Rapid Laurasian Diversification of a Pantropical Bird Family During The

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Laurasian Diversification of a Pantropical Bird Family During The Ibis (2020), 162, 137–152 doi: 10.1111/ibi.12707 Rapid Laurasian diversification of a pantropical bird family during the Oligocene–Miocene transition CARL H. OLIVEROS,1,2* MICHAEL J. ANDERSEN,3 PETER A. HOSNER,4,7 WILLIAM M. MAUCK III,5,6 FREDERICK H. SHELDON,2 JOEL CRACRAFT5 & ROBERT G. MOYLE1 1Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA 2Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA 3Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA 4Division of Birds, Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC, USA 5Department of Ornithology, American Museum of Natural History, New York, NY, USA 6New York Genome Center, New York, NY, USA 7Natural History Museum of Denmark and Center for Macroecology, Evolution, and Climate; University of Copenhagen, Copenhagen, Denmark Disjunct, pantropical distributions are a common pattern among avian lineages, but dis- entangling multiple scenarios that can produce them requires accurate estimates of his- torical relationships and timescales. Here, we clarify the biogeographical history of the pantropical avian family of trogons (Trogonidae) by re-examining their phylogenetic rela- tionships and divergence times with genome-scale data. We estimated trogon phylogeny by analysing thousands of ultraconserved element (UCE) loci from all extant trogon gen- era with concatenation and coalescent approaches. We then estimated a time frame for trogon diversification using MCMCTree and fossil calibrations, after which we performed ancestral area estimation using BioGeoBEARS. We recovered the first well-resolved hypothesis of relationships among trogon genera. Trogons comprise three clades, each confined to one of three biogeographical regions: Africa, Asia and the Neotropics, with the African clade sister to the others. These clades diverged rapidly during the Oligo- cene-Miocene transition. Our biogeographical analyses identify a Eurasian origin for stem trogons and a crown clade arising from ancestors broadly distributed across Laurasia and Africa. The pantropical ranges of trogons are relicts of a broader Afro-Laurasian distribu- tion that was fragmented across Africa, Asia and the New World in near coincident fash- ion during the Oligocene‐Miocene transition by global cooling and changing habitats along the Beringian land bridge and North Africa. Keywords: Beringian land bridge, historical biogeography, pantropical distribution, Trogonidae, ultraconserved elements. The occurrence of the disjunct pantropical biota disjunct distributions across the Old and New has been of wide interest to ornithologists. The Worlds. This hypothesis ascribes disjunct distribu- Boreotropics hypothesis (Wolfe 1975, Tiffney tions to a Laurasian origin in the early/middle 1985), which was borne out by studies of plant Palaeocene, during which lineages attained a broad taxa and their fossils but has since been invoked in distribution under favourable tropical and sub-tro- animal groups (e.g. Sanmartın et al. 2001), repre- pical climatic conditions and suitable land connec- sented a major advance in our understanding of tions across Laurasia before subsequently becoming isolated by high-latitude climatic deteri- oration and the severing of continental land *Corresponding author. Email: [email protected] bridges. The Boreotropics hypothesis provides a Twitter: @carlholiveros framework that describes the divergence of plant © 2019 British Ornithologists’ Union 138 C. H. Oliveros et al. and animal lineages across the North Atlantic Reconstructing the early biogeographical history (Lavin & Luckow 1993, Sanmartın et al. 2001) of the trogons has been a major challenge, even and Beringia (Beard 