Naja Atra) Bites: Determining Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra BITE Study

Total Page:16

File Type:pdf, Size:1020Kb

Naja Atra) Bites: Determining Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra BITE Study toxins Article Wound Infections from Taiwan Cobra (Naja atra) Bites: Determining Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra BITE Study Heng Yeh 1,2, Shi-Ying Gao 1 and Chih-Chuan Lin 1,2,* 1 Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; [email protected] (H.Y.); [email protected] (S.-Y.G.) 2 School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan * Correspondence: [email protected] Abstract: Wound necrosis and secondary infection are common complications after Naja atra bites. Clinical tools to evaluate the infection risk after Taiwan cobra bites are lacking. In this Cobra BITE study, we investigated the prevalence of wound infection, bacteriology, and corresponding antibiotic usage in patients presenting with Taiwan cobra snakebites. Patients with wound infection lacking tissue necrosis were included in developing Cobra BITE score utilizing univariate and multiple logistic regression, as patients with wound necrosis require antibiotics for infection treatment. 8,295,497 emergency department visits occurred in the span of this study, with 195 of those patients being diagnosed as having cobra bites. Of these patients, 23 had wound necrosis, and 30 had wound infection, resulting in a wound infection rate of 27.2% (53/195). Enterococcus faecalis and Morganella morganii were the main bacteria identified in the culture report regardless of whether patients’ wounds had necrosis. As per our Cobra BITE score, the three factors predicting secondary wound infection after cobra bites are hospital admission, a white blood cell count (in 103/µL) × by neu-trophil-lymphocyte ratio value of ≥114.23, and the use of antivenin medication. The area under the receiver operating characteristic curve for the Cobra BITE score system was 0.88; ideal sensitivity Citation: Yeh, H.; Gao, S.-Y.; Lin, and specificity were 0.89 and 0.76. This scoring system enables the assessment of wound infections C.-C. Wound Infections from Taiwan Cobra (Naja atra) Bites: Determining after N. atra bites, and it could be modified and improved in the future for other Naja spp. bites. Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra Keywords: wound infections; snakebites; Taiwan cobra; Naja atra BITE Study. Toxins 2021, 13, 183. https://doi.org/10.3390/ Key Contribution: In this study, we investigate the bacteriology and antibiotic susceptibility in toxins13030183 Taiwan cobra snakebite wounds. We further developed a clinical scoring system (Cobra BITE score) to predict wound infection development and hence the necessity of antibiotic initiation. Physicians Received: 26 January 2021 can use the Cobra BITE score to guide appropriate antibiotic use and offer the medical community a Accepted: 25 February 2021 framework for stratifying the risk of developing a wound infection after a cobra bite. Published: 2 March 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- Taiwan, a subtropical island, has many types of snakes; of these, six species of ven- iations. omous snakes are considered clinically important: Naja atra (Taiwan cobra or Chinese cobra), Bungarus multicinctus, Protobothrops mucrosquamatus (Taiwan habu), Trimeresurus stejnegeri (green bamboo viper), Deinagkistrodon acutus (hundred pacer viper), and Daboia siamensis (eastern Russell’s viper). Among these, N. atra are responsible for approxi- Copyright: © 2021 by the authors. mately 20% of venomous snakebites in Taiwan [1]. While other species of cobra cause Licensee MDPI, Basel, Switzerland. neurological complications, Taiwan cobra bites do not; however, they cause wound tissue This article is an open access article damage/necrosis due to the actions of cytotoxins in the venom, and confer a high risk distributed under the terms and of wound infection [2–4]. To our knowledge, there are no clinical parameters that can conditions of the Creative Commons Attribution (CC BY) license (https:// predict or assesses the clinical severity of the cobra bites patients. Although some studies creativecommons.org/licenses/by/ have investigated the bacteriology of cobra bite wounds [5,6], guidelines for differentiating 4.0/). Toxins 2021, 13, 183. https://doi.org/10.3390/toxins13030183 https://www.mdpi.com/journal/toxins Toxins 2021, 13, x FOR PEER REVIEW 2 of 15 Toxins 2021, 13, 183 infection [2–4]. To our knowledge, there are no clinical parameters that can predict or2 of as- 13 sesses the clinical severity of the cobra bites patients. Although some studies have inves- tigated the bacteriology of cobra bite wounds [5,6], guidelines for differentiating patients