RCF Packaging / Recycled Fiber Lines for Packaging Grades

Total Page:16

File Type:pdf, Size:1020Kb

RCF Packaging / Recycled Fiber Lines for Packaging Grades RCF Packaging Recycled fiber lines for packaging paper www.andritz.com We accept the challenge! The challenge: The solution: High-quality packaging paper from recycled fiber Recycled fiber lines for all packaging grades In the production of paper from recycled fibers, a shift is becoming evident in FibreSolve FSR LC pulper demands and requirements. This is particularly true in the production of packaging Benefits Lowest power consumption paper, which is regarded as one of the growth areas in the global paper industry. and best disintegration of Process competence based on: the recovered paper Globally standardized technology ANDRITZ is one of the leading suppliers of The ANDRITZ RCF Packaging systems RCF Packaging solutions Pilot plant and pulp testing laboratory complete systems for processing recycled comprise all of the equipment required – Innovative systems offering conser- Skilled and experienced team paper – OCC (old corrugated containers) and from pulping to storage, including sludge vation of resources and generating FibreFlow drum FFD pulper deinked pulp – as a valuable raw material for and reject treatment. excellent stock qualities Gentle pulping concept High availability of key equipment: all kinds of packaging paper applications. High availability of the equipment, with efficient removal of Less maintenance The requirements of the final product Technological challenges resulting in lower operating and coarse contaminants with Fewer spare parts depend very much on the prevailing mar- Equipment and process must be designed maintenance costs minimum fiber loss ket conditions. Furthermore, the quality of for minimum fiber loss Best paper quality, while maintaining Energy savings due to: the recovered paper available has a con- No adverse effect on final pulp quality as fiber strength properties throughout the ModuScreen screen family Optimized designs siderable influence on the configuration of a result of increasing contaminant loads process Economic screens with Best paper quality through: the RCF (recycled fiber) plant. For cheaper and lower fiber quality in the incoming Smart concepts to keep fiber loss to a innovative basket/rotor raw material mixes, there are also techni- waste paper minimum options for maximum eli- Cleaner pulp and better strength properties cal and process solutions available today mination of dirt and stickies Reduction in paper weight and increase Process competency from engineering to Low fiber loss due to: that can use highly contaminated, low- in paper strength start-up by a strong and dedicated team Advanced technologies in fiber and debris grade furnishes without this having any Efficient separation and reuse of waste Modern reject handling solutions AhlCleaner high-density, light- separation detrimental effect on the final paper quality. paper contaminants weight and throughflow cleaners Efficient removal of con- Overview of typical furnish and paper/board products taminants, from coarse particles to small debris Furnish Paper grade OCC Liner board CompaDis CDI disperser Mixed waste Corrugated medium Reduced specific power Liquid packaging board ANDRITZ RCF Packaging solutions Cardboard input and improved Mixed office waste Folding boxboard development of strength Magazines Duplex board properties Example of an RCF Packaging system for testliner Example of an RCF Packaging system for corrutated medium RCF Packaging Extensive equipment and process know-how Integrated rejects handling Engineering competence The reject handling system ensures in-line collection and process- The ANDRITZ approach is a holistic one: only by knowing what is ing of all rejects accumulating at the respective discharge points. needed will we be able to offer the best solutions according to our Major individual operations, such as shredding, metal and heavy customers’ requirements. ANDRITZ’s in-depth process know-how particle separation, compacting, drying, and either pelleting and is complemented by a broad range of engineering services, from combustion or gasification can be combined according to the basic/detail plant engineering, 3D planning, to electrical and con- customers’ needs. ANDRITZ’s extensive know-how in the field of trol engineering, DCS programming, and factory acceptance tests. recycled fiber processing and rejects treatment helps close the Additional project support packages range from basic project man- recycling loops and conserve natural resources. agement to erection work supervision, start-up and commissioning, to complete turnkey responsibilities. ANDRITZ AG ANDRITZ (China) Ltd. ANDRITZ Ltd. Vienna, Austria Foshan, Guangdong, China Lachine, QC, Canada ANDRITZ AG Phone: +43 50805 0 Phone: +86 (757) 8202 7602 Phone: +1 (514) 631 7700 Stattegger Strasse 18 8045 Graz, Austria ANDRITZ Oy ANDRITZ K.K. ANDRITZ Brasil Ltda. Phone: +43 (316) 6902 0 Kotka, Finland Tokyo, Japan Curitiba, Brazil [email protected] Phone: +358 (0)20 450 5555 Phone: +81 (3) 3536 9700 Phone: +55 (41) 2103 7601 www.andritz.com All data, information, statements, photographs, and graphic illustrations in this leaflet are without any obligation and raise no liabilities to or form part of any sales contracts of ANDRITZ AG or any affiliates for equipment and/or systems referred to herein. © ANDRITZ AG 2015. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ANDRITZ AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws. ANDRITZ AG, Stattegger Strasse 18, 8045 Graz, Austria. PPF.RCF-Pck.01.en.05.15.