1998, Donoghue et al. 2001, with DNA sequence data. The trogons, in the Beard et al. 2016) and has even been invoked to family Trogonidae, consist of 43 species in seven explain an Africa–South America disjunction of an genera distributed throughout much of the Old angiosperm clade (Davis et al. 2002). Although World and New World tropics (Dickinson & Rem- the large-scale geographical and climatic events sen 2013; Fig. 1). Diversity is greatest in the New driving diversification are the same for all groups, World (29 species), followed by Asia (12 species) the pattern and timing of divergence in individual and Africa (three species). Trogons are generally lineages vary; thus, an accurate estimate of phy- considered poor long-distance dispersers, although logeny and divergence times for each lineage is some species exhibit seasonal movements and one essential for deciphering various patterns and indi- species has colonized the oceanic Philippine vidual causes of their spatial history (Donoghue islands. Multiple, conflicting biogeographical histo- et al. 2001, Sanmartın et al. 2001), and ultimately ries have been proffered for the group because of for understanding the development of modern differences in phylogenetic estimates (Espinosa de pantropical biota. los Monteros 1998, Johansson & Ericson 2005, Independent of the Boreotropics hypothesis, Moyle 2005, Ornelas et al. 2009, Hosner et al. many tropical avian lineages are considered relicts 2010). For instance, some studies recovered dis- of ancestors with broader distributions in Laurasia tinct clades of African, Asian and Neotropical taxa in the Palaeocene (Olson 1985, Blondel & Mourer- (Espinosa de los Monteros 1998, Johansson & Eric- Chauvire 1998, Feduccia 2003). These relicts son 2005, Ornelas et al. 2009), whereas others include: mousebirds (Coliiformes); the cuckoo suggested paraphyly of the Neotropical taxa roller (Leptosomiformes); hornbills (Buceroti- (Moyle 2005, Hosner et al. 2010). These conflicts formes); rollers and allies (Coraciiformes); wood- probably resulted from the use of a few, different peckers and allies (Piciformes); and trogons molecular markers, each supporting different (Trogoniformes). All of these bird groups have been topologies or providing little or no branch resolu- traditionally considered members of the ‘higher tion. Support for intergeneric relationships was non-passerines’ (Sibley & Alqhuist 1972) and have low in all the studies except one (Ornelas et al. recently been found to constitute a major clade of 2009), in which Bayesian posterior probabilities land birds, the Coraciimorphae (Jarvis et al. 2014, were high (100%) but maximum likelihood boot- Prum et al. 2015). Coliiformes and Leptosomi- strap values were < 50%. Moreover, with the formes, groups currently confined to Africa and exception of Hosner et al. (2010), previous work Madagascar, respectively, had much wider distribu- did not include the distinctive Asian genus Apal- tions in North America and Europe during the harpactes, whose placement with other Asian tro- Eocene based on the fossil record (Weidig 2006, gons was equivocal. Ksepka & Clarke 2009). Bucerotiformes at present The difficulty in resolving trogon phylogeny occur in the Old World tropics, but hornbill fossils stems from two factors. First, the base of the tro- are known from the Eocene and Miocene of Europe. gon tree is characterized by short successive Coraciiformes, Piciformes (including barbets) and internodes, indicating a rapid initial burst of lin- Trogoniformes, each of which has a contemporary eage formation. Phylogenies with such a structure pantropical distribution, had broader distributions are difficult to resolve with limited data, as in all in the Cenozoic. Eocene/Oligocene coraciiform fos- previous studies of trogons, because of the low sils are known from Europe; piciforms are known