basedpatients on basedwhether on they whether have they wound have infections wound infections are lacking. are Wound lacking. necrosis Wound is necrosis a common is a complicationcommon complication associated associated with cobra with bites cobra [2], bites and [2affected], and affected patients patients may be may treated be treated with antibiotics.with antibiotics. Knowledge Knowledge on whether on whether nonnecrotic nonnecrotic cobra cobra wounds wounds are infected are infected is important. is impor- Furthermore,tant. Furthermore, to provide to provide appropriate appropriate antibiotics antibiotics to patients to patients with wound with woundinfections, infections, wound bacteriologywound bacteriology must be must investigated. be investigated. This stu Thisdy investigated study investigated the wound the wound bacteriology bacteriology of ne- crosisof necrosis wounds wounds and infected and infected wounds wounds without without necrosis necrosis to develop to develop a clinically a clinically useful wound useful infectionwound infection prediction prediction rule (Cobra rule (Cobra Bites/Bacteriology Bites/Bacteriology of Infections of Infections in Taiwanese in Taiwanese snake snake En- venomationEnvenomation (Cobra (Cobra BITE) BITE) study study)) to gui to guidede antibiotic antibiotic use use (Figure (Figure 1).1 ). January 2001–May 2017 patients attending ERs (n= 8,295,497). Patients with snakebites: 1128 (0.01%) Patients with Taiwan cobra bites n =195 Wound tissue Nonnecrosis group Wound tissue Necrosis group n = 172 (88.21%) n = 23 (11.79%) Wound infection, if 1) Positive wound/pus cultures, 2) Admission diagnoses of cellulitis, abscess, necrotizing fasciitis Necrotic tissue wound 3) Underwent surgical wound Bacteriology No wound Wound infection Nonnecrosis tissue wound infection group group Bacteriology n = 142 (82.55%) n = 30 (17.44%) Development of a wound infection prediction rule (Cobra BITE score) Clinical application of antibiotic administration for Taiwan cobra bites Figure 1. Study flow diagram for Cobra BITE score. The enrolled cobra bites patients were divided Figure 1. Study flow diagram for Cobra BITE score. The enrolled cobra bites patients were divided into wound tissue necrosis and nonnecrosis group. Patients were defined as having wound necrosis into wound tissue necrosis and nonnecrosis group. Patients were defined as having wound necro- if they met the criteria of positive wound/pus culture or admission diagnoses of cellulitis, abscess, sis if they met the criteria of positive wound/pus culture or admission diagnoses of cellulitis, ab- scess,and necrotizing and necrotizing fasciitis. fasciitis. The nonnecrosis The nonnecrosis wound wound infection infection group group was compared was compared with the with no woundthe no woundinfection infection group to group develop to develop the Cobra the BITE Cobra score. BITE The score. bacteriology The bacteriology of necrosis of wound necrosis and wound nonnecrosis and nonnecrosiswound infection wound groups infection was employed groups was to provideemployed the to clinical provide application the clinical of antibioticapplication administration of antibiotic administrationfor Taiwan cobra for bites. Taiwan cobra bites. 2. Results 2.1. Patient Characteristics In total, data on 195 patients with cobra bites were retrieved from data on 8,295,497 emergency department (ED) visits from January 2001 to May 2017. The Chang Gung Toxins 2021, 13, 183 3 of 13 Research Database (CGRD) contains data on 1128 patients with snakebites (0.01% of total ED visits); men accounted for the majority of this study population (n = 144, 73.8%; mean age: 49.97 ± 17.42 years). Generally, two vials (median) of freeze-dried neurotoxic antivenin (interquartile range: 1–4) were administered to each patient, suggesting that these patients were mostly mildly to moderately envenomed. A total of 74 patients (37.9%) required hospital admission. Of these 195 patients, 53 (27.2%) developed wound infections. Among them, 23 and 30 patients had wound tissue necrosis and nonnecrosis but wound infections. These 53 patients with wound infections received larger antivenin doses (median (interquartile range) = 2 (1–3) vs 2 (1–4), p = 0.002), had more admissions (n = 47 vs 27, p < 0.0001), and had longer hospital stays (3.07 ± 2.67 vs 16.09 ± 13.99, p < 0.0001) than patients without infected wounds, implying that their clinical conditions were severe. Patients with Taiwan cobra bites lacked neurological complications but had the most severely infected wounds, and they underwent the most serious envenomation and surgical procedures, such as debridement, fasciotomy, and graft. Of the 195 patients with cobra bites, 23, 16, and 15 patients received debridement, fasciotomy, and graft. 2.2.
