37 Cristian Román Palacios Department of Ecology And

Total Page:16

File Type:pdf, Size:1020Kb

37 Cristian Román Palacios Department of Ecology And Bolet´ındel Museo de Entomolog´ıade la Universidad del Valle 17(2):37-46, 2017 37 ON THE DIVERGENCE OF PSOCIDAE (PSOCODEA, PSOCOMORPHA): FOSSILS OR BIOGEOGRAPHY? Cristian Rom´an Palacios Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, U.S.A.; correo electr´onico: [email protected] Ranulfo Gonz´alez Obando Grupo de Investigaciones Entomolog´ıcas, Universidad del Valle, Cali-Colombia. Yherson Franchesco Molina Henao Departamento de Biolog´ıa,Universidad del Valle, Calle 13 No. 100-00, Cali, Valle, Colombia Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cam- bridge, Massachusetts 02138, U. S. A. RESUMEN Con m´asde 900 especies v´alidas,Psocidae es la familia m´asdiversa de psocodeos. A pesar de la que la informaci´onmolecular disponible ha permitido hipotetizar sobre las relaciones filogen´eticas entre los diferentes linajes, el contexto temporal ha sido hasta ahora poco discutido, y la influencia de factores intr´ınsecosy extr´ınsecosen su diversificaci´ones aun desconocido. En este art´ıculo probamos la congruencia de tres evidencias de divergencia (i.e. dos f´osilesy una biogeogr´afica),y discutimos la correlaci´onentre la edad de los clados y otros mayores eventos (e.g. geol´ogicos,ecol´ogicos).Encontramos que la familia Psocidae probablemente divergi´odurante la transici´onMesozoico-Paleozoico. Adem´as, las subsecuentes ramificaciones se los sub-linajes mayores ocurri´oen un corto tiempo entre 68 y 77 My. Estas fechas tambi´encorresponden con los cambios de diversificaci´onen m´ultiples linajes de angiospermas y el incremento en la temperatura global. Palabras clave: Reloj molecular, Ps´ocidos,Biogeograf´ıa,Tiempo, F´osiles. ABSTRACT With more than 900 valid species, Psocidae is the most diverse family of psocodeans. Even though the availability of molecular has allowed hypothesizing on the phylogenetic relations for the different lineages, the evolutionary timing is still poorly discussed and the influence of intrinsic and extrinsic factors on their diversification is hitherto unknown. In this paper, we aim to test the temporal congruence of three evidences (i.e., two fossils and one biogeographical constraint), and discuss the correlation between clade’s age and other major events (e.g., geological, ecological). We found that family Psocidae likely diverged during the Mesozoic – Paleozoic transition. Moreover, the subsequent splits of the major sub-lineages occurred in a short time interval between 68 to 77 Mya. These dates also correspond to diversification shifts in multiple angiosperm lineages and the increase in global temperature. Key words: Molecular clock, Psocids, Biogeography, Timing, Fossils. INTRODUCTION than 900 species have been described in ca. 80 Genera (Yoshizawa & Johnson 2008). As consequence of the high species richness and Psocidae is the largest family within the pso- relative few studies restricted to specific lo- codean Suborder Psocomorpha. To date, more 38 Roman et al., On the divergence of Psocidae: fossils or biogeography? cations and/or scientific disciplines, there is et al. 2006). Protein coding genes were aligned still a lack of knowledge about their ethology, using MAFFT (Katoh & Standley 2013) with physiology, morphology, biogeography, natural default parameters. The applied algorithm va- history and evolution (Liu et al. 2013; Slifer & ried between loci depending on its biological Sekhon 1977). This family has several biologi- functions and number of taxa included (E-ins-i cal features that allows being considered as an for Wg and