Recommended publications
  • Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science Thesis in the Master Degree Programme Materials and Nanotechnology
    Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science thesis in the Master Degree Programme Materials and Nanotechnology MARIA GUNNARSSON Department of Chemical and Biological Engineering Division of Organic chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Report No. 2012:001 Decreased wet strength in retorted liquid packaging board Master of Science Thesis MARIA GUNNARSSON SUPERVISOR: Gunnar Westman EXAMINER: Gunnar Westman Department of Chemical and Biological engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2012 Decreased wet strength in retorted liquid packaging board MARIA GUNNARSSON ©MARIA GUNNARSSON, 2012 Report no 2012:001 Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31-7721000 Cover: The Tetra Recart packaging. Department of Chemical and Biological Engineering Göteborg, Sweden 2012 Decreased wet strength in retorted liquid packaging board Maria Gunnarsson Department of Chemical and Biological Engineering Division of Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY ABSTRACT The Tetra Recart is a retortable food packaging, suitable for high viscous products, making it able to replace most food cans used for storage of food today. The packaging is built up by a paperboard, consisting of an unbleached bottom layer and a bleached top layer. Polymers and aluminium further cover the paperboard in order to protect the food against moisture and light, causing degradation. During the retorting process, the packaging develops a certain wet strength making it hard to disintegrate the pulp fibres in the board. The phenomenon of the developed wet strength is of high interest when inventing and developing new packaging materials. To investigate why and how the phenomenon occurs, a series of trials were made through production of laboratory sheets with subsequent disintegration.
    [Show full text]
  • A Guide to Packaging Material Flows and Terminology Pollution Is Nothing but the Resources We Are Not Harvesting
    A Guide to PAckAGinG MAteriAl Flows And terMinoloGy Pollution is nothing but the resources we are not harvesting. We allow them to disperse because we’ve been ignorant of their value. R. Buckminster Fuller A Guide to Packaging Material Flows and Terminology The work upon which this publication is based was funded, in whole, through grants awarded by the California Department of Conservation and GreenBlue through its Sustainable Packaging Coalition®. The statements and conclusions of this report are those of GreenBlue and not necessarily those of the Department of Conservation or its employees. The Department makes no warranties, express or implied, and assumes no liability for the information contained in the succeeding text. The Guide to Packaging Material Flows and Terminology is issued “as is” and with all faults. We give no express warranties, guarantees or conditions. You may have additional rights under local laws which this disclaimer cannot change. However, to the extent permitted under applicable laws, the Green Blue Institute makes no warranty of any kind, either express or implied, including but not limited to, any implied warranties of merchantability, fitness for a particular purpose or non–infringement. The Scrap Specifications Circular 2008 is © 2008 Institute of Scrap Recycling Industries, Inc. (ISRI), 1615 L Street, N.W., Suite 600, Washington, DC 20036, and portions were used by permission. ISRI’s Scrap Specifications Circular is subject to change; therefore, readers should contact ISRI or go to http://www.isri. org/specs to make certain they are reading the most recent version of the Scrap Specifications Circular. Closing the Loop: A Guide to Packaging Material Flows and Terminology Closing the Loop: A Guide to Packaging Material Flows and Terminology was developed by GreenBlue®, a nonprofit institute that works with the private sector to enable the positive redesign of industrial systems.
