Biopharmaceutical Approaches for Improved Drug Delivery Across Ocular Barriers

Total Page:16

File Type:pdf, Size:1020Kb

Biopharmaceutical Approaches for Improved Drug Delivery Across Ocular Barriers University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2011 Biopharmaceutical approaches for improved drug delivery across ocular barriers Ketan Hippalgaonkar University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Hippalgaonkar, Ketan, "Biopharmaceutical approaches for improved drug delivery across ocular barriers" (2011). Electronic Theses and Dissertations. 1484. https://egrove.olemiss.edu/etd/1484 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. BIOPHARMACEUTICAL APPROACHES FOR IMPROVED DRUG DELIVERY ACROSS OCULAR BARRIERS A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Pharmaceutics The University of Mississippi by KETAN HIPPALGAONKAR July 2011 Copyright Ketan Hippalgaonkar 2011 ALL RIGHTS RESERVED ABSTRACT The eye is protected from the external environment by various physiological and anatomical barriers. These barriers through there protective actions drastically diminish the ocular bioavailability of drugs. The corneal epithelium acts as a major barrier towards the permeation of hydrophilic agents, whereas poor aqueous solubility presents a formulation challenge for lipophilic compounds. Additionally, P-glycoprotein (P-gp) expressed on the retinal pigmented epithelium (RPE P-gp) limits the penetration of substrates, in therapeutically relevant concentrations, into the back-of-the-eye. In the present research, use of penetration enhancers (chitosan, benzalkonium chloride (BAK) and ethylenediaminetetraacetic acid (EDTA)) and formulation approaches (cyclodextrins and solid lipid nanoparticles (SLNs)) were evaluated in terms of their ability to improve the ocular bioavailability of hydrophilic and lipophilic compounds, respectively. A novel approach, localized modulation of RPE P-gp using topically co-administered P-gp inhibitors, was investigated to improve the back-of-the eye delivery of P-gp substrates. In vitro transcorneal permeation results demonstrated that chitosan brought about a dose dependent increase in the permeability of acyclovir, a model hydrophilic compound. Combination of chitosan, BAK and EDTA resulted in a synergistic effect on the permeation of acyclovir. Dramatic increase in aqueous solubility, stability and in vitro transcorneal permeability of delta-8-tetrahydrocannabinol, a model lipophilic agent, was observed in the presence of 2-Hydroxypropyl-β-cyclodextrin (HP βCD), randomly methylated-β-cyclodextrin and ii sulfobutylether-β-cyclodextrin. The indomethacin loaded SLN (IN-SLNs) formulation was physically stable following sterilization and on storage. The IN-SLNs formulation increase stability and in vitro corneal permeability of indomethacin in comparison to the solution formulations (cosolvent and HP βCD based) tested. Furthermore, for the first time, studies in anesthetized male New Zealand rabbits demonstrate that topically applied P-gp inhibitors can diffuse to the RPE and alter the elimination kinetics of a systemically or intravtireally administered P-gp substrate, probably through inhibition of the basolateral RPE P-gp. The degree of inhibition was found to be dependent on the physicochemical characteristics of the inhibitor and its affinity for P-gp and the concentration of the therapeutic agent in the plasma or in the vitreous humor. Formulation factors such as inclusion of permeation enhancers may play a major role in yielding effective levels of the inhibitor at the RPE. iii DEDICATION This dissertation is dedicated to my parents Uday Kumar Hippalgaonkar and Sanjivani Hippalgaonkar. I would not have reached this milestone without their unending encouragement, patience, support, understanding and love. This dissertation is also dedicated to my lovely wife Swetha Mahalaxmi for being my oxygen and strength. iv ACKNOWLEDGMENTS Obtaining a Ph.D. degree could not be realized without my advisor Dr. Soumyajit Majumdar. His expertise, intellectual support and professional guidance were imperative for this work. I thank him dearly for his encouragement, patience, understanding and support throughout my graduate studies. I am truly grateful and indebted to him for his help and attention towards my academic and personal requests. Thank you for being my advisor! I express my heartfelt gratitude to my dissertation committee members Dr. Michael A. Repka, Dr. John S. Williamson and Dr. Walter G. Chambliss for their valuable time, guidance, suggestions and help during the evaluation of this dissertation. I extend my thanks to Dr. S. Narasimha Murthy, Dr. Bonnie A. Avery, Dr. Seongbong Jo and Dr. Christy M. Wyandt for making the experience at Ole Miss worthwhile, Ms. Deborah King for her help, patience and affection. I also thank the support and technical help extended by Dr. Harry Fyke and Ms. Penni Bolton during animal experiments. I thank all graduate students at Department of Pharmaceutics for their support and for making my stay at Ole Miss memorable. I profusely thank my colleagues and friends, especially Ramesh Srirangam and Tushar Hingorani for being such a great support and fun to work with. I also thank them for their help during experimental work and during my stay at Ole Miss. Special thanks to my lovely little sister and colleague Kanchan Hippalgaonkar for her love, moral v support, and encouragement. Working with her during this dissertation was special, fun and memorable. My warmest