley Marie, "Comparison of Occlusal Area and Postcanine Mesiodistal Length in Old World and New World Monkeys" (2015). LSU Master's Theses. 4092. https://digitalcommons.lsu.edu/gradschool_theses/4092 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. COMPARISON OF OCCLUSAL AREA AND POSTCANINE MESIODISTAL LENGTH IN OLD WORLD AND NEW WORLD MONKEYS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Arts in The Department of Geography and Anthropology by Ashley Marie Franklin B.A., Louisiana State University, 2012 May 2016 ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Dr. Robert Tague and my other committee members, Dr. Ginesse Listi and Dr. Kathe Managan, for their insight, direction and commitment in helping me with this project. Additional thanks go to the Division of Mammals and Nicole Edmison, Museum Specialist, at the Smithsonian, National Museum of Natural History for opening their doors to me and allowing me to do this study. I would also like to thank the Department of Geography and Anthropology for awarding me the Robert C. West grant, which helped to make this research possible. I am also grateful to my friend, Anthony Reed, for lending his knowledge and expertise by being my statistical support in the early stages of this project. Also, I would like to thank my dear friends, Karen Beebe and Jacob Jesch, for their continued encouragement and support, as well as incredibly helpful editorial comments. I would also like to thank Heather Moats, for all of her encouragement over the years in regards to this project. I would like to extend a special thanks to Paul Fortenberry who has been supportive, sensitive and patient. He has seen me at my best and worst while in graduate school and in working on this project. I would like to thank him for the thoughtful “thesis fuel dinners” he prepared when I otherwise might have forgotten to eat on time. Last but certainly not least, I am forever grateful and indebted to my mother and father for their invaluable help in making my dream of graduate school a reality. Thank you, Mom and Dad, for being a constant source of encouragement through both the hard and easy times. Thank you for never giving up on me and continuing to believe in me. ii TABLE OF CONTENTS ACKNOWLEDGMENTS...............................................................................................................ii LIST OF TABLES………………………………………………………………………………..iv LIST OF FIGURES……………………………………………………………………………....vi ABSTRACT..................................................................................................................................vii CHAPTER INTRODUCTION................................................................................................................1 LITERATURE REVIEW.....................................................................................................4 Primate Teeth.................................................................................................................4 Primate Origins......................................................... ....................................................6 Contemporary Related Studies......................................................................................8 Premolar and Molar Function......................................................................................10 Old World and New World Monkey Species..............................................................11 MATERIALS AND METHODS........................................................................................13 RESULTS...........................................................................................................................18 DISCUSSION.....................................................................................................................33 REFERENCES..............................................................................................................................39 VITA..............................................................................................................................................41 iii LIST OF TABLES 1. Formulae Used to Compute Occlusal Area on Each Type of Old World Monkey and New World Monkey Tooth........................................................................................................15 2. Median Body Length and Mass.........................................................................................18 3. Summary Statistics for Occlusal Area (mm2) of Postcanine Teeth, with Results of Student’s t-Test Comparing A. palliata with Co. guereza, and Ceb. capucinus with Cer. albogularis; 2-Tailed Test of Significance (sd = standard deviation)…………………...20 4. Summary Statistics for Mesiodistal Length of Postcanine Teeth (mm), with Results of Student’s t-Test Comparing A. palliata with Co. guereza, and Ceb. capucinus with Cer. albogularis; 2-Tailed Test of Significance (sd = standard deviation)……………...