Nitric Oxide Releasing Amino Acid Ester
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp. -
Supplementary Information
Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262 -
Drug Antioxidant Effects a Basis for Drug Selection?
REVIEW ARTI LE Drugs 42 (4): 569-605, 1991 00 12-6667/ 91/ 00 I0-0569/ $ 18.50/0 © Adis International Limited. All rights reserved. DRU161 Drug Antioxidant Effects A Basis for Drug Selection? Barry Halliwell Pulmonary Medicine, UC Davis Medical Center, Sacramento , California, USA Contents 570 Summary 570 I. What is a Free Radical? 570 1.1 Definition of a Free Radical 57/ 1.2 Hydroxyl Radical 572 1.3 Formation of Oxygen Radicals In Vivo 574 1.4 Reactive Oxygen Species 575 1.5 Transition Metal Ions and Free Radical Reactions 575 1.6 Antioxidant Defence In Vivo: Intracellular 576 1.7 Antioxidant Defence In Vivo: Extracellular 579 2. Free Radical Damage to Cells and the Protective Ability of Antioxidants 579 2.1 Mechanisms of Cell Damage: The Molecular Targets 58/ 2.2 How to Characterise an Antioxidant 5 2 3. The Role of Free Radicals in Human Disease 582 3.1 Causation of Disease 582 3.2 A Significant Consequence of Disease Pathology 584 3.3 A General Consequence of Tissue Injury 585 3.4 What Can We Expect from Antioxidant Therapy? 586 586 4. Antioxidants in Disease Therapy 586 4.1 Use of Naturally Occurring Antioxidants and Derived Compounds 587 4.1.1 Superoxide Dismutase 587 4.1.2 Superoxide Dismutase 'Mimics' 588 4.1.3 a-Tocopherol 589 4.1.4 Ascorbic Acid (Vitamin C) 589 4.1.5 Adenosine 589 4.1.6 Lactoferrin 590 4.1.7 Nicotinamide 59/ 4.1.8 Glutathione and its Precursors 59/ 4.1.9 Carotenoids 59/ 4.2 'Synthetic' Antioxidants 59/ 4.2.1 Mercaptopropionylglycine and Other Thiols 592 4.2.2 Ebselen: A Glutathione Peroxidase Mimic? 593 4.2.3 Allopurinol, Oxypurinol and Other Xanth ine Oxidase Inhibitors 593 4.2.4 Inhibitors of the Generation of Reactive Oxygen Species by Phagocytes 595 4.2.5 Chelating Agents: Deferoxamine 595 4.2.6 Other Iron Chelators: Hydroxypyridones 596 4.2.7 Other Iron Chelators: ICRF-187 and the 'Lazaroids' 4.2.8 Probucol and Other Chain-Breaking Antioxidants 570 Drugs 42 (4) 1991 596 5. -
(12) United States Patent (10) Patent No.: US 6,469,065 B1 Garvey Et Al
USOO6469.065B1 (12) United States Patent (10) Patent No.: US 6,469,065 B1 Garvey et al. (45) Date of Patent: Oct. 22, 2002 (54) NITROSATED AND NITROSYLATED 5,612,314 A 3/1997 Stamler et al. C-ADRENERGIC RECEPTOR ANTAGONIST, 5,635,204 A 6/1997 Gevirtz et al. .............. 424/449 COMPOSITIONS AND METHODS OF USE 5,646,181 A 7/1997 Fung et al. 5,648,393 A 7/1997 Stamler et al. 5,698,589 A 12/1997 Allen (75) Inventors: David S. Garvey, Dover; Joseph D. 5,731,339 A 3/1998 Lowrey Schroeder, Dedham, both of MA (US); 5,767,160 A 6/1998 Kaesemeyer Inigo Saenez de Tejada, Madrid (ES); 5,773,457 A 6/1998 Nahoum Ricky D. Gaston, Malden, MA (US); 5,789.442 A 8/1998 Garfield et al. Tatiana E. Shelekhin, Acton, MA 5,877,216 A 3/1999 Place et al. (US); Tiansheng Wang, Concord, MA (US) FOREIGN PATENT DOCUMENTS EP O346297 12/1989 (73) Assignee: NitroMed, Inc., Bedford, MA (US) EP O357581 3/1990 EP O432199 6/1991 (*) Notice: Subject to any disclaimer, the term of this FR 2547SO1 12/1984 patent is extended or adjusted under 35 JP 8O26962 1/1998 U.S.C. 154(b) by 0 days. WO 97/27749 * 8/1997 WO 97.27749 8/1997 WO 97.42.946 11/1997 (21) Appl. No.: 09/387,724 WO 9852569 11/1998 Filed: Sep. 1, 1999 WO 99.01132 1/1999 (22) WO 9907353 2/1999 WO 99.07695 2/1999 Related U.S. -
Customs Tariff - Schedule
CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2020 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels. -
Review Article