COI; L-ins-i applied to H3; G-ins-i interesting study group: (i) extensive within- used in ND5). Non-protein-coding genes (16s, and-among-species morphological variation, 18s, and 12s) were analyzed using webPRANK (ii) cosmopolitan distribution, (ii) elevated (L¨oytynoja & Goldman 2010) with default para- richness, among others (Yoshizawa 2004; Yos- meters and based on their secondary structure. hizawa et al. 2011). The monophyly of family Psocidae is suppor- ted by both morphological and molecular da- ABSOLUTE DATING ta (Johnson & Mockford 2003; Yoshizawa & Johnson 2008). Even though the higher-level relations have been discussed before, the tem- Molecular dating was performed using the poral context has not been discussed in deep. multi-coalescent approach implemented in Psocopterans appeared during the Permian- BEAST 2 (Bouckaert et al. 2014). This met- Carboniferous transition in the fossil record hod estimates the different genealogies inclu- ( 300 Mya). This suggests two aspects: (i) the ded in the species reconstruction tree taking occurrence of a shift in diversity during the late by into account the stochasticity and incon- Jurassic, and (ii) that this lineage reached its gruence between gene /species trees (Heled & maximum diversity during the Cenozoic Oligo- Drummond, 2010). BEAUTi 2.2.3 was used cene (Labandeira & Eble 2000). Paleontologi- to create the input file for BEAST runs. An cal information has indicated a general pattern uncorrelated molecular clock was set with a about the psocopteran diversity extrapolated lognormal distribution to model substitution from different fossil deposits (i.e., Lagerst¨atte). rates across branches in the tree. We selec- Yet, the family Psocidae has not been expli- ted a Birth-Death speciation process for tree citly analyzed. In particular, two major papers building that accounts for extinction and spe- have attempted to give a temporal framework ciation events. We constrained several nodes to the evolution of the Psocidae. Misof et al. across the phylogeny based on three shreds of (2014) set the minimum bound for the diver- evidence of divergence related to fossils (two) gence of Psocodea in 200 Mya, and Bess et and biogeography (one). The dating parame- al. (2014) published a molecular clock for the ters and an background information for each Hawaiian species of Ptycta (Psocinae: Ptycti- of the applied constraints are shown in Table 1. ni). In this paper, we intend to provide the first discussion on the evolutionary timing for We used two independent Markov chain Monte the family Psocidae based on two fossils and a Carlo (MCMC) that ran in the CIPRES por- single biogeographic evidence. tal (Miller et al. 2011). BEAGLE library was used for our analyses (Ayres et al. 2011). Each MATERIAL AND METHODS MCMC consisted of 50 million generations log- ged every 50,000 samples. Convergence was TAXON SAMPLING AND SEQUEN- assessed in Tracer 1.6 based on the estimated CE ALIGNMENT sample size (ESS >200) of the parameters of interest. Nodes with support values (pp) higher We sampled 120 species from 27 psocid genera. than 0.95 (Condamine et al. 2015) are consi- Outgroups were selected from families Myop- dered as well supported. Bayes factors were socidae, Psilopsocidae, and Hemipsocidae. We used for comparing the relative fit of the diffe- sampled four mitochondrial genes (12s, 16s, Cy- rent models (e.g. fossil 1, fossil 2 and biogeo- tochrome Oxidase subunit 1, and NADH dehy- graphy). Significant support of one hypothesis drogenase, subunit 5) and two nuclear genes concerning the other was confirmed by BF>5 (18s, and Histone 3; see Appendix 1; Benson (Condamine et al. 2015). Bolet´ındel Museo