……21 5. Statistics for Summed Occlusal Area (mm2) of Postcanine Teeth, with Results of Student’s t-Test Comparing A. palliata with Co. guereza, and Ceb. capucinus with Cer. albogularis; 2-Tailed Test of Significance (sd = standard deviation)…………………...22 6. Statistics for Summed Mesiodistal Length of Postcanine Teeth (mm), with Results of Student’s t-Test Comparing A. palliata with Co. guereza, and Ceb. capucinus with Cer. albogularis; 2-Tailed Test of Significance (sd = standard deviation)…………………...23 7. Mean Postcanine Occlusal Area in All Combined Maxillary and Mandibular Teeth, Right and Left Side of Jaw……………………………………………………………………..25 8. Mean Maxillary and Mandibular Occlusal Area Distribution in Old World Monkeys’ Postcanine Teeth (mm2), (percentage per type of tooth)……………………………...…26 9. Mean Maxillary and Mandibular Occlusal Area Distribution in New World Monkeys’ Postcanine Teeth (mm2), (percentage per type of tooth)…………………………….…..27 10. Mean Maxillary and Mandibular Comparison of P4 and P3 Occlusal Area (mm2), (percentage per type of tooth)……………………………………………………………28 11. Mean Occlusal Area (mm2), (percentage per type of teeth)………………………….….28 12. Mean Maxillary and Mandibular Postcanine Mesiodistal Length in Old World Monkeys (mm), (percentage per type of tooth)……………………………………………………29 13. Mean Maxillary and Mandibular Postcanine Mesiodistal Length in New World Monkeys (mm), (percentage per type of tooth)………………………………….…………………30 14. Mean Maxillary and Mandibular Postcanine Mesiodistal Length of Teeth and Contribution Per Type of Tooth, Right and Left Side of Jaw……………………...…….31 iv 15. Mean Maxillary and Mandibular Postcanine Mesiodistal Length for P4 and P3 (mm), (percentage per type of tooth)…………………………………………………………....31 16. Mean Postcanine Mesiodistal Length (mm), (percentage per type of tooth)…………….32 17. Mean Cranial and Palatal Measurements………………………………………………...32 18. Summary of Results of Student’s t-Test………………………...……………………….33 v LIST OF FIGURES 1. Maximum Cranial Length from Opisthocranion to Glabella (A. palliata skull)………..14 2. Length of the Palate from Alveolon to Point Closest to the Prosthion (Cer. albogularis skull) …………………………………………………………………………………….14 3. Measurement of the Mesiodistal Length of Third Molar (mandible from Cer. albogularis)……………………………………………………………………………....16 4. Measurements Taken on Molar for the Trapezoidal Formula (molar of Co. guereza).….16 vi ABSTRACT The purpose of this study is to discover the relationship between the number of teeth and the postcanine occlusal area and postcanine mesiodistal length in select OWM and NWM species. New World monkeys (NWM) have 12 premolars, whereas Old World monkeys (OWM) have 8. Four species are studied: Cercopithecus albogularis and Colobus guereza (OWM), and Cebus capucinus and Alouatta palliata (NWM). Two pairs of species are chosen because they are classified as having the same general folivorous and omnivorous diet: Co. guereza and A. palliata, and Cer. albogularis and Ceb. capucinus, respectively. Adult, wild caught, female specimens from the Smithsonian, National Museum of Natural History are studied. Sample sizes are as follows: 20 Co. guereza, A. palliata and Ceb. capucinus, and 14 Cer. albogularis. The null hypothesis is there will be no difference in the overall occlusal area of the premolar and molar rows between the compared species, and that the occlusal area on the premolar row will be distributed differently among OWMs’ and NWMs’ individual teeth. Results show that an extra premolar in the NWMs increases the postcanine occlusal area and postcanine mesiodistal length contributed by the premolar row to the overall postcanine row. In NWMs, premolars make up 40-50% of the postcanine mesiodistal length and occlusal area while in OWMs, the premolars
Recommended publications
  • Diagnosis and Differentiation of the Order Primates