probability of informative substitutions occurring from the Eocene of North America and the Mio- along these short internodes (Lanyon 1988) and cene of Europe (Brodkorb 1971); and trogoniform the high probability of gene tree discordance fossils are known from the Palaeogene of Europe (Degnan & Rosenberg 2006). Secondly, trogons (Kristoffersen 2002, Mayr 2005, 2009). Among have no close, living sister-group to break up the these groups, trogons have been the subject of espe- long branch leading to their rapid radiation cially intense phylogenetic and biogeographical (Johansson & Ericson 2005, Moyle 2005, Hackett study (Espinosa de los Monteros 1998, Johansson & et al. 2008, Prum et al. 2015). This long branch, Ericson 2005, Moyle 2005, DaCosta & Klicka 2008, combined with subsequent short internodes at the Ornelas et al. 2009, Hosner et al. 2010). base of the trogon clade, obfuscates the root of © 2019 British Ornithologists’ Union Laurasian diversification of trogons 139 Otus elegans Colius striatus Leptosomus discolor Ceyx argentatus Upupa epops 100/-/97/80 Berenicornis comatus 100/-/100/100 Apaloderma aequatoriale ca i r f Apaloderma vittatum Africa A Apalharpactes mackloti Trogoniformes 78/81/65/86 Harpactes oreskios Harpactes ardens Asia 100/100/99/97 Harpactes erythrocephalus Euptilotis neoxenus Pharomachrus antisianus s c i Priotelus temnurus p o r t Priotelus roseigaster o e Trogon personatus N Neotropics Trogon violaceus Cret. Paleocene0.6 Eocene Oligocene0.3 0.2 Miocene 0.1 Pli. Pl. 70 60 50 40 30 20 10 0 Ma Beringian Land Bridge N. Atlantic Land Bridge Africa-Eurasia Land Bridge 25 20 15 (Temperature °C) (Temperature 10 70 60 50 40 30 20 10 0 Ma Figure 1. Estimate of phylogenetic relationships of trogons based on concatenated and coalescent approaches. Nodes with dots correspond to 100% bootstrap support
Recommended publications
  • Fruits and the Ecology of Resplendent Quetzals
    FRUITS AND THE ECOLOGY OF RESPLENDENT QUETZALS NATHANIEL T. WHEELWRIGHT 1 Departmentof Zoology,University of Washington,Seattle, Washington 98195 USA ABsTR^CT.--ResplendentQuetzals (Pharomachrus rnocinno) are typicallytermed "special- ized" fruit-eatingbirds, althoughthere are few data describingthe breadthof their diet or the characteristicsof the fruits they select.In fact, there is no generalconsensus about the meaning or consequencesof being a fruit specialist. In the lower montane forests at Monteverde,Costa Rica, quetzalsfeed on a minimum of 12-18 speciesof fruits at most timesof the year and on an annualtotal of at least41 species.Although their diet includes the watery,small-seeded berries of many second-growthplants, they depend mostly on the largedrupes of about18 speciesin the laurelfamily (Lauraceae).The phenologiesand habitat distributionsof the Lauraceaeappear to dictatethe timing and directionof seasonalmove- mentsby quetzals.Mutual dependenceand, possibly,general coevolution between quetzals and the lauraceoustrees whose seeds they disperseare suggestedby the birds' morphology, distribution, behavior, and life history. Nestling quetzalsare broughtentire fruits as early as the secondday after hatching. Thereafter,they consumegradually increasing amounts of fruit, but, even immediately beforethey fledge,most of their diet consistsof insects,snails, and lizards.Brooding drops off rapidly by the time chicksare 9 days old. Considerablevariation in broodingduration, parentalsex roles, and nestlingdiet existsbetween nests, however, and apparentlybetween dutches. Adults take far less time to deliver fruits to nestlingsthan to deliver insectsor lizards, which reflectsthe relativeease of "capturing"ripe fruits (asopposed to animal prey) during the breeding season.The male parent delivered significantlymore insectsand food items in generalthan did the female at a first-dutchnest but not at a second-clutchnest.
