Guidelines for the Clinical Management of Snake Bites in the South-East Asia Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ONEP V09.Pdf
Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern OEPP BIODIVERSITY SERIES volume nine OFFICE OF ENVIRONMENTAL POLICY AND PLANNING MINISTRY OF SCIENCE TECHNOLOGY AND ENVIRONMENT 60/1 SOI PIBULWATTANA VII, RAMA VI RD., BANGKOK 10400 THAILAND TEL. (662) 2797180, 2714232, 2797186-9 FAX. (662) 2713226 Office of Environmental Policy and Planning 2000 NOT FOR SALE NOT FOR SALE NOT FOR SALE Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern Office of Environmental Policy and Planning 2000 First published : September 2000 by Office of Environmental Policy and Planning (OEPP), Thailand. ISBN : 974–87704–3–5 This publication is financially supported by OEPP and may be reproduced in whole or in part and in any form for educational or non–profit purposes without special permission from OEPP, providing that acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purposes. Citation : Nabhitabhata J., Chan ard T., Chuaynkern Y. 2000. Checklist of Amphibians and Reptiles in Thailand. Office of Environmental Policy and Planning, Bangkok, Thailand. Authors : Jarujin Nabhitabhata Tanya Chan–ard Yodchaiy Chuaynkern National Science Museum Available from : Biological Resources Section Natural Resources and Environmental Management Division Office of Environmental Policy and Planning Ministry of Science Technology and Environment 60/1 Rama VI Rd. Bangkok 10400 THAILAND Tel. (662) 271–3251, 279–7180, 271–4232–8 279–7186–9 ext 226, 227 Facsimile (662) 279–8088, 271–3251 Designed & Printed :Integrated Promotion Technology Co., Ltd. Tel. (662) 585–2076, 586–0837, 913–7761–2 Facsimile (662) 913–7763 2 1. -
Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja Atra) from Ten Populations in Mainland China
Asian Herpetological Research 2019, 10(1): 32–40 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.180041 Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja atra) from Ten Populations in Mainland China Jianfang GAO1*, Yin YIN1, Yanfu QU2, Jin WANG2, Longhui LIN1, Hongliang LU1 and Xiang JI2 1 Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China 2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China Abstract Detailed information on venom yield is helpful in preparing antivenoms and treating snakebites, but such information is lacking for many species of venomous snakes. The Chinese cobra (Naja atra) is a large sized, venomous snake commonly found in southeastern China, where it causes a heavy burden of snakebites. To examine the effects of various factors (morphology, sex, age, season, and geographical origin) on the venom yield in this snake, we collected venom samples of 446 individuals (426 adults and 20 neonates) from 10 populations of N. atra over an eight- year period. We used two variables, lyophilized venom mass (venom yield) and solid content of venom (% solids), to quantify the venom yield. We used linear regression analysis to check if venom yield was related to morphological factors, one-way ANOVA and one-way ANCOVA to detect the sexual, ontogenetic, and geographic variation in venom yield, and repeated-measures ANOVA to examine seasonal shifts in venom yield. Our results indicate that venom yield of N. atra is positively related to the morphological traits examined, with male snakes expelling more venom than females. -
Quantitative Characterization of the Hemorrhagic, Necrotic, Coagulation
Hindawi Journal of Toxicology Volume 2018, Article ID 6940798, 8 pages https://doi.org/10.1155/2018/6940798 Research Article Quantitative Characterization of the Hemorrhagic, Necrotic, Coagulation-Altering Properties and Edema-Forming Effects of Zebra Snake (Naja nigricincta nigricincta)Venom Erick Kandiwa,1 Borden Mushonga,1 Alaster Samkange ,1 and Ezequiel Fabiano2 1 School of Veterinary Medicine, Faculty of Agriculture and Natural Resources, Neudamm Campus, University of Namibia, P. Bag 13301, Pioneers Park, Windhoek, Namibia 2Department of Wildlife Management and Ecotourism, Katima Mulilo Campus, Faculty of Agriculture and Natural Resources, University of Namibia, P. Bag 1096, Ngweze, Katima Mulilo, Namibia Correspondence should be addressed to Alaster Samkange; [email protected] Received 30 May 2018; Revised 5 October 2018; Accepted 10 October 2018; Published 24 October 2018 Academic Editor: Anthony DeCaprio Copyright © 2018 Erick Kandiwa et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tis study was designed to investigate the cytotoxicity and haemotoxicity of the Western barred (zebra) spitting cobra (Naja nigricincta nigricincta) venom to help explain atypical and inconsistent reports on syndromes by Namibian physicians treating victims of human ophidian accidents. Freeze-dried venom milked from adult zebra snakes was dissolved in phosphate bufered saline (PBS) for use in this study. Haemorrhagic and necrotic activity of venom were studied in New Zealand albino rabbits. Oedema-forming activity was investigated in 10-day-old Cobb500 broiler chicks. Procoagulant and thrombolytic activity was investigated in adult Kalahari red goat blood in vitro. -