    [Show full text]
  • Staff Paper Series Number 206 : United States Wood-Based Industry: a Review of Structure and Organization
    UNITED STATES WOOD-BASED INDUSTRY: A REVIEW OF STRUCTURE AND ORGANIZATION by Paul V. Ellefson and Michael A. Kilgore January 2010 STAFF PAPER SERIES NUMBER 206 Department of Forest Resources College of Food, Agricultural and Natural Resources Sciences University of Minnesota St. Paul, MN 55108 For more information about the Department of Forest Resources and its teaching, research, and outreach programs, contact the Department at: Department of Forest Resources University of Minnesota 115 Green Hall 1530 N. Cleveland Avenue North St. Paul, MN 55108-6112 Ph: 612-624-3400 Fax: 612-625-5212 Email: [email protected] http://forestry.umn.edu/publications/staffpapers/index.html The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, martial status, disability, public assistance status, veteran status, or sexual orientation UNITED STATES WOOD-BASED INDUSTRY: A REVIEW OF STRUCTURE AND ORGANIZATION by Paul V. Ellefson and Michael A. Kilgorea January 2010 a Professors, Department of Forest Resources, University of Minnesota, St. Paul, MN. Research supported by Minnesota Agricultural Experim ent Station; Research and Developm ent-RPA Assessment Program, Forest Service, U.S. Departm ent of Agriculture, Washington, DC; and the Southern Research Station, Forest Service, U.S. Department of Agricultural, New Orleans, LA. Contents Page INTRODUCTION 1 TIMBER GROWING INDUSTRY 1 General Character
    [Show full text]
  • Clarification Announcement
    The Stock Exchange of Hong Kong Limited takes no responsibility for the contents of this announcement, makes no representation as to its accuracy or completeness and expressly disclaims any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. * (Incorporated in Bermuda with limited liability) (Stock Code: 2689) CLARIFICATION ANNOUNCEMENT This announcement intends to clarify certain matters following the recent meetings of the Directors with investors and analysts of international research institutions regarding the Company’s progress in new products development and upstream expansion plan. In the recent meetings of the directors of the Company (the “Directors”) with investors and analysts of international research institutions, the Directors noted keen interests from the investors and analysts on the Company’s progress in new products development and upstream expansion plan. In this connection, the Directors wish to clarify the progress made by the Company in its development of new products and upstream expansion. Sichuan Factories In December 2007, the Company entered into agreements with three independent third parties (the “Vendors”) in Sichuan Province pursuant to which the Company agreed to acquire (the “Acquisition”) from the Vendors (i) Sichuan Qian Wei Baiya Paper Co. Ltd. (“Qian Wei”) and (ii) Sichuan Rui Song Paper Co. Ltd. (“Rui Song”). Qian Wei Pursuant to the sale and purchase agreements (the “Qian Wei Agreements”) for the acquisition of Qian Wei, the Vendors transferred their entire equity interests in Qian Wei to the Group free of consideration. Except for those items which the Group has expressly agreed to be responsible, the Vendors will be responsible for all debts and liabilities of Qian Wei prior to completion of the acquisition.
    [Show full text]
  • Packaging Tomorrow
    Packaging Tomorrow Modelling the Material Input for European Packaging in the 21st Century M.P. Hekkert L.A.J. Joosten E. Worrell 98001 Packaging Tomorrow Modeling the Material Input for European Packaging in the 21st Century M.P. Hekkert L.A.J. Joosten E. Worrell This work was funded by the National Research Programme on Global Air Pollution and Climate Change Department of Science Technology and Society Utrecht University Padualaan 14 NL- 3584 CH Utrecht The Netherlands Report No. 98001 ISBN 90-73958-39-3 March 1997 1 2 Contents 1 INTRODUCTION............................................................................................................................... 5 1.1 THE MATTER PROJECT................................................................................................................... 5 1.2 PACKAGING IN EUROPE.................................................................................................................. 5 1.3 AIM AND STRUCTURE OF THIS REPORT ........................................................................................... 6 2 AUTONOMOUS DEVELOPMENTS............................................................................................... 9 2.1 EUROPEAN POLICIES IN REDUCING PACKAGING MATERIAL. ........................................................... 9 2.2 AUTONOMOUS DEVELOPMENTS FOR THE MARKAL MODEL ....................................................... 10 3 COSTS AND ENERGY CALCULATIONS METHOD FOR PACKAGING OPTIONS.......... 11 3.1 INTRODUCTION ...........................................................................................................................