    [Show full text]
  • Birdlife International for the Input of Analyses, Technical Information, Advice, Ideas, Research Papers, Peer Review and Comment
    UNEP/CMS/ScC16/Doc.10 Annex 2b CMS Scientific Council: Flyway Working Group Reviews Review 2: Review of Current Knowledge of Bird Flyways, Principal Knowledge Gaps and Conservation Priorities Compiled by: JEFF KIRBY Just Ecology Brookend House, Old Brookend, Berkeley, Gloucestershire, GL13 9SQ, U.K. June 2010 Acknowledgements I am grateful to colleagues at BirdLife International for the input of analyses, technical information, advice, ideas, research papers, peer review and comment. Thus, I extend my gratitude to my lead contact at the BirdLife Secretariat, Ali Stattersfield, and to Tris Allinson, Jonathan Barnard, Stuart Butchart, John Croxall, Mike Evans, Lincoln Fishpool, Richard Grimmett, Vicky Jones and Ian May. In addition, John Sherwell worked enthusiastically and efficiently to provide many key publications, at short notice, and I’m grateful to him for that. I also thank the authors of, and contributors to, Kirby et al. (2008) which was a major review of the status of migratory bird species and which laid the foundations for this work. Borja Heredia, from CMS, and Taej Mundkur, from Wetlands International, also provided much helpful advice and assistance, and were instrumental in steering the work. I wish to thank Tim Jones as well (the compiler of a parallel review of CMS instruments) for his advice, comment and technical inputs; and also Simon Delany of Wetlands International. Various members of the CMS Flyway Working Group, and other representatives from CMS, BirdLife and Wetlands International networks, responded to requests for advice and comment and for this I wish to thank: Olivier Biber, Joost Brouwer, Nicola Crockford, Carlo C. Custodio, Tim Dodman, Roger Jaensch, Jelena Kralj, Angus Middleton, Narelle Montgomery, Cristina Morales, Paul Kariuki Ndang'ang'a, Paul O’Neill, Herb Raffaele and David Stroud.
    [Show full text]
  • Borneo: Broadbills & Bristleheads
    TROPICAL BIRDING Trip Report: BORNEO June-July 2012 A Tropical Birding Set Departure Tour BORNEO: BROADBILLS & BRISTLEHEADS RHINOCEROS HORNBILL: The big winner of the BIRD OF THE TRIP; with views like this, it’s easy to understand why! 24 June – 9 July 2012 Tour Leader: Sam Woods All but one photo (of the Black-and-yellow Broadbill) were taken by Sam Woods (see http://www.pbase.com/samwoods or his blog, LOST in BIRDING http://www.samwoodsbirding.blogspot.com for more of Sam’s photos) 1 www.tropicalbirding.com Tel: +1-409-515-0514 E-mail: [email protected] TROPICAL BIRDING Trip Report: BORNEO June-July 2012 INTRODUCTION Whichever way you look at it, this year’s tour of Borneo was a resounding success: 297 bird species were recorded, including 45 endemics . We saw all but a few of the endemic birds we were seeking (and the ones missed are mostly rarely seen), and had good weather throughout, with little rain hampering proceedings for any significant length of time. Among the avian highlights were five pitta species seen, with the Blue-banded, Blue-headed, and Black-and-crimson Pittas in particular putting on fantastic shows for all birders present. The Blue-banded was so spectacular it was an obvious shoe-in for one of the top trip birds of the tour from the moment we walked away. Amazingly, despite absolutely stunning views of a male Blue-headed Pitta showing his shimmering cerulean blue cap and deep purple underside to spectacular effect, he never even got a mention in the final highlights of the tour, which completely baffled me; he simply could not have been seen better, and birds simply cannot look any better! However, to mention only the endemics is to miss the mark, as some of the, other, less local birds create as much of a stir, and can bring with them as much fanfare.
    [Show full text]
  • Introduction
    Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H.