Naja Atra) Bites: Determining Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra BITE Study
toxins Article Wound Infections from Taiwan Cobra (Naja atra) Bites: Determining Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra BITE Study Heng Yeh 1,2, Shi-Ying Gao 1 and Chih-Chuan Lin 1,2,* 1 Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; [email protected] (H.Y.); [email protected] (S.-Y.G.) 2 School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan * Correspondence: [email protected] Abstract: Wound necrosis and secondary infection are common complications after Naja atra bites. Clinical tools to evaluate the infection risk after Taiwan cobra bites are lacking. In this Cobra BITE study, we investigated the prevalence of wound infection, bacteriology, and corresponding antibiotic usage in patients presenting with Taiwan cobra snakebites. Patients with wound infection lacking tissue necrosis were included in developing Cobra BITE score utilizing univariate and multiple logistic regression, as patients with wound necrosis require antibiotics for infection treatment. 8,295,497 emergency department visits occurred in the span of this study, with 195 of those patients being diagnosed as having cobra bites. Of these patients, 23 had wound necrosis, and 30 had wound infection, resulting in a wound infection rate of 27.2% (53/195). Enterococcus faecalis and Morganella morganii were the main bacteria identified in the culture report regardless of whether patients’ wounds had necrosis. As per our Cobra BITE score, the three factors predicting secondary wound infection after cobra bites are hospital admission, a white blood cell count (in 103/µL) × by neu-trophil-lymphocyte ratio value of ≥114.23, and the use of antivenin medication. -
Long-Term Effects of Snake Envenoming
toxins Review Long-Term Effects of Snake Envenoming Subodha Waiddyanatha 1,2, Anjana Silva 1,2 , Sisira Siribaddana 1 and Geoffrey K. Isbister 2,3,* 1 Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura 50008, Sri Lanka; [email protected] (S.W.); [email protected] (A.S.); [email protected] (S.S.) 2 South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka 3 Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW 2308, Australia * Correspondence: [email protected] or [email protected]; Tel.: +612-4921-1211 Received: 14 March 2019; Accepted: 29 March 2019; Published: 31 March 2019 Abstract: Long-term effects of envenoming compromise the quality of life of the survivors of snakebite. We searched MEDLINE (from 1946) and EMBASE (from 1947) until October 2018 for clinical literature on the long-term effects of snake envenoming using different combinations of search terms. We classified conditions that last or appear more than six weeks following envenoming as long term or delayed effects of envenoming. Of 257 records identified, 51 articles describe the long-term effects of snake envenoming and were reviewed. Disability due to amputations, deformities, contracture formation, and chronic ulceration, rarely with malignant change, have resulted from local necrosis due to bites mainly from African and Asian cobras, and Central and South American Pit-vipers. Progression of acute kidney injury into chronic renal failure in Russell’s viper bites has been reported in several studies from India and Sri Lanka. Neuromuscular toxicity does not appear to result in long-term effects. -
Antimicrobial Peptides in Reptiles
Pharmaceuticals 2014, 7, 723-753; doi:10.3390/ph7060723 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Antimicrobial Peptides in Reptiles Monique L. van Hoek National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, MS1H8, 10910 University Blvd, Manassas, VA 20110, USA; E-Mail: [email protected]; Tel.: +1-703-993-4273; Fax: +1-703-993-7019. Received: 6 March 2014; in revised form: 9 May 2014 / Accepted: 12 May 2014 / Published: 10 June 2014 Abstract: Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. -
A Pan-Specific Antiserum Produced by a Novel Immunization Strategy