de Entomolog´ıade la Universidad del Valle 17(2):37-46, 2017 39 RESULTS and the Triassic (197 Mya; 129.22-262.95 Mya HPD), Amphigerontiinae 208 Mya (147.15- Molecular dating reconstructions indicated 274.21 Mya HPD) and finally Psocinae 293 congruent topologies despite the dating eviden- Mya (200.38-282.26 Mya HPD). ce. All the major lineages were recovered and highly supported (Fig. 1). However, discrepan- The three hypotheses of the Psocidae evolu- cies are clear when fossil- and biogeography- tionary timing suggest both ancient (F2 and based chronograms are compared. Both Fossil BG) and recent (F1) divergences. Compara- 2 (F2) and Biogeographic evidences (BG) in- tive analyses of relative fit of each model ap- dicated the older divergence of the lineage, proached from Bayes factors (Table 2), favored contradicting Fossil 1 (F1). Overall, the dif- biogeographic evidence (BF>5 for all pairwise ferent chronograms suggest that the family comparisons). This statistical support indica- divergence predates the Pangaea fragmenta- tes the biogeographic evidence is statistically, tion. a better explanation for the divergence of Pso- cidae than the dates recovered using F1 and Fossil dataset 1 (F1) sets the youngest diver- F2 evidence. gence times for all nodes in Psocidae. Moreover, this chronogram recovered the narrowest tem- DISCUSSION poral intervals across the tree (95 % HPD; i.e. low uncertainty and high confidence). This All analyses recovered the high-level phylogene- evidence places the divergence of the family tic relations proposed by Yoshizawa & Johnson during upper Cretaceous and Early Paleocene (2008). Our results suggest a pre-Pangaea di- (54 - 91 Mya). The crown ages of major lineages vergence of Psocidae in congruence with several occurred within 48 to 64 Mya. Kaindipsocinae ordinal-level dated phylogenies (Misof et al. is here the least derived and younger linea- 2014). The following discussion involves some ge (28.08-71.84 Mya HPD). The crown age remarks on different key aspects of the family of Amphigerontiinae and Psocinae may have evolutionary timing. occurred 61 and 64 Mya respectively (41.67- 80.81 Mya HPD; 49.38-79.44 Mya HPD). This evidence places the divergence of the major METHODOLOGICAL ARTIFACTS lineages of Psocidae during a recent and short AND FOSSILIZATION PROBABI- time interval. Fossil 2 (F2) suggests an ancient LITY divergence of the family. The crown age of Psocidae was placed during the Upper Jurassic Fossils described in Trichadenotecnum and Pso- (153.04 Mya; 152.02-155.02 Mya HPD) and the cidus (F1 evidence) may represent a substantial divergence of the major lineages in a narrow gap between the time of the cladogenetic events interval within 68.69-77.32 Mya. subfamily and their recovery. These fossils perhaps do not Kaindipsocinae (68.69 Mya) was recovered represent an accurate measure of the family as the youngest, followed by Psocinae (72.26 diversity and underestimate the divergence Mya) and Amphigerontiinae (77.32 Mya).
Recommended publications
  • Impact of Imidacloprid and Horticultural Oil on Nonâ•Fitarget
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2007 Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians Carla Irene Dilling University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Dilling, Carla Irene, "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/120 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carla Irene Dilling entitled "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Paris L. Lambdin, Major Professor We have read this thesis and recommend its acceptance: Jerome Grant, Nathan Sanders, James Rhea, Nicole Labbé Accepted for the Council: Carolyn R.