    YEARBOOK OF PHYSICAL ANTHROPOLOGY 30:75-105 (1987) Diagnosis and Differentiation of the Order Primates FREDERICK S. SZALAY, ALFRED L. ROSENBERGER, AND MARIAN DAGOSTO Department of Anthropolog* Hunter College, City University of New York, New York, New York 10021 (F.S.S.); University of Illinois, Urbanq Illinois 61801 (A.L. R.1; School of Medicine, Johns Hopkins University/ Baltimore, h4D 21218 (M.B.) KEY WORDS Semiorders Paromomyiformes and Euprimates, Suborders Strepsirhini and Haplorhini, Semisuborder Anthropoidea, Cranioskeletal morphology, Adapidae, Omomyidae, Grades vs. monophyletic (paraphyletic or holophyletic) taxa ABSTRACT We contrast our approach to a phylogenetic diagnosis of the order Primates, and its various supraspecific taxa, with definitional proce- dures. The order, which we divide into the semiorders Paromomyiformes and Euprimates, is clearly diagnosable on the basis of well-corroborated informa- tion from the fossil record. Lists of derived features which we hypothesize to have been fixed in the first representative species of the Primates, Eupri- mates, Strepsirhini, Haplorhini, and Anthropoidea, are presented. Our clas- sification of the order includes both holophyletic and paraphyletic groups, depending on the nature of the available evidence. We discuss in detail the problematic evidence of the basicranium in Paleo- gene primates and present new evidence for the resolution of previously controversial interpretations. We renew and expand our emphasis on postcra- nial analysis of fossil and living primates to show the importance of under- standing their evolutionary morphology and subsequent to this their use for understanding taxon phylogeny. We reject the much advocated %ladograms first, phylogeny next, and scenario third” approach which maintains that biologically founded character analysis, i.e., functional-adaptive analysis and paleontology, is irrelevant to genealogy hypotheses.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Genome Sequence of the Basal Haplorrhine Primate Tarsius Syrichta Reveals Unusual Insertions
    ARTICLE Received 29 Oct 2015 | Accepted 17 Aug 2016 | Published 6 Oct 2016 DOI: 10.1038/ncomms12997 OPEN Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions Ju¨rgen Schmitz1,2, Angela Noll1,2,3, Carsten A. Raabe1,4, Gennady Churakov1,5, Reinhard Voss6, Martin Kiefmann1, Timofey Rozhdestvensky1,7,Ju¨rgen Brosius1,4, Robert Baertsch8, Hiram Clawson8, Christian Roos3, Aleksey Zimin9, Patrick Minx10, Michael J. Montague10, Richard K. Wilson10 & Wesley C. Warren10 Tarsiers are phylogenetically located between the most basal strepsirrhines and the most derived anthropoid primates. While they share morphological features with both groups, they also possess uncommon primate characteristics, rendering their evolutionary history somewhat obscure. To investigate the molecular basis of such attributes, we present here a new genome assembly of the Philippine tarsier (Tarsius syrichta), and provide extended analyses of the genome and detailed history of transposable element insertion events. We describe the silencing of Alu monomers on the lineage leading to anthropoids, and recognize an unexpected abundance of long terminal repeat-derived and LINE1-mobilized transposed elements (Tarsius interspersed elements; TINEs). For the first time in mammals, we identify a complete mitochondrial genome insertion within the nuclear genome, then reveal tarsier-specific, positive gene selection and posit population size changes over time. The genomic resources and analyses presented here will aid efforts to more fully understand the ancient characteristics of primate genomes. 1 Institute of Experimental Pathology, University of Mu¨nster, 48149 Mu¨nster, Germany. 2 Mu¨nster Graduate School of Evolution, University of Mu¨nster, 48149 Mu¨nster, Germany. 3 Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Go¨ttingen, Germany.
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Evidence for a Convergent Slowdown in Primate Molecular Rates and Its Implications for the Timing of Early Primate Evolution
    Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution Michael E. Steipera,b,c,d,1 and Erik R. Seifferte aDepartment of Anthropology, Hunter College of the City University of New York (CUNY), New York, NY 10065; Programs in bAnthropology and cBiology, The Graduate Center, CUNY, New York, NY 10016; dNew York Consortium in Evolutionary Primatology, New York, NY; and eDepartment of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved February 28, 2012 (received for review November 29, 2011) A long-standing problem in primate evolution is the discord divergences—that molecular rates were exceptionally rapid in between paleontological and molecular clock estimates for the the earliest primates, and that these rates have convergently time of crown primate origins: the earliest crown primate fossils slowed over the course of primate evolution. Indeed, a conver- are ∼56 million y (Ma) old, whereas molecular estimates for the gent rate slowdown has been suggested as an explanation for the haplorhine-strepsirrhine split are often deep in the Late Creta- large differences between the molecular and fossil evidence for ceous. One explanation for this phenomenon is that crown pri- the timing of placental mammalian evolution generally (18, 19). mates existed in the Cretaceous but that their fossil remains However, this hypothesis has not been directly tested within have not yet been found. Here we provide strong evidence that a particular mammalian group. this discordance is better-explained by a convergent molecular Here we test this “convergent rate slowdown” hypothesis in rate slowdown in early primate evolution.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Cenozoic Primates of Eastern Eurasia (Russia and Adjacent Areas) EVGENY N