thanks to my wife Swetha Mahalaxmi, the support, encouragement, inspiration, love and strength that she has provided me is priceless. The years I spent pursuing my Ph.D. degree would have been more strenuous, less delightful and unsatisfactory without her. Thank you so much! I specially fall short of words to thank my brother Bipin Hippalgaonkar. He has been my inspiration, strength and moral support. Without his support, encouragement and sacrifices I would not have attended Ole Miss. Thank you for everything! Most importantly I thank my parents Uday Kumar Hippalgaonkar and Sanjivani Hippalgaonkar for their unyielding encouragement, patience, moral support and guidance. Thank you Aai and Baba! vi TABLE OF CONTENTS Chapter Page 1. Review of Literature _____________________________________________________ 1 2. Aims of the Study ______________________________________________________ 55 3. Effect of Chitosan, Benzalkonium Chloride and Ethylenediaminetetraacetic acid on Transcorneal Permeation of Acyclovir ______________________________________ 57 4. Effect of Modified Cyclodextrins on Solubility, Stability and Transcorneal Permeability of Delta-8-Tetrahydrocannabinol __________________________________________ 76 5. Indomethacin Loaded Solid Lipid Nanoparticles for Ocular Delivery: Development, Optimization and in vitro evaluation ______________________________________ 102 6. Effect of Topically Co-administered P-gp Substrates/Modulators on Vitreal Kinetics of intravitreally administered Quinidine in Rabbits _____________________________ 171 7. Interaction between Topically and Systemically Co-administered P-glycoprotein Substrates/Inhibitors: Effect on Vitreal Kinetics _____________________________ 204 8. References ___________________________________________________________ 237 9. Vita ________________________________________________________________ 253 vii LIST OF TABLES Table Page 1-1: Site of Application of Transscleral Injections. ...................................................................... 30 1-2: Trade name, manufacturer and physiochemical description of some of the solid lipids used in the present study .............................................................................................................. 46 4-1: Container types, capacity and approximate nominal and fill volumes in the binding studies……………………………………………………………………………………...81 4-2: Loss of ∆8 THC in different containers at two different concentrations. .............................. 87 4-3: Effect of pH on the degradation of ∆8-THC in the absence or in the presence of CDs. ...... 89 2 4-4: Slope, apparent stability constant (K 1:1 ) and correlation coefficient (R ) determined from the ∆8-THC: HP βCD, ∆8-THC: RM βCD and ∆8-THC: S βCD aqueous phase solubility diagrams. .............................................................................................................................. 94 5-1: Coded and actual values of factors used in Face Centered central composite design (FCCD). ............................................................................................................................................ 112 5-2: Experimental runs generated by Design Expert software and the observed responses in face centered central composite design for optimization of IN-SLNs. ..................................... 113 5-3: Analysis of variance results of different models for each response. ................................... 128 5-4: Fitted Quadratic model equations for particle size (Y 1), entrapment efficiency (Y 2), and zeta potential (Y 3) as the responses. .......................................................................................... 128 viii 5-5: Analysis of variance results of fitted quadratic model for particle size response (Y 1) ...... 129 5-6: Analysis of
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]
  • Vincent H.L. Lee, Ph.D., D.Sc
    CURRICULUM VITAE Vincent H.L. Lee, Ph.D., D.Sc. Table of Contents BIOGRAPHICAL SKETCH ....................................................................................................................... 2 PERSONAL INFORMATION .................................................................................................................... 3 EDUCATION: .............................................................................................................................................. 3 PROFESSIONAL EXPERIENCE: ............................................................................................................. 3 PROFESSIONAL/HONORARY SOCIETIES: ......................................................................................... 4 COMMITTEE MEMBERSHIPS: .............................................................................................................. 5 The Chinese University of Hong Kong, School of Pharmacy .................................................................... 5 University of Southern California, School of Pharmacy ............................................................................ 6 University of Southern California, University-wide ................................................................................... 7 Professional Societies ................................................................................................................................. 7 Others ......................................................................................................................................................