    [Show full text]
  • Historical Biogeography of Thyrsophorini Psocids and Description of a New Neotropical Species of Thyrsopsocopsis (Psocodea: Psocomorpha: Psocidae)
    European Journal of Taxonomy 194: 1–16 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.194 www.europeanjournaloftaxonomy.eu 2016 · Román-Palacios C. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:96E9EA43-F6FE-492E-97BE-60DFB8EDE935 Historical biogeography of Thyrsophorini psocids and description of a new neotropical species of Thyrsopsocopsis (Psocodea: Psocomorpha: Psocidae) Cristian ROMÁN-PALACIOS 1,*, Alfonso N. GARCÍA ALDRETE 2 & Ranulfo GONZÁLEZ OBANDO 3 1,3 Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Santiago de Cali, Colombia. 2 Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, 04510 Mexico City, Mexico. * Corresponding author: [email protected] 1 urn:lsid:zoobank.org:author:E88D0518-B6CB-4FE7-9EFC-F789EA6F05AD 2 urn:lsid:zoobank.org:author:9E03B921-78AE-4ED6-B1EA-9DCA01BE20BC 3 urn:lsid:zoobank.org:author:16C7AD76-F035-4C8B-8C00-A228CCCD39B0 Abstract. When based on phylogenetic proposals, biogeographic historic narratives have a great interest for hypothesizing paths of origin of the current biodiversity. Among the many questions that remain unsolved about psocids, the distribution of Thyrsophorini represents still a remarkable enigma. This tribe had been considered as exclusively Neotropical, until the description of Thyrsopsocopsis thorntoni Mockford, 2004, from Vietnam. Three hypotheses have been proposed to explain this atypical distribution, recurring to dispersal, vicariance and morphological parallelism between lineages, but the lack of evidence has not allowed a unique support. Here, we describe a new Neotropical species of Thyrsopsocopsis, and also attempt to test the three biogeographical hypotheses in a phylogenetic context.
    [Show full text]
  • Wyre Forest Oak Fogging Project Wyre Forest Study Group
    Wyre Forest Study Group Wyre Forest Oak Fogging Project ED. RosemarY Winnall Natural England Tree 2 Tree 3 Tree 1 Fogging tree 3 Katrina Dainton Introductory Notes by Mick Blythe The samples collected were excellent, due to both the success of the operation and the nature of the oak In the summer of 2015 Katy Dainton and Alice James tree which had a number of exciting dead and rotten of Natural England sampled the canopy of three oak branches low down in the canopy. trees in the Wyre Forest using the fogging technique. In this technique a powered fogger is used to blow a Tree 2 was a 100 year old oak tree in the PAWS fog of insecticide up through the canopy of the tree section of Longdon Wood, SO75141 77757, sampled and the dead or stunned arthropods are collected in on 24/06/2015. The understorey was ankle to knee funnels or on tarpaulins set out on the ground below. length bracken and bramble. The same method was employed except that the tarpaulins were set out at Tree 1, an 80-100 year old oak tree with no woody 5:00 a.m. on the morning of the fogging. The fogging understorey at SO76182 74811 was sampled on was carried out at 5:40 as Tree 1. 16/06/2015. The fogger used was a PulsFOG K-10-SP portable thermal fogger and the insecticide a 10% This experiment was less successful. The insecticidal solution of Permethrin. 15 tarpaulins were set out fog would not rise higher than the lower third of the beneath the chosen tree the day before.
    [Show full text]
  • Insecta: Psocodea: 'Psocoptera'
    Molecular systematics of the suborder Trogiomorpha (Insecta: Title Psocodea: 'Psocoptera') Author(s) Yoshizawa, Kazunori; Lienhard, Charles; Johnson, Kevin P. Citation Zoological Journal of the Linnean Society, 146(2): 287-299 Issue Date 2006-02 DOI Doc URL http://hdl.handle.net/2115/43134 The definitive version is available at www.blackwell- Right synergy.com Type article (author version) Additional Information File Information 2006zjls-1.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 146? •••• zoj_207.fm Original Article MOLECULAR SYSTEMATICS OF THE SUBORDER TROGIOMORPHA K. YOSHIZAWA ET AL. Zoological Journal of the Linnean Society, 2006, 146, ••–••. With 3 figures Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) KAZUNORI YOSHIZAWA1*, CHARLES LIENHARD2 and KEVIN P. JOHNSON3 1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 2Natural History Museum, c.p. 6434, CH-1211, Geneva 6, Switzerland 3Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA Received March 2005; accepted for publication July 2005 Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) 1 were inferred from partial sequences of the nuclear 18S rRNA and Histone 3 and mitochondrial 16S rRNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipso- cidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder.