    [Show full text]
  • Life Cycle Assessment (LCA) of Food and Beverage Packaging
    POLITECNICO DI MILANO Scuola di Ingegneria Civile, Ambientale e Territoriale POLO TERRITORIALE DI COMO Master of Science in Environmental and Land Planning Engineering Life Cycle Assessment (LCA) of Food and Beverage Packaging Supervisor: Prof. Giovanni Lonati Assistant Supervisor: Ing. Lucia Rigamonti Master Graduation Thesis by: Cynthia Elgiene L. Latunussa Student Id. number: 723332 Academic Year 2010/11 POLITECNICO DI MILANO Scuola di Ingegneria Civile, Ambientale e Territoriale POLO TERRITORIALE DI COMO Corso di Laurea Specialistica in Ingegneria per l’Ambiente e il Territorio Life Cycle Assessment (LCA) of Food and Beverage Packaging Relatore : Prof. Giovanni Lonati Correlatore : Ing. Lucia Rigamonti Tesi di Laurea di: Cynthia Elgiene L. Latunussa matr. 723332 Anno Accademico 2010/11 ABSTRACT Food and beverage industry is tightly bound to packaging industry to enable the protection of products and to transport them safely to the consumers. Multi material packaging is one of the most common packaging type and is usually adopted to contain liquid products like milk, juice, and wine. Multi material packaging generates potential adverse impacts to the environment over its life cycle. In recent years, the major multi material packaging producers have been utilizing Life Cycle Assessment (LCA) as a tool to analyze the environmental performance of their packaging systems. In this work, twelve LCA studies on multi material packaging were reviewed to get a general picture of the current LCA practice in these systems. The common potential processes in multi material packaging were summarized. These include the extraction and production of raw materials, the production of packaging, the filling phase, the end-of-life, transportation.
    [Show full text]
  • Beverage Packaging in Brazil a Comparative Life Cycle Assessment
    1 Beverage Packaging in Brazil A Comparative Life Cycle Assessment On behalf of Ball Corporation Client: Ball Corporation Beverage packaging in Brazil (BR) – Title: A Comparative Life Cycle Assessment Report version: v3.0 Report date: 16/07/2020 © Sphera On behalf of Sphera and its subsidiaries Document prepared by Flora D’Souza [] [email protected] 16.07.2020 phone +49-711-341817-406 Contributing authors Rosie Dodd Maike Horlacher Iris Matzke Quality assurance by Manfred Russ [Signature] Principal Consultant 16.07.2020 Under the supervision of Dr Sabine Deimling Principal, Team Lead Food, Agriculture and Renewable Materials During the course of the project, thinkstep became Sphera Solutions GmbH. Therefore, all references to ‘thinkstep’ in this report refer to “Sphera Solutions”. Disclaimer (Sphera): This report has been prepared by Sphera with all reasonable skill and diligence within the terms and conditions of the contract between thinkstep and the client. Sphera is not accountable to the client, or any others, with respect to any matters outside the scope agreed upon for this project. Regardless of report confidentiality, Sphera does not accept responsibility of whatsoever nature to any third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk. Interpretations, analyses, or statements of any kind made by a third party and based on this report are beyond Sphera’s responsibility. If you have any suggestions, complaints, or any other feedback, please contact us at [email protected]. Disclaimer (Ball): This Regional Summary is drawn from a comparative Life Cycle Assessment Report (“LCA”) conducted by Sphera at Ball Corporation’s request.