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Single-Isomer Science: the Phenomenon and Its Te Rm I N O L O G Y by Joseph Gal, Phd
    Academic Supplement Single-Isomer Science: The Phenomenon and Its Te rm i n o l o g y By Joseph Gal, PhD ABSTRACT For more detailed information, the reader is re f e rred to text- Single-isomer drugs are of great importance in modern books of basic organic chemistry; advanced treatments of therapeutics. In this article, the basics of the underlying the subject are also available, including an excellent mono- phenomenon are explained. Some molecules are chiral, ie, g r a p h 3 and a highly informative and entertaining volume on their mirror image is not superposable on the original. The a broad variety of aspects of the phenomenon.4 most common element producing molecular chirality is a chiral center, typically a carbon atom carrying four diff e r- MIRROR, MIRROR ON THE WALL... ent groups. The mirro r-image molecules are termed e n a n- C e rtain objects have the pro p e rty that their mirror image t i o m e r s , but the less specific terms s t e r e o i s o m e r s a n d is not entirely identical with the original. The most familiar isomers are also used. A substance consisting of only one of tools for the illustration of this phenomenon are the two the two enantiomers is a single enantiomer or single iso- human hands. If one holds, say, the left hand in front of a m e r, and the 1:1 mixture of the enantiomers is the racemic m i rro r, one finds that the image in the mirror is that of the m i x t u re or racemate.
    [Show full text]
  • A Study on Beta Blockers - a Brief Review Tv
    IJRPC 2018, 8(4), 508-529 Namratha et al. ISSN: 22312781 INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Review Article A STUDY ON BETA BLOCKERS - A BRIEF REVIEW TV. Namratha*, KC. Chaluvaraju and AM. Anushree Department of Pharmaceutical Chemistry, Government College of Pharmacy, Bengaluru-560 027, Karnataka, India. ABSTRACT Beta blockers are agents or drugs which competitively inhibit the action of catecholamines at the beta adrenergic receptors, which are mainly used to treat variety of clinical conditions like angina, hypertension, asthma, COPD and arrhythmias. These drugs are also useful in several other therapeutic situations including shock, premature labor and opioid withdrawal, and as adjuncts to general anesthetics. These drugs produce their effect by interacting with the beta adrenergic receptors. In the present communication, an effort has been made to compile beta adrenergic receptors and the chemistry, discovery and development, classification and therapeutic applications of beta blockers. Keywords: Beta blockers, adrenergic receptors, catecholamines and aryloxypropanolamines. 1. INTRODUCTION Beta blockers were first developed by Sir 1.1 Adrenergic receptors James Black in 1962. The structures of The ability of a molecule to selectively these receptors have been studied by x- agonize or antagonize adrenergic ray crystallography.5 In the current article receptor made great advances in beta blockers are majorly focused with pharmacotherapeutics. The discovery of respect to their location, functions adrenergic receptors lead to major mediated, discovery and development, development of newer adrenergic SAR, classification, structures and agonists as well as antagonist.1 therapeutic applications. Adrenergic receptors are 7- transmembrane spanning receptors 1.2 Locations and agonistic action of beta which mediate both central and adrenergic receptors6 peripheral actions of the adrenergic The following are the various beta neurotransmitters.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • I (Acts Whose Publication Is Obligatory) COMMISSION