    [Show full text]
  • Psocodea, “Psocoptera”, Psocidae), with One New Species
    A peer-reviewed open-access journal ZooKeysA review 203: 27–46 of the(2012) genus Neopsocopsis (Psocodea, “Psocoptera”, Psocidae), with one new species... 27 doi: 10.3897/zookeys.203.3138 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A review of the genus Neopsocopsis (Psocodea, “Psocoptera”, Psocidae), with one new species from China Lu-Xi Liu1,†, Kazunori Yoshizawa2,‡, Fa-Sheng Li1,§, Zhi-Qi Liu1,| 1 Department of Entomology, China Agricultural University, Beijing, 100193, China 2 Systematic Entomo- logy, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan † urn:lsid:zoobank.org:author:192B5D2C-88C9-41A6-95B5-C6F992B2573B ‡ urn:lsid:zoobank.org:author:E6937129-AF09-4073-BABF-5C025930BF31 § urn:lsid:zoobank.org:author:46BA87D8-F520-4E04-B72A-87901DAFB46E | urn:lsid:zoobank.org:author:A642446F-B2A9-409F-A3D4-0C882890B846 Corresponding author: Zhi-Qi Liu ([email protected]) Academic editor: Vincent Smith | Received 29 March 2012 | Accepted 6 June 2012 | Published 19 June 2012 urn:lsid:zoobank.org:pub:45CC60D2-0723-4177-A271-451D933B8D87 Citation: Liu L-X, Yoshizawa K, Li F-S, Liu Z-Q (2012) A review of the genus Neopsocopsis (Psocodea, “Psocoptera”, Psocidae), with one new species from China. ZooKeys 203: 27–46. doi: 10.3897/zookeys.203.3138 Abstract A review of species of the genus Neopsocopsis Badonnel, 1936 is presented. Four species are redescribed, viz. N. hirticornis (Reuter, 1893), N. quinquedentata (Li & Yang, 1988), N. profunda (Li, 1995), and N. flavida (Li, 1989), as well as the description of one new species, N. convexa sp. n. Seven new synonymies are proposed as follows: Pentablaste obconica Li syn.
    [Show full text]
  • 018 PN 18.Pdf (No
    Title Psocid News : The Psocidologists' Newsletter Author(s) Yoshizawa, Kazunori Doc URL http://hdl.handle.net/2115/35519 Type other Note edited by Kazunori Yoshizawa at the Systematic Entomology, Faculty of Agriculture, Hokkaido University Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information 018 PN_18.pdf (No. 18 (Feb. 28, 2016)) Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ISSN 1348-1770 (online edition) Sapporo, Japan Psocid News The Psocidologists’ Newsletter No. 18 (Feb 28, 2016) Echmepteryx madagascariensis (Okinawa, Japan) ADDITIONS AND CORRECTIONS (PART 15) TO LIENHARD & SMITHERS, 2002: "PSOCOPTERA (INSECTA) – WORLD CATALOGUE AND BIBLIOGRAPHY" Charles LIENHARD (Geneva Natural History Museum, Switzerland) E-mail: [email protected] 1. Introduction This is the 15th part of a series of "Additions and Corrections to the World Catalogue and Bibliography" (Lienhard & Smithers, 2002) published in "Psocid News". Parts 1-14 were published in Psocid News no. 4-17 (see below); a Synthesis of Parts 1-10 is available online at the Geneva Museum's homepage: http://www.ville-ge.ch/mhng/psocoptera/divers/synthesis_add_1_10.pdf Please send me regularly copies of your papers on Psocoptera, and please inform me about errors that you find in Lienhard & Smithers (2002). If papers which came to your notice are not treated in the "Additions", please send me the bibliographical references by e-mail. In the "Additions to the Bibliography", references to the papers which I have not yet seen are marked with "(Not seen)" or "(Only abstract seen)". Please send me a copy or PDF of these papers if you feel concerned.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • PSOCOPTERA – BARKFLIES by Alan R