www.nature.com/scientificreports OPEN A pan-specifc antiserum produced by a novel immunization strategy shows a high spectrum of neutralization against neurotoxic snake venoms Kavi Ratanabanangkoon1,2 ✉ , Kae Yi Tan3, Kritsada Pruksaphon4, Chaiya Klinpayom5, José María Gutiérrez6, Naeem H. Quraishi7 & Choo Hock Tan8 ✉ Snakebite envenomation is a neglected tropical disease of high mortality and morbidity largely due to insufcient supply of efective and afordable antivenoms. Snake antivenoms are mostly efective against the venoms used in their production. It is thus crucial that efective and afordable antivenom(s) with wide para-specifcity, capable of neutralizing the venoms of a large number of snakes, be produced. Here we studied the pan-specifc antiserum prepared previously by a novel immunization strategy involving the exposure of horses to a ‘diverse toxin repertoire’ consisting of 12 neurotoxic Asian snake toxin fractions/ venoms from six species. This antiserum was previously shown to exhibit wide para-specifcity by neutralizing 11 homologous and 16 heterologous venoms from Asia and Africa. We now show that the antiserum can neutralize 9 out of 10 additional neurotoxic venoms. Altogether, 36 snake venoms belonging to 10 genera from 4 continents were neutralized by the antiserum. Toxin profles previously generated using proteomic techniques of these 36 venoms identifed α-neurotoxins, β-neurotoxins, and cytotoxins as predominant toxins presumably neutralized by the antiserum. The bases for the wide para-specifcity of the antiserum are discussed. These fndings indicate that it is feasible to generate antivenoms of wide para-specifcity against elapid neurotoxic venoms from diferent regions in the world and raises the possibility of a universal neurotoxic antivenom. -
Biochemical Characterization of Phospholipase A2 (Trimorphin) from the Venom of the Sonoran Lyre Snake Trimorphodon Biscutatus Lambda (Family Colubridae)
Toxicon 44 (2004) 27–36 www.elsevier.com/locate/toxicon Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae) Ping Huang, Stephen P. Mackessy* Department of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA Received 3 December 2003; accepted 23 March 2004 Available online 18 May 2004 Abstract Phospholipases A2 (PLA2), common venom components and bioregulatory enzymes, have been isolated and sequenced from many snake venoms, but never from the venom (Duvernoy’s gland secretion) of colubrid snakes. We report for the first time the purification, biochemical characterization and partial sequence of a PLA2 (trimorphin) from the venom of a colubrid snake, Trimorphodon biscutatus lambda (Sonoran Lyre Snake). Specific phospholipase activity of the purified PLA2 was confirmed by enzyme assays. The molecular weight of the enzyme has been determined by SDS-PAGE and mass spectrometry to be 13,996 kDa. The sequence of 50 amino acid residues from the N-terminal has been identified and shows a high degree of sequence homology to the type IA PLA2s, especially the Asp-49 enzymes. The Cys-11 residue, characteristic of the group IA 2þ PLA2s, and the Ca binding loop residues (Tyr-28, Gly-30, Gly-32, and Asp-49) are conserved. In addition, the His-48 residue, a key component of the active site, is also conserved in trimorphin. The results of phylogenetic analysis on the basis of amino acid sequence homology demonstrate that trimorphin belongs to the type IA family, and it appears to share a close evolutionary relationship with the PLA2s from hydrophiine elapid snakes (sea snakes and Australian venomous snakes). -
Research Journal of Pharmaceutical, Biological and Chemical
ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Diversity of Squamates (Scaled Reptiles) in Selected Urban Areas of Cagayan de Oro City, Misamis Oriental. John C Naelga*, Daniel Robert P Tayag, Hazel L Yañez, and Astrid L Sinco. Xavier University – Ateneo De Cagayan, Kinaadman Resource Center. ABSTRACT This study was conducted to provide baseline information on the local urban diversity of squamates in the selected areas of Barangay Kauswagan, Barangay Balulang, and Barangay FS Catanico in Cagayan de Oro City. These urban sites are close to the river and are likely to be inhabited by reptiles. Each site had at least ten (10) points and was sampled no less than five (5) times in the months of September to November 2016 using homemade traps and the Cruising-Transect walk method. One representative per species was preserved. A total of two hundred sixty-seven (267) individuals, grouped into four (4) families and ten (10) species were found in the sampling areas. Six (6) snake species were identified, namely: Boiga cynodon, Naja samarensis, Chrysopelea paradisi, Gonyosoma oxycephalum, Coelegnathus erythrurus eryhtrurus, and Dendrelaphis pictus; while four (4) species were lizards namely: Gekko gecko, Hemidactylus platyurus, Lamprolepis smaragdina philippinica, and Eutropis multifasciata.In Barangay Kauswagan, Hemidactylus platyurus was the most abundant (RA= 52.94%). In Barangay Balulang, the most abundant species was Hemidactylus platyurus (RA= 43.82%). In Barangay FS Catanico, the most abundant was Hemidactylus platyurus (RA= 40.16%). The area with the highest species diversity was Barangay FS Catanico (H= 1.36), followed by Barangay Balulang (H= 1.28), and Barangay Kauswagan (H= 1.08). -