Recommended publications
  • (Equatorial Spitting Cobra) Venom a P
    The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2011 | volume 17 | issue 4 | pages 451-459 Biochemical and toxinological characterization of Naja sumatrana ER P (Equatorial spitting cobra) venom A P Yap MKK (1), Tan NH (1), Fung SY (1) RIGINAL O (1) Department of Molecular Medicine, Center for Natural Products and Drug Research (CENAR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. Abstract: The lethal and enzymatic activities of venom from Naja sumatrana (Equatorial spitting cobra) were determined and compared to venoms from three other Southeast Asian cobras (Naja sputatrix, Naja siamensis and Naja kaouthia). All four venoms exhibited the common characteristic enzymatic activities of Asiatic cobra venoms: low protease, phosphodiesterase, alkaline phosphomonoesterase and L-amino acid oxidase activities, moderately high acetylcholinesterase and hyaluronidase activities and high phospholipase A2. Fractionation of N. sumatrana venom by Resource® S cation exchange chromatography (GE Healthcare, USA) yielded nine major protein peaks, with all except the acidic protein peak being lethal to mice. Most of the protein peaks exhibit enzymatic activities, and L-amino acid oxidase, alkaline phosphomonoesterase, acetylcholinesterase, 5’-nucleotidase and hyaluronidase exist in multiple forms. Comparison of the Resource® S chromatograms of the four cobra venoms clearly indicates that the protein composition of N. sumatrana venom is distinct from venoms of the other two spitting cobras, N. sputatrix (Javan spitting cobra) and N. siamensis (Indochinese spitting cobra). The results support the revised systematics of the Asiatic cobra based on multivariate analysis of morphological characters. The three spitting cobra venoms exhibit two common features: the presence of basic, potentially pharmacologically active phospholipases A2 and a high content of polypeptide cardiotoxin, suggesting that the pathophysiological actions of the three spitting cobra venoms may be similar.
    [Show full text]
  • Cobra Risk Assessment
    Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Cobra (all species) Steve Csurhes and Paul Fisher First published 2010 Updated 2016 Pest animal risk assessment © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Photo: Image from Wikimedia Commons (this image is reproduced under the terms of a GNU Free Documentation License) Invasive animal risk assessment: Cobra 2 Contents Summary 4 Introduction 5 Identity and taxonomy 5 Taxonomy 3 Description 5 Diet 5 Reproduction 6 Predators and diseases 6 Origin and distribution 7 Status in Australia and Queensland 8 Preferred habitat 9 History as a pest elsewhere 9 Uses 9 Pest potential in Queensland 10 Climate match 10 Habitat suitability 10 Broad natural geographic range 11 Generalist diet 11 Venom production 11 Disease 11 Numerical risk analysis 11 References 12 Attachment 1 13 Invasive animal risk assessment: Cobra 3 Summary The common name ‘cobra’ applies to 30 species in 7 genera within the family Elapidae, all of which can produce a hood when threatened. All cobra species are venomous. As a group, cobras have an extensive distribution over large parts of Africa, Asia, Malaysia and Indonesia.
    [Show full text]
  • Fibrinogenolytic Toxin from Indian Monocled Cobra (Naja Kaouthia) Venom
    Fibrinogenolytic toxin from Indian monocled cobra (Naja kaouthia) venom CCHANDRA SEKHAR and DIBAKAR CHAKRABARTY* Department of Biological Sciences, Birla Institute of Technology and Science–Pilani, KK Birla Goa Campus, Zuarinagar, Goa 403 726, India *Corresponding author (Fax, +91-832-255-7033; Email, [email protected], [email protected]) A fibrinogenolytic toxin of molecular weight 6.5 kDa has been purified from the venom of Indian monocled cobra (Naja kaouthia) by repeated cation exchange chromatography on CM-sephadex C-50. The purified toxin did not show any phospholipase activity but was mildly hemolytic on human erythrocytes. This toxin, called Lahirin, cleaved fibrinogen in a dose- and time-dependent manner. The digestion process apparently started with the Aα chain, and gradually other lower-molecular-weight chains were also cleaved to low-molecular-weight peptides. The fibrinolytic activity was completely lost after treatment with ethylene di-amine tetra acetic acid (EDTA). However, exposure to 100°C for 1 min or pre-treatment with phenyl methyl sulfonyl fluoride (PMSF) did not affect the fibrinolytic activity. Cleavage of di-sulphide bonds by β-mercaptoethanol or unfolding the protein with 4 M urea caused complete loss of activity of pure Lahirin. [Chandra Sekhar C and Chakrabarty D 2011 Fibrinogenolytic toxin from Indian monocled cobra (Naja kaouthia) venom. J. Biosci. 36 355–361] DOI 10.1007/s12038-011-9068-3 1. Introduction venom. However, in the course of the present study, these authors came across several anticoagulant/fibrinogenolytic Monocled and spectacled cobras are the most frequently factors of wide-ranging molecular weights (MWs) in mono- encountered venomous snakes in India.