    [Show full text]
  • Minimum Standard for Determining the Recyclability of Packaging Subject to System Participation Pursuant to Section 21 (3) Verpackg
    Please note: This English version is a convenience translation – the German version shall prevail Minimum standard for determining the recyclability of packaging subject to system participation pursuant to section 21 (3) VerpackG in consultation with the German Environment Agency (Umweltbundesamt) Osnabrück, 31 August 2020 Page 1 of 30 Table of contents 1. Introduction ..................................................................................................................... 3 2. Minimum criteria ............................................................................................................. 3 3. Object of determination ................................................................................................... 4 4. Details of the requirements set forth in 2 ......................................................................... 4 Existence of sorting and recycling infrastructure ......................................................... 4 Sortability and separability .......................................................................................... 5 Recycling incompatibilities .......................................................................................... 5 Available recyclable content and determining recyclability .......................................... 5 5. Determination procedure ................................................................................................ 6 6. Definitions ......................................................................................................................
    [Show full text]
  • Method of Improving Properties of Cellulose-Based Fibrous Sheet-Formed Materials
    (19) & (11) EP 2 309 059 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.04.2011 Bulletin 2011/15 D21H 17/14 (2006.01) D21H 17/15 (2006.01) D21H 17/18 (2006.01) D21H 17/24 (2006.01) (2006.01) (2006.01) (21) Application number: 09172128.2 D21H 17/25 D21H 17/28 D21H 17/37 (2006.01) D21H 17/43 (2006.01) (2006.01) (2006.01) (22) Date of filing: 02.10.2009 D21H 19/12 D21H 21/18 D21H 23/24 (2006.01) D21H 23/28 (2006.01) D21H 23/50 (2006.01) C08B 15/10 (2006.01) C08L 1/02 (2006.01) C09D 101/10 (2006.01) (84) Designated Contracting States: • Enquist, Karl AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 183 31, TÄBY (SE) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Cordova, Armando PT RO SE SI SK SM TR 116 42, STOCKHOLM (SE) Designated Extension States: AL BA RS (74) Representative: Kitzler, Michael IPQ IP Specialists AB (71) Applicant: Organoclick Aktiebolag Mailbox 550 106 91 Stockholm (SE) 114 11 Stockholm (SE) (72) Inventors: Remarks: • Samec, Joseph Claims 19-23,25,26,28-31 are deemed to be 163 67, SPÅNGA (SE) abandoned due to non-payment of the claims fees (Rule 45(3) EPC). (54) Method of improving properties of cellulose-based fibrous sheet-formed materials (57) A method of improving surface strength, fibre the desired improvement including drying of the material. tear or linting of a sheet-formed fibrous material formed The chemical formulation is sprayed on the wet laid from an aqueous slurry of cellulose fibre comprises sheet-formed material at the wet end of a paper machine spraying a face of the material with a chemical formula- in an amount of from 0.1 % to 5 % by weight of the sheet- tion comprising or consisting of a polymer containing at formed material in a dry state.
    [Show full text]
  • Comparative Life Cycle Assessment of Tetra Pak® Carton Packages and Alternative Packaging Systems for Beverages and Liquid
    Comparative Life Cycle Assessment of Tetra Pak® carton packages and alternative packaging systems for beverages and liquid food on the European market Final Report commissioned by Tetra Pak Heidelberg, March 9th 2020 ifeu im Weiher 10 D - 69121 Heidelberg Telefon +49 (0)6 221. 47 67 - 0 Telefax +49 (0)6 221. 47 67 - 19 E-Mail [email protected] www.ifeu.de Comparative Life Cycle Assessment of Tetra Pak® carton packages and alternative packaging systems for beverages and liquid food on the European market Final Report commissioned by Tetra Pak Samuel Schlecht Frank Wellenreuther Heidelberg, March 9th 2020 ifeu im Weiher 10 D - 69121 Heidelberg Telefon +49 (0)6 221. 