Microsoft Photo Editor

Total Page:16

File Type:pdf, Size:1020Kb

Microsoft Photo Editor NC STATE UNIVERSITY BioResources, a peer-reviewed journal College of Natural Resources devoted to the science of lignocellulosic Department of Wood and Paper Science materials, chemicals, and applications Campus Box 8005 Raleigh, NC 27695-8005 919.515.7707/919.513.3022 919.515.6302 (fax) B i o R e s o u r c e s Contents: Vol. 2, Issue 2, May 2007 Hubbe, M. A. (2007). "Appropriate technology in an age of renewables ," BioRes. 2(2), 146- 147. Hervillard, T., Cao, Q., and Laborie, M.-P. G. (2007). "Improving water resistance of wheat straw-based medium density fiberboards bonded with aminoplastic and phenolic resins," BioRes. 2(2), 148-156. Siverio, F. O., Barbosa, L. C. A., Maltha, C. R. A., Silvestre, A. J. D., Pilo-Veloso, D., and Gomide, J. L. (2007). "Characterization of lipophilic wood extractives from clones of Eucalyptus urograndis cultivate in Brazil,"BioRes. 2(2), 157-168. Parkås, J., Brunow, G., and Lundquist, K. (2007). "Quantitative lignin analysis based on permanganate oxidation," BioRes. 2(2), 169-178. Sridach, W., Hodgson, K. T., and Nazhad, M. (2007). "Biodegradation and recycling potential of barrier coated paperboards," BioRes. 2(2), 179-192. Khezami, L., Ould-Dris, A., and Capart, R. (2007). "Activated carbon from thermo- compressed wood and other lignocellulosic precursors," BioRes. 2(2), 193-209. Chakraborty, A., Sain, M. M., Kortschot, M. T., and Ghosh, S. B. (2007). "Modeling energy consumption for the generation of microfibres from bleached kraft pulp fibres in a PFI mill," BioRes. 2(2), 210-222. Colodette, J. L., Gomide, J. L., Júnior, D. L., and Pedrazzi, C. (2007). "Effect of pulp delignification degree on fiber line performance and bleaching effluent load," BioRes. 2(2), 223-234. Ruelle, J., Yamamoto, H., and Thibaut, B. (2007). "Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species," BioRes. 2(2), 235-251. Felissia, F. E., Area, M. C., Barboza, O. M., and Bengoechea, D. I. (2007). "Anti-scaling agents in kraft pulping," BioRes. 2(2), 252-264. Alma, M. H., Ertaş, M., Nitz, S., and Kollmannsberger, H. (2007). "Chemical composition and content of essential oil from the bud of cultivated Turkish clove," BioRes. 2(2), 265-269. Pérez, J. M., Rodríguez, F., Alonso, M. V., Oliet, M., and Echeverría, J. M. (2007). "Characterization of a novolac resin substituting phenol by ammonium lignosulfonate as filler or extender," BioRes. 2(2), 270-283. Altaner, C., Knox, J. P., and Jarvis, M. C. (2007). "In situ detection of cell wall polysaccharides in sitka spruce (Picea sitchensis (Bong.) Carrière) wood tissue," BioRes. 2(2), 284-295. Hubbe, M. A. (2007). "Flocculation and redispersion of cellulosic fiber suspensions: A review of effects of hydrodynamic shear and polyelectrolytes," BioRes. 2(2), 296-331. BioResources is a peer-reviewed journal devoted to the science of lignocellulosic materials, chemicals, and applications. The journal is a service of North Carolina State University, College of Natural Resources (http://cnr.ncsu.edu). Articles can be down-loaded without charge as PDF files at www.bioresourcesjournal.com. The BioResources website is hosted by Scholarly Exchange, and articles become indexed for scholars through the Open Journal System (http://pkp.sfu.ca/). Author instructions, journal policies, an editorial board list, and article files (secondary source) can be found at http://ncsu.edu/bioresources. Correspondence should be directed to co-editors Martin A. Hubbe ([email protected], 919-513-3022) and Lucian A. Lucia ([email protected], 919-515-7707). EDITORIAL ncsu.edu/bioresources APPROPRIATE TECHNOLOGY IN AN AGE OF RENEWABLES Martin A. Hubbe In this editorial the author proposes that scientists and technologists can play essential roles in the selection of technological alternatives that are appropriate to people’s long-term needs. Lessons learned in the 1970s and 80s, involving the design of simple and reliable mechanical systems for underdeveloped regions, can have relevance today in an increasingly interdependent, crowded, and polluted world. Specialists can help in two ways to promote technologies that make sense, providing for future well- being, and minimizing risks. First, we can exercise personal judgment in our work, as we pursue technological progress. We need to consider whether the likely products of our work are compatible with the world that we want to leave for our grandchildren. Second, we can provide guidance to our fellow citizens, as society grapples with the political and economic choices associated with progress. Keywords: Appropriate technology, Renewable resources, Sustainability, Industrialization Contact information: Department of Forest Biomaterial Science and Engineering, College of Natural Resources, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005; [email protected] A CONCEPT BORROWED FROM THE DEVELOPING WORLD The words “appropriate technology” have most often been used in the context of aid to third-world countries. Equipment and processes to be used in different parts of the world need to be suited to the local conditions, including the availability of electricity, running water, etc. It doesn’t make sense to send a lot of plug-in refrigerators to a region that lacks a power grid. Likewise, expensive