    NEGLECTED INSECTS IN BEDFORDSHIRE Beds Natural History Society Conference PSOCOPTERA – BARKFLIES by Alan R. Outen & Ian K. Dawson PSOCOPTERA Barkflies and Booklice (also sometimes referred to as Psocids) Small insects (1.5 – 7mm) with a domed postclypeus (the area at the front of the head between antennae and mouth); long filiform antennae; simple wing venation with two ‘triangular’ cells at tip of forewing; tendency to run rather than fly. Winged barkflies usually hold their wings tent-wise over their abdomens like miniature lacewings. These species can be confused with Psyllids but can be distinguished by gently touching them – psyllids jump away, barkflies don’t. Stenopsocus immaculatus – a common species in Beds. Note the strongly domed postclypeus and long filiform antennae Barkflies - Variations on a theme Some species don’t have full-sized (macropterous) wings but have them much reduced (brachypterous) or absent (apterous). They can be confused with springtails (which however will jump away when touched). Cerobasis guestfalica has been Embidopsocus enderleini recorded from several Beds sites An uncommon species not (yet) found in Beds Available Resources • Excellent British Barkflies website which via the gallery has been brilliant in facilitating identification of this group making them accessible to all. • 2005 RES Handbook is also very good. • Keith Alexander who runs the National Recording Scheme is very helpful. Graphopsocus cruciatus – a common and distinctive Bedfordshire species THE 2005 RES handbook is also excellent with keys that are much easier to follow than many mycological ones ! …….. A Stereo zoom binocular microscope is very useful though not essential ….. …….It is remarkable what can be achieved with the aid of digital photography !! Stenopsocus immaculatus PSOCOPTERA – BARKFLIES 98 British spp in total of which 69 live outdoors, the rest are synanthropic.
    [Show full text]
  • Morphology of Psocomorpha (Psocodea: 'Psocoptera')
    Title MORPHOLOGY OF PSOCOMORPHA (PSOCODEA: 'PSOCOPTERA') Author(s) Yoshizawa, Kazunori Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 62, 1- Citation 44 Issue Date 2005-12 Doc URL http://hdl.handle.net/2115/10524 Type bulletin (article) File Information Yoshizawa-62.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 62: 1–44 DECEMBER 2005 MORPHOLOGY OF PSOCOMORPHA (PSOCODEA: 'PSOCOPTERA') By KAZUNORI YOSHIZAWA Abstract YOSHIZAWA, K. 2005. Morphology of Psocomorpha (Psocodea: 'Psocoptera'). Ins. matsum. n. s. 62: 1–44, 24 figs. Adult integumental morphology of the suborder Psocomorpha (Psocodea: 'Psocoptera') was examined, and homologies and transformation series of characters throughout the suborder and Psocoptera were discussed. These examinations formed the basis of the recent morphology-based cladistic analysis of the Psocomorpha (Yoshizawa, 2002, Zool. J. Linn. Soc. 136: 371–400). Author's address. Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan. E-mail. [email protected]. 1 INTRODUCTION Psocoptera (psocids, booklice or barklice) are a paraphyletic assemblage of non-parasitic members of the order Psocodea (Lyal, 1985; Yoshizawa & Johnson, 2003, 2005; Johnson et al., 2004), containing about 5500 described species (Lienhard, 2003). They are about 1 to 10 mm in length and characterized by well-developed postclypeus, long antennae, pick-like lacinia, reduced prothorax, well-developed pterothorax, etc. Phylogenetically, Psocoptera compose a monophyletic group (the order Psocodea) with parasitic lice ('Phtiraptera': biting lice and sucking lice) (Lyal, 1985; Yoshizawa & Johnson, 2003, in press; Johnson et al., 2004). The order is related to Thysanoptera (thrips) and Hemiptera (bugs, cicadas, etc.) (Yoshizawa & Saigusa, 2001, 2003, but see also Yoshizawa & Johnson, 2005).
    [Show full text]
  • BLS Bulletin 106 Summer 2010.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2010 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: position currently vacant.