Free Radical Biology & Medicine, Vol. 33, No. 6, pp. 774–797, 2002 Copyright © 2002 Elsevier Science Inc. Printed in the USA. All rights reserved 0891-5849/02/$–see front matter PII S0891-5849(02)00956-5 Review Article STRUCTURE AND FUNCTION OF XANTHINE OXIDOREDUCTASE: WHERE ARE WE NOW? ROGER HARRISON Department of Biology and Biochemistry, University of Bath, Bath, UK (Received 11 February 2002; Accepted 16 May 2002) Abstract—Xanthine oxidoreductase (XOR) is a complex molybdoflavoenzyme, present in milk and many other tissues, which has been studied for over 100 years. While it is generally recognized as a key enzyme in purine catabolism, its structural complexity and specialized tissue distribution suggest other functions that have never been fully identified. The publication, just over 20 years ago, of a hypothesis implicating XOR in ischemia-reperfusion injury focused research attention on the enzyme and its ability to generate reactive oxygen species (ROS). Since that time a great deal more information has been obtained concerning the tissue distribution, structure, and enzymology of XOR, particularly the human enzyme. XOR is subject to both pre- and post-translational control by a range of mechanisms in response to hormones, cytokines, and oxygen tension. Of special interest has been the finding that XOR can catalyze the reduction of nitrates and nitrites to nitric oxide (NO), acting as a source of both NO and peroxynitrite. The concept of a widely distributed and highly regulated enzyme capable of generating both ROS and NO is intriguing in both physiological and pathological contexts. The details of these recent findings, their pathophysiological implications, and the requirements for future research are addressed in this review. -
Adrenoceptor Subtype 1Ian Marshall, Richard P
Brifish Journal of Pharmacology (I995) 115, 781 - 786 1995 Stockton Press All rights reserved 0007-1188/95 $12.00 X Noradrenaline contractions of human prostate mediated by aClA- (cxlc) adrenoceptor subtype 1Ian Marshall, Richard P. Burt & *Christopher R. Chapple Department of Pharmacology, University College London, Gower Street, London WC1E 6BT and *Department of Urology, The Royal Hallamshire Hospital, Glossop Road, Sheffield SlO 2JF 1 The subtype of a1-adrenoceptor mediating contractions of human prostate to noradrenaline was characterized by use of a range of competitive and non-competitive antagonists. 2 Contractions of the prostate to either noradrenaline (pD2 5.5), phenylephrine (pD2 5.1) or methoxamine (pD2 4.4) were unaltered by the presence of neuronal and extraneuronal uptake blockers. Noradrenaline was about 3 and 10 times more potent than phenylephrine and methoxamine respectively. Phenylephrine and methoxamine were partial agonists. 3 Pretreatment with the alkylating agent, chlorethylclonidine (10-4 M) shifted the noradrenaline concentration-contraction curve about 3 fold to the right and depressed the maximum response by 31%. This shift is 100 fold less than that previously shown to be produced by chlorethylclonidine under the same conditions on OlB-adrenoceptor-mediated contractions. 4 Cumulative concentration-contraction curves for noradrenaline were competitively antagonized by WB 4101 (pA2 9.0), 5-methyl-urapidil (pA2 8.6), phentolamine (pA2 7.6), benoxathian (pA2 8.5), spiperone (pA2 7.3), indoramin (pA2 8.2) and BMY 7378 (pA2 6.6). These values correlated best with published pKi values for their displacement of [3H]-prazosin binding on membranes expressing cloned oczc-adrenoceptors and poorly with values from cloned lb- and cld-adrenoceptors. -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
(12) United States Patent (10) Patent No.: US 9,642,912 B2 Kisak Et Al
USOO9642912B2 (12) United States Patent (10) Patent No.: US 9,642,912 B2 Kisak et al. (45) Date of Patent: *May 9, 2017 (54) TOPICAL FORMULATIONS FOR TREATING (58) Field of Classification Search SKIN CONDITIONS CPC ...................................................... A61K 31f S7 (71) Applicant: Crescita Therapeutics Inc., USPC .......................................................... 