    [Show full text]
  • Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja Atra) from Ten Populations in Mainland China
    Asian Herpetological Research 2019, 10(1): 32–40 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.180041 Identifying Intraspecific Variation in Venom Yield of Chinese Cobra (Naja atra) from Ten Populations in Mainland China Jianfang GAO1*, Yin YIN1, Yanfu QU2, Jin WANG2, Longhui LIN1, Hongliang LU1 and Xiang JI2 1 Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China 2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China Abstract Detailed information on venom yield is helpful in preparing antivenoms and treating snakebites, but such information is lacking for many species of venomous snakes. The Chinese cobra (Naja atra) is a large sized, venomous snake commonly found in southeastern China, where it causes a heavy burden of snakebites. To examine the effects of various factors (morphology, sex, age, season, and geographical origin) on the venom yield in this snake, we collected venom samples of 446 individuals (426 adults and 20 neonates) from 10 populations of N. atra over an eight- year period. We used two variables, lyophilized venom mass (venom yield) and solid content of venom (% solids), to quantify the venom yield. We used linear regression analysis to check if venom yield was related to morphological factors, one-way ANOVA and one-way ANCOVA to detect the sexual, ontogenetic, and geographic variation in venom yield, and repeated-measures ANOVA to examine seasonal shifts in venom yield. Our results indicate that venom yield of N. atra is positively related to the morphological traits examined, with male snakes expelling more venom than females.
    [Show full text]
  • Quantitative Characterization of the Hemorrhagic, Necrotic, Coagulation
    Hindawi Journal of Toxicology Volume 2018, Article ID 6940798, 8 pages https://doi.org/10.1155/2018/6940798 Research Article Quantitative Characterization of the Hemorrhagic, Necrotic, Coagulation-Altering Properties and Edema-Forming Effects of Zebra Snake (Naja nigricincta nigricincta)Venom Erick Kandiwa,1 Borden Mushonga,1 Alaster Samkange ,1 and Ezequiel Fabiano2 1 School of Veterinary Medicine, Faculty of Agriculture and Natural Resources, Neudamm Campus, University of Namibia, P. Bag 13301, Pioneers Park, Windhoek, Namibia 2Department of Wildlife Management and Ecotourism, Katima Mulilo Campus, Faculty of Agriculture and Natural Resources, University of Namibia, P. Bag 1096, Ngweze, Katima Mulilo, Namibia Correspondence should be addressed to Alaster Samkange; [email protected] Received 30 May 2018; Revised 5 October 2018; Accepted 10 October 2018; Published 24 October 2018 Academic Editor: Anthony DeCaprio Copyright © 2018 Erick Kandiwa et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tis study was designed to investigate the cytotoxicity and haemotoxicity of the Western barred (zebra) spitting cobra (Naja nigricincta nigricincta) venom to help explain atypical and inconsistent reports on syndromes by Namibian physicians treating victims of human ophidian accidents. Freeze-dried venom milked from adult zebra snakes was dissolved in phosphate bufered saline (PBS) for use in this study. Haemorrhagic and necrotic activity of venom were studied in New Zealand albino rabbits. Oedema-forming activity was investigated in 10-day-old Cobb500 broiler chicks. Procoagulant and thrombolytic activity was investigated in adult Kalahari red goat blood in vitro.
    [Show full text]
  • Long-Term Effects of Snake Envenoming
    toxins Review Long-Term Effects of Snake Envenoming Subodha Waiddyanatha 1,2, Anjana Silva 1,2 , Sisira Siribaddana 1 and Geoffrey K. Isbister 2,3,* 1 Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura 50008, Sri Lanka; [email protected] (S.W.); [email protected] (A.S.); [email protected] (S.S.) 2 South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka 3 Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW 2308, Australia * Correspondence: [email protected] or [email protected]; Tel.: +612-4921-1211 Received: 14 March 2019; Accepted: 29 March 2019; Published: 31 March 2019 Abstract: Long-term effects of envenoming compromise the quality of life of the survivors of snakebite. We searched MEDLINE (from 1946) and EMBASE (from 1947) until October 2018 for clinical literature on the long-term effects of snake envenoming using different combinations of search terms. We classified conditions that last or appear more than six weeks following envenoming as long term or delayed effects of envenoming. Of 257 records identified, 51 articles describe the long-term effects of snake envenoming and were reviewed. Disability due to amputations, deformities, contracture formation, and chronic ulceration, rarely with malignant change, have resulted from local necrosis due to bites mainly from African and Asian cobras, and Central and South American Pit-vipers. Progression of acute kidney injury into chronic renal failure in Russell’s viper bites has been reported in several studies from India and Sri Lanka. Neuromuscular toxicity does not appear to result in long-term effects.