    ANTHROPOLOGICAL SCIENCE Vol. 113, 103–115, 2005 Cenozoic Primates of eastern Eurasia (Russia and adjacent areas) EVGENY N. MASCHENKO1* 1Paleontological Institute, Russian Academy of Sciences, Profsouyznaya Street 123, 117995 Moscow, Russia Received 19 May 2003; accepted 7 May 2004 Abstract In the Eocene, distribution of the order Primates in the northern part of eastern Eurasia was confined to Mongolia. A form of Omomyidae (Altanius orlovi) is represented. Northern Eurasian pri- mates attributed to later times cover the interval between the Late Miocene (Late Turolian) to the Mid- dle Pleistocene (Mindel–Riss). Primates are distributed in the western part of eastern Eurasia (Moldavia, Ukraine), Transcaucasus (Georgia, Iranian Azerbaijan) and Central Asia (Tadjikistan, Afghanistan, Transbaikalian, Mongolia). The total number of known primate taxa is not large: seven genera and eleven species in three families (Omomyidae, Hominidae, Cercopithecidae). The Neogene and Pleistocene representatives of the order Primates comprise either widely distributed Eurasian forms or endemic taxa. The distribution pattern of primates in the western and eastern part of eastern Eurasia can be interpreted in relation to links with African and East Asian faunal provinces. By the Late Pleistocene all non-human representatives of the order Primates in the northern part of eastern Eurasia became extinct. Key words: Eocene, late Cenozoic, eastern Eurasia, Cercopithecoidea, Hominoidea Introduction Paleontological Institute, Russian Academy of Sciences, Moscow, Russia; GIN, Geological Institute, Russian Acad- The early history of the order Primates from the eastern emy of Sciences, Moscow, Russia; GIN U, Geological Insti- part of Eurasia reflects the restructuring of the mammalian tute Siberian Branch, Russian Academy of Sciences, Ulan- faunas of Eurasia and North America that occurred at the Ude, Russia; ZIN, Zoological Institute, Russian Academy of Paleocene–Eocene boundary at about 57 Ma.
    [Show full text]
  • The Evolution of the Platyrrhine Talus: a Comparative Analysis of the Phenetic Affinities of the Miocene Platyrrhines with Their Modern Relatives
    Journal of Human Evolution 111 (2017) 179e201 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The evolution of the platyrrhine talus: A comparative analysis of the phenetic affinities of the Miocene platyrrhines with their modern relatives * Thomas A. Püschel a, , Justin T. Gladman b, c,Rene Bobe d, e, William I. Sellers a a School of Earth and Environmental Sciences, University of Manchester, M13 9PL, United Kingdom b Department of Anthropology, The Graduate Center, CUNY, New York, NY, USA c NYCEP, New York Consortium in Evolutionary Primatology, New York, NY, USA d Departamento de Antropología, Universidad de Chile, Santiago, Chile e Institute of Cognitive and Evolutionary Anthropology, School of Anthropology, University of Oxford, United Kingdom article info abstract Article history: Platyrrhines are a diverse group of primates that presently occupy a broad range of tropical-equatorial Received 8 August 2016 environments in the Americas. However, most of the fossil platyrrhine species of the early Miocene Accepted 26 July 2017 have been found at middle and high latitudes. Although the fossil record of New World monkeys has Available online 29 August 2017 improved considerably over the past several years, it is still difficult to trace the origin of major modern clades. One of the most commonly preserved anatomical structures of early platyrrhines is the talus. Keywords: This work provides an analysis of the phenetic affinities of extant platyrrhine tali and their Miocene New World monkeys counterparts through geometric morphometrics and a series of phylogenetic comparative analyses. Talar morphology fi Geometric morphometrics Geometric morphometrics was used to quantify talar shape af nities, while locomotor mode per- Locomotor mode percentages centages (LMPs) were used to test if talar shape is associated with locomotion.