    13.4.2002 EN Official Journal of the European Communities L 97/1 I (Acts whose publication is obligatory) COMMISSION REGULATION (EC) No 578/2002 of 20 March 2002 amending Annex I to Council Regulation (EEC) No 2658/87 on the tariff and statistical nomenclature and on the Common Customs Tariff THE COMMISSION OF THE EUROPEAN COMMUNITIES, Nomenclature in order to take into account the new scope of that heading. Having regard to the Treaty establishing the European Commu- nity, (4) Since more than 100 substances of Annex 3 to the Com- bined Nomenclature, currently classified elsewhere than within heading 2937, are transferred to heading 2937, it is appropriate to replace the said Annex with a new Annex. Having regard to Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Com- mon Customs Tariff (1), as last amended by Regulation (EC) No 2433/2001 (2), and in particular Article 9 thereof, (5) Annex I to Council regulation (EEC) No 2658/87 should therefore be amended accordingly. Whereas: (6) This measure does not involve any adjustment of duty rates. Furthermore, it does not involve either the deletion of sub- stances or addition of new substances to Annex 3 to the (1) Regulation (EEC) No 2658/87 established a goods nomen- Combined Nomenclature. clature, hereinafter called the ‘Combined Nomenclature’, to meet, at one and the same time, the requirements of the Common Customs Tariff, the external trade statistics of the Community and other Community policies concerning the (7) The measures provided for in this Regulation are in accor- importation or exportation of goods.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,637,524 B2 Rao Et Al
    USOO8637524B2 (12) United States Patent (10) Patent No.: US 8,637,524 B2 Rao et al. (45) Date of Patent: Jan. 28, 2014 (54) PYRIMIDINONE INHIBITORS OF Tonn, Biological Mass Spectrometry vol. 22 Issue 11, pp. 633-642 LIPOPROTEIN-ASSOCATED (1993).* PHOSPHOLPASE A2 Hist Biomedical Spectrometry vol. 9 Issue 7, pp. 269-277 Wolen, Journal of Clinical Pharmacology 1986; 26: 419-424.* (75) Inventors: Tadimeti Rao, San Diego, CA (US); Browne, Journal of Clinical Pharmacology 1998; 38: 213-220.* Chengzhi Zhang, San Diego, CA (US) Baillie, Pharmacology Rev. 1981: 33:81-132.* Gouyette, Biomedical and Environmental Mass Spectrometry, vol. (73) Assignee: Auspex Pharmaceuticals, Inc, La Jolla, 15, 243-247 (1988).* CA (US) Cherrah, Biomedical and Environmental Mass Spectrometry vol. 14 Issue 11, pp. 653-657 (1987).* Pieniaszek, J. Clin Pharmacol. 1999; 39: 817-825.* (*) Notice: Subject to any disclaimer, the term of this Honma et al., Drug Metab Dispos 15 (4): 551 (1987).* patent is extended or adjusted under 35 Kushner, D. Jet al., Pharmacological uses and perspectives of heavy U.S.C. 154(b) by 58 days. water and deuterated compounds, Can. J. Physiol. Pharmacol. (1999), 77, 79-88. (21) Appl. No.: 12/840,725 Bauer et al., Influence of long-term infusions on lidocaine kinetics, Clin. Pharmacol. Ther. (1982), 31(4), 433-7. (22) Filed: Jul. 21, 2010 Borgstrom et al., Comparative Pharmacokinetics of Unlabeled and Deuterium-Labeled Terbutaline: Demonstration of a Small Isotope Effect, J Pharm. Sci., (1988), 77(11) 952-4. (65) Prior Publication Data Browne et al., Chapter 2. Isotope Effect: Implications for pharma US 2011/0306552 A1 Dec.
    [Show full text]
  • Ep 2459564 B1
    (19) TZZ _T (11) EP 2 459 564 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 487/04 (2006.01) A61K 31/519 (2006.01) 07.09.2016 Bulletin 2016/36 A61P 9/10 (2006.01) (21) Application number: 10806891.7 (86) International application number: PCT/US2010/043404 (22) Date of filing: 27.07.2010 (87) International publication number: WO 2011/017108 (10.02.2011 Gazette 2011/06) (54) CYCLOPROPYL MODULATORS OF P2Y12 RECEPTOR CYCLOPROPYL-MODULATOREN DES P2Y12-REZEPTORS MODULATEURS CYCLOPROPYLÉS DU RÉCEPTEUR P2Y12 (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB US-A- 5 846 514 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR • R.T. OWEN ET AL: "AZD6140", DRUGS OF THE FUTURE, vol. 32, no. 10, 2007, page 845, (30) Priority: 27.07.2009 US 228913 P XP055024216, ISSN: 0377-8282, DOI: 10.1358/dof.2007.032.10.1133832 (43) Date of publication of application: • FOSTER ET AL: "Deuterium isotope effects in 06.06.2012 Bulletin 2012/23 studies of drug metabolism", TRENDS IN PHARMACOLOGICAL SCIENCES, ELSEVIER, (73) Proprietor: Auspex Pharmaceuticals, Inc. HAYWARTH, GB, vol. 5, 1984, pages 524-527, La Jolla, CA 92037 (US) XP025943358, ISSN: 0165-6147, DOI: 10.1016/0165-6147(84)90534-0 [retrieved on (72) Inventors: 1984-01-01] • RAO, Tadimeti • YARNELL: "Heavy-Hydrogen Drugs Turn Heads, Vista Again", INTERNET CITATION, 22 June 2009 CA 92180 (US) (2009-06-22), pages 36-39, XP002546075, • ZHANG, Chengzhi Retrieved from the Internet: Vista URL:http://pubs.acs.org/cen/science/87/872 CA 92180 (US) 5sci1.html [retrieved on 2009-09-16] • ANGIOLILLO, D.
    [Show full text]