    [Show full text]
  • Climatic Shifts Drove Major Contractions in Avian Latitudinal Distributions Throughout the Cenozoic
    Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic Erin E. Saupea,1,2, Alexander Farnsworthb, Daniel J. Luntb, Navjit Sagooc, Karen V. Phamd, and Daniel J. Fielde,1,2 aDepartment of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom; bSchool of Geographical Sciences, University of Bristol, Clifton, BS8 1SS Bristol, United Kingdom; cDepartment of Meteorology, Stockholm University, 106 91 Stockholm, Sweden; dDivision of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125; and eDepartment of Earth Sciences, University of Cambridge, CB2 3EQ Cambridge, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 7, 2019 (received for review March 8, 2019) Many higher level avian clades are restricted to Earth’s lower lati- order avian historical biogeography invariably recover strong evi- tudes, leading to historical biogeographic reconstructions favoring a dence for an origin of most modern diversity on southern land- Gondwanan origin of crown birds and numerous deep subclades. masses (2, 6, 11). However, several such “tropical-restricted” clades (TRCs) are repre- The crown bird fossil record has unique potential to reveal sented by stem-lineage fossils well outside the ranges of their clos- where different groups of birds were formerly distributed in deep est living relatives, often on northern continents. To assess the time. Fossil evidence, for example, has long indicated that total- drivers of these geographic disjunctions, we combined ecological group representatives of clades restricted to relatively narrow niche modeling, paleoclimate models, and the early Cenozoic fossil geographic regions today were formerly found in different parts of record to examine the influence of climatic change on avian geo- – graphic distributions over the last ∼56 million years.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Indonesia Highlights of Western Indonesia (Flores, Komodo, Bali, Java & Sumatra) 15Th to 28Th July 2019 (14 Days)
    Indonesia Highlights of Western Indonesia (Flores, Komodo, Bali, Java & Sumatra) 15th to 28th July 2019 (14 days) Trip Report Javan Banded Pitta by Glen Valentine Trip report compiled by Tour Leader: Glen Valentine Top 10 list as voted for by the tour participants: 1. Javan Trogon 2. Red-crowned Barbet 3. Green Broadbill 4. Javan Frogmouth 5. Buffy Fish Owl 6. Pygmy Cupwing 7. Rufous-collared Kingfisher 8. Javan Banded Pitta 9. Red-bearded Bee-eater 10. Bali Myna Bali Myna (Starling) by Dennis Braddy Tour Summary… This short but extremely productive and varied tour, covering a fine selection of hand-picked “top birding sites and destinations” throughout Western Indonesia was an immense success, once again and was an absolute joy to lead due to our enthusiastic, fun and very good-natured group. Our quick-fire, two-week tour of western Indonesia, kicked off in Denpasar, on the island of Bali where we all met up at the Harris Hotel for an introductory dinner and flight the following morning to the island of Flores, situated in Nusa Tenggara (The Lesser Sundas), a chain of islands running mostly east/west to the east of Wallace’s line, therefore having a distinctly Australasian flair about their avifauna. After arriving in the large, coastal town of Labuan Bajo, the gateway to the popular and famous Komodo Island, we boarded our minibus and began the windy drive east, up into the hills, towards our first biding locality of the tour, the forest reserve of Puarlolo. This small reserve was initially set aside to protect the endemic and highly threatened Flores Monarch that was only discovered from this area as recently as 1971 and is still only known from a few scattered localities in the sub-montane forest on Flores.
    [Show full text]
  • BIRDS of HALIMUN-SALAK NATIONAL PARK, WEST JAVA, INDONESIA: Saitou, N
    Treubia 43: 31–46, December 2016 Treubia 43: 47–70, December 2016 BIRDS OF HALIMUN-SALAK NATIONAL PARK, WEST JAVA, INDONESIA: Saitou, N. & M. Nei 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425. ENDEMISM, CONSERVATION AND THREATENED STATUS Simmons, N.B. 2005. Order Chiroptera. In: Wilson, D.E. & D.M. Reeder (eds.). Mammal Species of the Dewi M. Prawiradilaga World: A Taxonomic and Geographic Reference. Baltimore: John Hopkins University Press. pp. 312- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences (LIPI) 529. Jl. Raya Jakarta-Bogor Km 46 Cibinong 16911, Indonesia e-mail: [email protected] Suyanto, A. 2001. Kelelawar di Indonesia. Bogor: Lembaga Ilmu Pengetahuan Indonesia. 126 pp. Temminck, C.J. 1827 (1824)-1841. Monographies de Mammalogie, ou description de quelques genres de Received: 8 August 2016; Accepted: 5 December 2016 mammiferes, dont les espèces ont été observées dans les différens musées de l’Europe. C.C. Vander Hoek, Leiden, 392 pp. ABSTRACT Thompson, J.D., T.J. Gibson & F. Plewniak 1997. The Clustal X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by the Quality Analysis Tools. Nucleic Acids Research, 24: Bird surveys and long-term bird monitoring in Gunung Halimun-Salak National Park were 4876-4882. conducted between 1998 and 2009 to obtain comprehensive data on the bird species in the area. Compilation of bird data from this study and other studies have recorded a total of 271 species, which is about 53.4% of van Strien, N.J. 1986. Abbreviated checklist of the mammals of the Australian Archipelago.