47 67 - 0 Telefax +49 (0)6 221. 47 67 - 19 E-Mail [email protected] www.ifeu.de Table of contents 1 Abbreviations 6 2 1 Goal and scope 8 3 1.1 Background and objectives 8 4 1.2 Organisation of the study 10 5 1.3 Use of the study and target audience 10 6 1.4 Functional unit 11 7 1.5 System boundaries 11 8 1.6 Data gathering and data quality 17 9 1.7 Methodological aspects 20 10 1.7.1 Allocation 20 11 1.7.2 Biogenic carbon 27 12 1.8 Environmental Impact Assessment 29 13 1.8.1 Mandatory elements 29 14 1.8.2 Optional elements 38 15 2 Packaging systems and scenarios 39 16 2.1 Selection of packaging systems 39 17 2.2 Packaging specifications 42 18 2.2.1 Specifications of beverage and liquid food carton systems 44 19 2.2.2 Specifications of alternative packaging systems 51 20 2.3 End-of-life 57 21 2.4 Scenarios 61 22 2.4.1 Base scenarios 61 23 2.4.2 Scenario variants regarding plant-based plastics
    [Show full text]
  • Life Cycle Assessment of Consumer Packaging for Liquid Food
    REPORT Life Cycle Assessment of consumer packaging for liquid food LCA of Tetra Pak and alternative packaging on the Nordic market Kristian Jelse, Elin Eriksson and Elin Einarson 25 August 2009 Archivenumber: . Box 21060, SE-100 31 Stockholm Box 5302, SE-400 14 Göteborg Valhallavägen 81, Stockholm Aschebergsgatan 44, Göteborg Tel: +46 (0)8 598 563 00 Tel: +46 (0)31 725 62 00 Fax: +46(0)8 598 563 90 Fax: + 46 (0)31 725 62 90 www.ivl.se Summary A comprehensive LCA (Life Cycle Assessment) study on Tetra Pak and alternative packages has been carried out for 24 packaging specifications on four Nordic markets – Denmark, Finland, Norway, and Sweden – resulting in a total of 29 packaging types (including different filler locations and product groups) and 115 packaging systems when applying the packages at the four markets. The study has been performed between December 2008 and August 2009. The included packages are: Dairy packaging (1000 ml): Tetra Brik Aseptic Base, Tetra Brik Aseptic Edge, Tetra Brik Base, Tetra Brik Edge, Tetra Rex, Tetra Rex Plus, Gable top with large cap, PET bottle (filled in Germany or locally) and HDPE bottle (filled in Germany or locally). Juice packaging (1000 ml): Tetra Brik Aseptic Slim, Tetra Gemina Aseptic, Tetra Prisma Aseptic, Tetra Top, Gable top with large cap, Tetra Rex with small cap, PET bottle and HDPE bottle. Grab & Go packaging (250–500 ml): Tetra Prisma Aseptic, Tetra Brik Aseptic, Tetra Prisma Aseptic, Tetra Top HAAD, APET bottle, Glass bottle, PET bottle (filled in the UK) and HDPE bottle. Micro Grab & Go packaging (100 ml): Tetra Top Micro and HDPE bottle (filled in France).
    [Show full text]
  • Proposal of Package-To-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic
    sustainability Article Proposal of Package-to-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic Markéta Šerešová and Vladimír Koˇcí * Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; [email protected] * Correspondence: [email protected] Received: 18 March 2020; Accepted: 8 April 2020; Published: 10 April 2020 Abstract: Today, packaging is an integral part of most foods and beverages. However, excessive and just one-time applications of packaging can bring about indisputable environmental impacts in the form of large amounts of waste generated. If we want to monitor the environmental impacts of packaging materials, it is advisable to assess them in a complex way including not only the specific packaging but also specific products. No universal methodology currently exists that would enable this type of complex assessment regarding the environmental impacts of packaging in relation to particular products. Therefore, the aim of our study was to develop and test a Package-to-Product (PtP) indicator. For this purpose, the life cycle assessment (LCA) was employed to analyse four selected products considering different life cycle stages of packaging and their impacts on the climate change category. The results of the study confirm that the values of the PtP indicator significantly differ for various products, thus emphasising the need to establish a uniform methodology for individual product groups, such as meat, dairy and vegetable products or beverages. The application of this indicator, however, enables a clear impact assessment of different packaging materials and allows the packaging manufacturers to reduce their overall environmental impacts.
    [Show full text]