    [Show full text]
  • Vertical Stratification and Co-Occurrence Patterns of The
    Forests 2012, 3, 127-136; doi:10.3390/f3010127 OPEN ACCESS forests ISSN 1999–4907 www.mdpi.com/journal/forests Article Vertical Stratification and Co-Occurrence Patterns of the Psocoptera Community Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrière, in the Southern Appalachians Carla Coots 1,*, Paris Lambdin 1, Jerome Grant 1, Rusty Rhea 2 and Edward Mockford 3 1 Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN 37996, USA; E-Mails: [email protected] (P.L.); [email protected] (J.G.) 2 USDA Forest Service, Forest Health Protection, 200 Weaver Boulevard, Asheville, NC 28804, USA; E-Mail: [email protected] 3 School of Biological Sciences, Illinois State University, Normal, IL 61790, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-865-974-4979; Fax: +1-865-974-4744. Received: 10 February 2012; in revised form: 1 March 2012 / Accepted: 7 March 2012 / Published: 21 March 2012 Abstract: Of the more than 300 species of Psocoptera described in North America, 44 species have been documented on eastern hemlock, Tsuga canadensis (L.) Carrière, in the southern Appalachians. However, the distribution and co-occurrence patterns of these species throughout the tree canopy are unknown. This study was initiated to evaluate specimen abundance, species richness and species composition among three designated strata in the canopy of eastern hemlock, assess species for vertical stratification patterns, and determine if co-occurrence patterns of Psocoptera species are random or non-random. During this study, 27 species representing 18 genera and 10 families were evaluated.
    [Show full text]
  • 2015 Publications on Phthiraptera Not Listed with Isop Newsletter August 2016 Alemu N, Muktar Y, Kassaye D, Hiko A. Prevalence
    2015 publications on Phthiraptera not listed with ISoP Newsletter August 2016 Alemu N, Muktar Y, Kassaye D, Hiko A. Prevalence of lice and fleas in backyard chickens of Bishoftu Town, Ethiopia. American-Eurasian Journal of Agricultural & Environmental Science 2015; 15(11): 2136-2142. doi: 10.5829/idosi.aejaes.2015.15.11.10181. Beltran Saavedra LF. Caracterizando patrones ecológicos en la estructura parasitaria: Influencia ecorregional y hospedadora en un modelo Phthiraptera-Aves del Norte de Chile. Master’s degree Thesis 2015 Universidad de Concepción, Chile. da Cunha Amaral HL, Bergmann FB, Krüger RF, Graciolli G. Composition and distribution patterns of chewing lice of two neotropical species of Turdus. Journal of Natural History 2015; 49: 803-814. do Carmo Rezende L, Cunha LM, da Silva Martins NR, Teixeira CM, de Oliviera PR. Epidemiologia de Lipeurus caponis (Phthiraptera: Philopteridae) (Nitzsch, 1818) em granjas avícolas comerciais de postura no Estado de Minas Gerais, Brasil. Revista Brasileira de Ciencia Veterinária 2015; 22: 34-38 Döner A, Yamam M. Mallophaga species in the chickens of Mardin province. Van Veterinary Journal 2015; 26: 7-12. Dóra P. A Harrison-szabály és Poulin növekvő variancia elméletének tesztelése a Ricinidae és a Philopteridae tetűcsaládokban. BSc III thesis, 2015, Faculty of Veterinary Science, St Stephen’s University, Budapest El Maleck BSA, Abed GH, Maze N, Khalifa R. Morphological and ultrastructural of a new species from cephaline Gregarinidae infected fruit Egyptian bat (Rousettus aegyptiacus) and its vector. Journal of Bacteriology and Parasitology 2015; 6: 244. doi: 10.4172/2155- 9597.1000244. Forbes V, Britton K, Knecht R. Preliminary archaeoentomological analyses of permafrost- preserved cultural layers from the pre-contact Yup'ik Eskimo site of Nunalleq, Alaska: Implications, potential and methodological considerations.
    [Show full text]