    [Show full text]
  • Bontebok Birds
    Birds recorded in the Bontebok National Park 8 Little Grebe 446 European Roller 55 White-breasted Cormorant 451 African Hoopoe 58 Reed Cormorant 465 Acacia Pied Barbet 60 African Darter 469 Red-fronted Tinkerbird * 62 Grey Heron 474 Greater Honeyguide 63 Black-headed Heron 476 Lesser Honeyguide 65 Purple Heron 480 Ground Woodpecker 66 Great Egret 486 Cardinal Woodpecker 68 Yellow-billed Egret 488 Olive Woodpecker 71 Cattle Egret 494 Rufous-naped Lark * 81 Hamerkop 495 Cape Clapper Lark 83 White Stork n/a Agulhas Longbilled Lark 84 Black Stork 502 Karoo Lark 91 African Sacred Ibis 504 Red Lark * 94 Hadeda Ibis 506 Spike-heeled Lark 95 African Spoonbill 507 Red-capped Lark 102 Egyptian Goose 512 Thick-billed Lark 103 South African Shelduck 518 Barn Swallow 104 Yellow-billed Duck 520 White-throated Swallow 105 African Black Duck 523 Pearl-breasted Swallow 106 Cape Teal 526 Greater Striped Swallow 108 Red-billed Teal 529 Rock Martin 112 Cape Shoveler 530 Common House-Martin 113 Southern Pochard 533 Brown-throated Martin 116 Spur-winged Goose 534 Banded Martin 118 Secretarybird 536 Black Sawwing 122 Cape Vulture 541 Fork-tailed Drongo 126 Black (Yellow-billed) Kite 547 Cape Crow 127 Black-shouldered Kite 548 Pied Crow 131 Verreauxs' Eagle 550 White-necked Raven 136 Booted Eagle 551 Grey Tit 140 Martial Eagle 557 Cape Penduline-Tit 148 African Fish-Eagle 566 Cape Bulbul 149 Steppe Buzzard 572 Sombre Greenbul 152 Jackal Buzzard 577 Olive Thrush 155 Rufous-chested Sparrowhawk 582 Sentinel Rock-Thrush 158 Black Sparrowhawk 587 Capped Wheatear
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • The Birds of the Dar Es Salaam Area, Tanzania
    Le Gerfaut, 77 : 205–258 (1987) BIRDS OF THE DAR ES SALAAM AREA, TANZANIA W.G. Harvey and KM. Howell INTRODUCTION Although the birds of other areas in Tanzania have been studied in detail, those of the coast near Dar es Salaam have received relatively little recent attention. Ruggles-Brise (1927) published a popular account of some species from Dar es Salaam, and Fuggles-Couchman (1939,1951, 1953, 1954, 1962) included the area in a series of papers of a wider scope. More recently there have been a few other stu­ dies dealing with particular localities (Gardiner and Gardiner 1971), habitats (Stuart and van der Willigen 1979; Howell 1981), or with individual species or groups (Harvey 1971–1975; Howell 1973, 1977). Britton (1978, 1981) has docu­ mented specimens collected in the area previous to 1967 by Anderson and others. The purpose of this paper is to draw together data from published reports, unpu­ blished records, museum specimens and our own observations on the frequency, habitat, distribution and breeding of the birds of the Dar es Salaam area, here defi­ ned as the portion of the mainland within a 64-km radius of Dar es Salaam, inclu­ ding the small islands just offshore (Fig. 1). It includes Dar es Salaam District and portions of two others, Kisarawe and Bagamoyo. Zanzibar has been omitted because its unusual avifauna has been reviewed (Pakenham 1979). Most of the mainland areas are readily accessible from Dar es Salaam by road and the small islands may be reached by boat. The geography of the area is described in Sutton (1970).
    [Show full text]