    [Show full text]
  • Phylogenetic Systematics of the Primate Genus Aotus Based on Hyoid Morphology
    Illinois Wesleyan University Digital Commons @ IWU Honors Projects Biology 4-18-1997 Phylogenetic Systematics of the Primate Genus Aotus Based on Hyoid Morphology Melissa S. Immel '97 Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/bio_honproj Part of the Biology Commons Recommended Citation Immel '97, Melissa S., "Phylogenetic Systematics of the Primate Genus Aotus Based on Hyoid Morphology" (1997). Honors Projects. 14. https://digitalcommons.iwu.edu/bio_honproj/14 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. on Hyoid Morphology .ed Abstract Dissection of a specimen of the South American primate genus Aotus was performed, focusing on the morphology of the hyoid apparatus and surrounding musculature within the hyoid region (the ventral side of the throat). Data collected from this dissection, along with data from published descriptions of primate genera from both primate suborders Haplorhini and Strepsirhini, were analyzed using the computer software program PAUP (Phylogenetic Analysis Using Parsimony).
    [Show full text]
  • Knowledge of the Evolution of African Paleogene Mammals
    Knowledge of the évolution of African Paleogene mammals Contribution of the Bir El Ater locality (Eocène, Algeria) Rodolphe Tabuce Brigitte Coiffait Philippe-Emmanuel Coiffait Mohamed Mahboubi Jean-Jacques Jaeger 1 1 Introduction: The Early African Paleogene mammals The African fossil record of therians begins with the Early Cretaceous ofthe Middle Atlas (Morocco) (Sigogneau-Russell, 1991); however, the modem mammalian orders appear only during the early Tertiary in North Africa (figure 1A). The Paleocene and Ypresian localities from the Ouarzazate Basin (Morocco) hâve yielded mammalian faunas with possible creodonts, « insectivores » (paleoryctids, todralestids and adapisoriculids) (Gheerbrant, 1992, 1994, 1995), the oldest représentative ofeupri- mates (Sigé et al, 1990) and archaic ungulates (Sudre et al, 1993). Recently, the discovery of Phosphatherium (Proboscidea) in J\) .... Ypresian Early to Mlddla Mlddlalo Lata C> mlcldla BOCena eocena Ialaeocene eocena "III N'Tagourt2 ElKohol GllbZagdou GourLazib Chambl lnTaliclel M'Bodlone Bir el Ater DoralTalha Qaar (Moroc:co) (Algerla) (Algerla) (Algerla) (Tunlala) and (Sanagal) (Algarla) ·Evaporlt e1Sagha lamagullell Unit· (Fayum, (Mali) (LIbye) Egypt) Matatharla Kassarinolherium tunisiansa Creodonta Koholis gen. el sp. Aprarodon stlasansa indet Hyaanodon Carnlvora Glibzagdouis I8balbslsensis Condylarthra Condyfarthra Condylarthra Inda!. Inda!. Artlodaetyla cl.Bolhrio- ganys sp. Proboscldell KhSmsBcornJS Numidotherium Moerilharium Moenlherium Moarilherium 8srytherium 8srythenum buJbosus
    [Show full text]
  • Evidence for an Asian Origin of Stem Anthropoids
    Evidence for an Asian origin of stem anthropoids Richard F. Kay1 Department of Evolutionary Anthropology, Duke University, Durham, NC 27708-03083 n PNAS, Chaimanee et al. (1) report Genetic, embryological, and anatomical We are not there yet. Recent comprehen- a previously undescribed species of evidence demonstrates that the sister sive phylogenetic analyses stemming from I primate, Afrasia, from the late Middle group of Anthropoidea is the south Asian virtually the same datasets yield somewhat Eocene of Burma. They identify tarsier, with the two forming the crown different cladograms that reflect sensitivity Afrasia as the sister taxon to the African group Haplorhini (6–8). The other clade of to which taxa are included in the analysis genus Afrotarsius but slightly more primitive extant primates is the lemurs and lorises, and which sets of analytical assumptions are than it and allied with stem Anthropoidea called Strepsirrhini. Eocene Holarctic selected. Pertinent to the biogeographic of south Asia. Anthropoidea is the taxo- Omomyoidea are generally considered as conclusions of Chaimanee et al. (1), Seiffert nomic group that today includes New and stem haplorhines, although the precise et al. (11) conclude that Afrotarsius cha- Old World monkeys, apes, and humans. If relationship of omomyoids to tarsiers and trathi [a younger species than the one that upheld, the biogeographic significance of anthropoids is uncertain (8). Tarsius often Chaimanee et al. (1) describe] is an African these results is profound: If Afrasia and is considered to be a relictual omomyoid tarsioid. If Seiffert et al. (11) are correct, Afrotarsius are as closely related as Chai- in south Asia.
    [Show full text]