    [Show full text]
  • Antimicrobial Peptides in Reptiles
    Pharmaceuticals 2014, 7, 723-753; doi:10.3390/ph7060723 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Antimicrobial Peptides in Reptiles Monique L. van Hoek National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, MS1H8, 10910 University Blvd, Manassas, VA 20110, USA; E-Mail: [email protected]; Tel.: +1-703-993-4273; Fax: +1-703-993-7019. Received: 6 March 2014; in revised form: 9 May 2014 / Accepted: 12 May 2014 / Published: 10 June 2014 Abstract: Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development.
    [Show full text]
  • Snake Venomics of Monocled Cobra (Naja Kaouthia) and Investigation of Human Igg Response Against Venom Toxins
    Downloaded from orbit.dtu.dk on: May 08, 2019 Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins Laustsen, Andreas Hougaard; Gutiérrez, José María; Lohse, Brian; Rasmussen, Arne R.; Fernández, Julián; Milbo, Christina; Lomonte, Bruno Published in: Toxicon Link to article, DOI: 10.1016/j.toxicon.2015.03.001 Publication date: 2015 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Laustsen, A. H., Gutiérrez, J. M., Lohse, B., Rasmussen, A. R., Fernández, J., Milbo, C., & Lomonte, B. (2015). Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon, 99, 23-35. https://doi.org/10.1016/j.toxicon.2015.03.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. *Manuscript Click here to view linked References 1 2 Snake venomics of monocled cobra (Naja kaouthia) and 3 investigation of human IgG response against venom toxins 4 5 Andreas H.
    [Show full text]
  • Biochemical Characterization of Phospholipase A2 (Trimorphin) from the Venom of the Sonoran Lyre Snake Trimorphodon Biscutatus Lambda (Family Colubridae)
    Toxicon 44 (2004) 27–36 www.elsevier.com/locate/toxicon Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae) Ping Huang, Stephen P. Mackessy* Department of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA Received 3 December 2003; accepted 23 March 2004 Available online 18 May 2004 Abstract Phospholipases A2 (PLA2), common venom components and bioregulatory enzymes, have been isolated and sequenced from many snake venoms, but never from the venom (Duvernoy’s gland secretion) of colubrid snakes. We report for the first time the purification, biochemical characterization and partial sequence of a PLA2 (trimorphin) from the venom of a colubrid snake, Trimorphodon biscutatus lambda (Sonoran Lyre Snake). Specific phospholipase activity of the purified PLA2 was confirmed by enzyme assays. The molecular weight of the enzyme has been determined by SDS-PAGE and mass spectrometry to be 13,996 kDa. The sequence of 50 amino acid residues from the N-terminal has been identified and shows a high degree of sequence homology to the type IA PLA2s, especially the Asp-49 enzymes. The Cys-11 residue, characteristic of the group IA 2þ PLA2s, and the Ca binding loop residues (Tyr-28, Gly-30, Gly-32, and Asp-49) are conserved. In addition, the His-48 residue, a key component of the active site, is also conserved in trimorphin. The results of phylogenetic analysis on the basis of amino acid sequence homology demonstrate that trimorphin belongs to the type IA family, and it appears to share a close evolutionary relationship with the PLA2s from hydrophiine elapid snakes (sea snakes and Australian venomous snakes).