514/171 Mississauga (CA) See application file for complete search history. (72) Inventors: Edward T. Kisak, San Diego, CA (56) References Cited (US); John M. Newsam, La Jolla, CA (US); Dominic King-Smith, San Diego, U.S. PATENT DOCUMENTS CA (US); Pankaj Karande, Troy, NY (US); Samir Mitragotri, Santa Barbara, 5,602,183 A 2f1997 Martin et al. CA (US); Wade A. Hull, Kaysville, UT 5,648,380 A 7, 1997 Martin 5,874.479 A 2, 1999 Martin (US); Ngoc Truc-ChiVo, Longueuil 6,328,979 B1 12/2001 Yamashita et al. (CA) 7,001,592 B1 2/2006 Traynor et al. 7,795,309 B2 9/2010 Kisak et al. (73) Assignee: Crescita Therapeutics Inc., 8,343,962 B2 1/2013 Kisak et al. Mississauga (CA) 8,513,304 B2 8, 2013 Kisak et al. 8,535,692 B2 9/2013 Pongpeerapat et al. (*) Notice: Subject to any disclaimer, the term of this 9,308,181 B2* 4/2016 Kisak ..................... A61K 47/12 patent is extended or adjusted under 35 2002fOOO6435 A1 1/2002 Samuels et al. 2002fOO64524 A1 5, 2002 Cevc U.S.C. 154(b) by 204 days. 2005, OO 14823 A1 1/2005 Soderlund et al. This patent is Subject to a terminal dis 2005.00754O7 A1 4/2005 Tamarkin et al. -
(12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO). -
(12) United States Patent (10) Patent No.: US 6,784,177 B2 Cohn Et Al
USOO6784177B2 (12) United States Patent (10) Patent No.: US 6,784,177 B2 Cohn et al. (45) Date of Patent: Aug. 31, 2004 (54) METHODS USING HYDRALAZINE Massie et al., The American Journal of Cardiology, COMPOUNDS AND SOSORBIDE 40:794-801 (1977). DINTRATE OR ISOSORBIDE Kaplan et al., Annals of Internal Medicine, 84:639-645 MONONTRATE (1976). Bauer et al., Circulation, 84(1):35-39 (1991). (75) Inventors: Jay N. Cohn, Minneapolis, MN (US); The SOLVD Investigators, The New England Journal of Medicine, 327(10):685–691 (1992). Peter Carson, Chevy Chase, MD (US) Ziesche et al., Circulation, 87(6):VI56-VI64 (1993). Rector et al., Circulation, 87(6):VI71-VI77 (1993). (73) Assignee: Nitro Med, Inc., Bedford, MA (US) Carson et al., Journal of Cardiac Failure, 5(3):178-187 (Sep. 10, 1999). (*) Notice: Subject to any disclaimer, the term of this Dries et al, The New England Journal of Medicine, patent is extended or adjusted under 35 340(8):609-616 (Feb. 25, 1999). U.S.C. 154(b) by 18 days. Freedman et al, Drugs, 54 (Supplement 3):41-50 (1997). Sherman et al., Cardiologia, 42(2):177-187 (1997). (21) Appl. No.: 10/210,113 Biegelson et al., Coronary Artery Disease, 10:241-256 (1999). (22) Filed: Aug. 2, 2002 Rudd et al, Am. J. Physiol., 277(46):H732–H739 (1999). (65) Prior Publication Data Hammerman et al, Am. J. Physiol., 277(46):H1579–1592 (1999). US 2004/0023967 A1 Feb. 5, 2004 LoScalzo et al., Transactions of the American and Climato logical ASS., 111:158-163 (2000). -
Adrenoreceptors F
Stimulation of in vitro ovulation and contraction of brook trout (Salvelinus fontinalis) follicles by adrenaline through \g=a\-adrenoreceptors F. W. Goetz and J. A. Bradley University of Notre Dame, Department of Biological Sciences, Notre Dame, ID 46556, USA The effects of adrenaline and adrenoreceptor antagonists on ovulation and follicle wall contraction were investigated in brook trout (Salvelinus fontinalis) follicles using in vitro incubation systems. Adrenaline significantly stimulated a dose-dependent increase in ovu- lation and follicle contraction at concentrations between 1.0 and 100 \g=m\moll \m=-\1 The ovulatory and contractile effects of 10 \g=m\mol adrenaline l \m=-\1 could be blocked by the \g=a\1-adrenoreceptorantagonists WB-4101 and benoxathian, and by the \g=a\2-antagonist yohim- bine. WB-4101 was the most potent blocker, significantly inhibiting ovulation and con- traction at 1.0 \g=m\mol l\m=-\1. In contrast, the \g=b\-antagonistpropranolol (100\p=n-\0.001\g=m\moll\m=-\1) was totally ineffective in blocking adrenaline-induced ovulation and follicle contraction. The results indicate that there is a strong correlation between the effects of adrenaline on ovulation and contraction. In addition, the antagonist studies indicate that adrena- line stimulates ovulation and follicle contraction of brook trout follicles through \g=a\-adrenoreceptors. Introduction follicles in smaller mammals has not been reported. In addition, while the perfused ovary system may be free of extraovarian Evidence that catecholamines play a direct role in the control of influences, it is still possible that the effects of certain agents in vertebrate ovulation comes from a variety of investigations this system act through vascular changes in the follicle rather (Goetz et al, 1991).