P. 1 AC27 Inf. 7 (English Only / Únicamente En Inglés / Seulement
AC27 Inf. 7 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 Species trade and conservation IUCN RED LIST ASSESSMENTS OF ASIAN SNAKE SPECIES [DECISION 16.104] 1. The attached information document has been submitted by IUCN (International Union for Conservation of * Nature) . It related to agenda item 19. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC27 Inf. 7 – p. 1 Global Species Programme Tel. +44 (0) 1223 277 966 219c Huntingdon Road Fax +44 (0) 1223 277 845 Cambridge CB3 ODL www.iucn.org United Kingdom IUCN Red List assessments of Asian snake species [Decision 16.104] 1. Introduction 2 2. Summary of published IUCN Red List assessments 3 a. Threats 3 b. Use and Trade 5 c. Overlap between international trade and intentional use being a threat 7 3. Further details on species for which international trade is a potential concern 8 a. Species accounts of threatened and Near Threatened species 8 i. Euprepiophis perlacea – Sichuan Rat Snake 9 ii. Orthriophis moellendorfi – Moellendorff's Trinket Snake 9 iii. Bungarus slowinskii – Red River Krait 10 iv. Laticauda semifasciata – Chinese Sea Snake 10 v. -
First Record of the Southern Philippine Cobra Naja Samarensis on Siquijor Island, Philippines
SEAVR 2020: 036‐037 ISSN: 2424‐8525 Date of publication: 29 October 2020 Hosted online by ecologyasia.com First record of the Southern Philippine Cobra Naja samarensis on Siquijor Island, Philippines Emerson Y. SY & Abner A. BUCOL [email protected] (Sy) Observer: Frank Wronsky. Photograph by: Frank Wronsky. Subject identified by: Emerson Y. Sy. Location: Siquijor Island, Barangay Tambisan, Municipality of San Juan, Siquijor Province, Philippines. Elevation: 10 metres ASL. Habitat: Near the coast and adjacent to farmland. Date and time: 31 July 2015, 14:50 hrs. Identity of subject: Southern Philippine Cobra, Naja samarensis (Reptilia: Squamata: Serpentes: Elapidae). Description of record: A snake, approximately 60 cm in total length, was observed struggling to escape from entanglement in discarded nylon fishing net on the ground (Fig. 1). Fig. 1. © Frank Wronsky Remarks: The snake, locally known as Ugahipon in Cebuano language, and also known as Peters’ Cobra or Samar Cobra, was identified as Naja samarensis based on (i) loreal scale is absent, (ii) one preocular, (iii) three postoculars, (iv) seven upper labials, 3rd and 4th in contact with eye, (v) neck colour is yellow, (vi) dorsal body colour is dark grey, and (iv) skin between dorsal scales is yellow (Taylor, 1922). This endemic species is known to occur in Mindanao faunal region on the following islands: 36 Basilan, Bohol, Camiguin Sur, Dinagat, Leyte, Mindanao, and Samar (Sy and Mangkabong, 2018). A more recent observation of the species on Siquijor was in Barangay Cangasagan, Municipality of San Juan (O. Lalim, pers. comm. to EYS on 4 May 2020). Siquijor is surrounded by four major islands belonging to two faunal regions – Negros and Cebu (Western Visayas faunal region) and Bohol and Mindanao (Mindanao faunal region). -
Endangered Species (Import and Export) Act (Chapter 92A)
1 S 23/2005 First published in the Government Gazette, Electronic Edition, on 11th January 2005 at 5:00 pm. NO.S 23 ENDANGERED SPECIES (IMPORT AND EXPORT) ACT (CHAPTER 92A) ENDANGERED SPECIES (IMPORT AND EXPORT) ACT (AMENDMENT OF FIRST, SECOND AND THIRD SCHEDULES) NOTIFICATION 2005 In exercise of the powers conferred by section 23 of the Endangered Species (Import and Export) Act, the Minister for National Development hereby makes the following Notification: Citation and commencement 1. This Notification may be cited as the Endangered Species (Import and Export) Act (Amendment of First, Second and Third Schedules) Notification 2005 and shall come into operation on 12th January 2005. Deletion and substitution of First, Second and Third Schedules 2. The First, Second and Third Schedules to the Endangered Species (Import and Export) Act are deleted and the following Schedules substituted therefor: ‘‘FIRST SCHEDULE S 23/2005 Section 2 (1) SCHEDULED ANIMALS PART I SPECIES LISTED IN APPENDIX I AND II OF CITES In this Schedule, species of an order, family, sub-family or genus means all the species of that order, family, sub-family or genus. First column Second column Third column Common name for information only CHORDATA MAMMALIA MONOTREMATA 2 Tachyglossidae Zaglossus spp. New Guinea Long-nosed Spiny Anteaters DASYUROMORPHIA Dasyuridae Sminthopsis longicaudata Long-tailed Dunnart or Long-tailed Sminthopsis Sminthopsis psammophila Sandhill Dunnart or Sandhill Sminthopsis Thylacinidae Thylacinus cynocephalus Thylacine or Tasmanian Wolf PERAMELEMORPHIA