    [Show full text]
  • P. 1 AC27 Inf. 7 (English Only / Únicamente En Inglés / Seulement
    AC27 Inf. 7 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 Species trade and conservation IUCN RED LIST ASSESSMENTS OF ASIAN SNAKE SPECIES [DECISION 16.104] 1. The attached information document has been submitted by IUCN (International Union for Conservation of * Nature) . It related to agenda item 19. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC27 Inf. 7 – p. 1 Global Species Programme Tel. +44 (0) 1223 277 966 219c Huntingdon Road Fax +44 (0) 1223 277 845 Cambridge CB3 ODL www.iucn.org United Kingdom IUCN Red List assessments of Asian snake species [Decision 16.104] 1. Introduction 2 2. Summary of published IUCN Red List assessments 3 a. Threats 3 b. Use and Trade 5 c. Overlap between international trade and intentional use being a threat 7 3. Further details on species for which international trade is a potential concern 8 a. Species accounts of threatened and Near Threatened species 8 i. Euprepiophis perlacea – Sichuan Rat Snake 9 ii. Orthriophis moellendorfi – Moellendorff's Trinket Snake 9 iii. Bungarus slowinskii – Red River Krait 10 iv. Laticauda semifasciata – Chinese Sea Snake 10 v.
    [Show full text]
  • Selective Toxicity of Caspian Cobra (Naja Oxiana) Venom on Liver Cancer Cell Mitochondria
    460 Asian Pac J Trop Biomed 2017; 7(5): 460–465 HOSTED BY Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Original article http://dx.doi.org/10.1016/j.apjtb.2017.01.021 Selective toxicity of Caspian cobra (Naja oxiana) venom on liver cancer cell mitochondria Enayatollah Seydi1,2, Shabnam Babaei1, Amir Fakhri1, Jalal Pourahmad1* 1Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran 2Department of Occupational Health Engineering, Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran ARTICLE INFO ABSTRACT Article history: Objective: To explore the cytotoxicity effects of Caspian cobra (Naja oxiana or Received 5 Sep 2016 N. oxiana) venom on hepatocytes and mitochondria obtained from the liver of HCC rats. Received in revised form 19 Oct, 2nd Methods: In this study, HCC was induced by diethylnitrosamine (DEN), as an initiator, revised form 24 Oct, 3rd revised form and 2-acetylaminofluorene (2-AAF), as a promoter. Rat liver hepatocytes and mito- 21 Nov 2016 chondria for evaluation of the selective cytotoxic effect of N. oxiana venom were isolated Accepted 25 Dec 2016 and mitochondria and cellular parameters related to apoptosis signaling were then Available online 12 Jan 2017 determined. Results: Our results showed a raise in mitochondrial reactive oxygen species (ROS) level, swelling in mitochondria, mitochondrial membrane potential (Djm) collapse and Keywords: release of cytochrome c after exposure of mitochondria only isolated from the HCC group Naja oxiana with the crude venom of the N.
    [Show full text]
  • List of Reptile Species in Hong Kong
    List of Reptile Species in Hong Kong Family No. of Species Common Name Scientific Name Order TESTUDOFORMES Cheloniidae 4 Loggerhead Turtle Caretta caretta Green Turtle Chelonia mydas Hawksbill Turtle Eretmochelys imbricata Olive Ridley Turtle Lepidochelys olivacea Dermochelyidae 1 Leatherback Turtle Dermochelys coriacea Emydidae 1 Red-eared Slider * Trachemys scripta elegans Geoemydidae 3 Three-banded Box Turtle Cuora trifasciata Reeves' Turtle Mauremys reevesii Beale's Turtle Sacalia bealei Platysternidae 1 Big-headed Turtle Platysternon megacephalum Trionychidae 1 Chinese Soft-shelled Turtle Pelodiscus sinensis Order SQUAMATA Suborder LACERTILIA Agamidae 1 Changeable Lizard Calotes versicolor Lacertidae 1 Grass Lizard Takydromus sexlineatus ocellatus Scincidae 11 Chinese Forest Skink Ateuchosaurus chinensis Long-tailed Skink Eutropis longicaudata Chinese Skink Plestiodon chinensis chinensis Five-striped Blue-tailed Skink Plestiodon elegans Blue-tailed Skink Plestiodon quadrilineatus Vietnamese Five-lined Skink Plestiodon tamdaoensis Slender Forest Skink Scincella modesta Reeve's Smooth Skink Scincella reevesii Brown Forest Skink Sphenomorphus incognitus Indian Forest Skink Sphenomorphus indicus Chinese Waterside Skink Tropidophorus sinicus Varanidae 1 Common Water Monitor Varanus salvator Dibamidae 1 Bogadek's Burrowing Lizard Dibamus bogadeki Gekkonidae 8 Four-clawed Gecko Gehyra mutilata Chinese Gecko Gekko chinensis Tokay Gecko Gekko gecko Bowring's Gecko Hemidactylus bowringii Brook's Gecko* Hemidactylus brookii House Gecko* Hemidactylus
    [Show full text]