farming equipment will become useless in a land where there are no spare parts or people able to do the repairs. In this editorial I would like to propose that the concepts of appropriate technology also are needed most urgently in the developed world. The idea is not new. For instance, the authors of the book Appropriate Technology in Industrialized Countries (Riedijk, W., ed., Delft Univ. Press, 1989) point out ways in which modern societies can benefit from technologies that are inherently simpler, cheaper, safer, or less centralized than the current state of the art. Let’s suppose that you are attempting to design a system to deliver water to nomadic people. Your clients, over many years, have developed patterns of living and knowledge of their environment that have allowed them to subsist and to avoid disaster (see Dunn, P. D., Appropriate Technology: Technology with a Human Face, Schocken Books, 1979). The priority, then, is to minimize risk. Your desert clients may face a disaster if they come to rely on a water system that depends on transmission lines or the delivery of fuel. A simpler system, relying on local resources and manual labor, might be less risky, even if less impressive. Hubbe (2007). “Appropriate technology for sustainability,” BioResources 2(2), 146-147. 1 EDITORIAL ncsu.edu/bioresources The situation just described has some parallels with modern life. We all tend to become more vulnerable to political and economic changes when the resources upon which we depend come from far away. The fruit on your American table in winter may come from Chile. Gas in your car may come from Arabia, or maybe somewhere else equally far away. Most of us do not live in deserts, but our present lifestyles are becoming vulnerable due to the pressures of population growth, climatic change, and depletion of resources. What are the patterns of living that will sustain members of spaceship Earth in years ahead? In his book Small is Beautiful (Harper and Row, 1973) E. F. Schumacher urged increased reliance on things that are local, cheap, simple, small, and requiring the input of manual labor. To that list one also could add environmentally favorable, healthy, relying on renewable resources, and tending to promote harmony among peoples. Words like “increased personal wealth,” “personal freedom,” and “a better life for our children” are usually left out of lists such as this, but we need to be realistic about rising expectations of future generations. OUR ROLE AS SCIENTISTS AND TECHNOLOGISTS How does one apply ideas, such as those just mentioned, in cases related to the utilization of cellulose-based materials? Many readers of this magazine are engaged in research and technology related to renewable resources. Proponents of appropriate technology would applaud us on that account, but what about the other issues? Here are some questions that each of us can ask ourselves about possible implementations of scientific findings: 1. Does the technology on which I am working require long shipping distances, increased vulnerability to disease, or risk of unintended consequences? 2. Does the technology on which I am working minimize, or at least not increase, the release of carbon dioxide or consumption of fossil fuels? 3. If implemented, is the technology on which I am working likely to pose risks to current or future generations? Is there a reliable way to minimize environmental hazards associated with it? “But I’m just a scientist,” someone may say. “I have no control over how and whether my results become implemented.” As pointed out by Willoughby in his book Technology Choice: A Critique of the Appropriate Technology Movement (Westview Press, Boulder, 1990), people need to actively select and implement appropriate technological solutions. Individual initiative, on the part of those familiar with the underlying science, is critically needed. If scientists among us don’t provide some guidance to our fellow citizens, relative to selection of what technologies to implement, then the inertia of scientific progress may take us in directions that we would not choose. Hubbe (2007). “Appropriate technology for sustainability,” BioResources 2(2), 146-147. 2 PEER-REVIEWED ARTICLE ncsu.edu/bioresources IMPROVING WATER RESISTANCE OF WHEAT STRAW-BASED MEDIUM DENSITY FIBERBOARDS BONDED WITH AMINOPLASTIC AND PHENOLIC RESINS Thomas Hervillarda, Qi Caob and Marie-Pierre G. Laborieb* A long standing problem in the manufacture of wheat-straw based composites with cost-effective formaldehyde-based resins is their poor water resistance as demonstrated by their large water thickness swell. In this study, wheat straw based medium density fiberboards were manufactured using 3 resin/wax systems: a melamine-urea-formalde- hyde resin with either low or high wax content, and a phenol-formal- dehyde resin with low wax content.
Recommended publications
  • Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science Thesis in the Master Degree Programme Materials and Nanotechnology
    Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science thesis in the Master Degree Programme Materials and Nanotechnology MARIA GUNNARSSON Department of Chemical and Biological Engineering Division of Organic chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Report No. 2012:001 Decreased wet strength in retorted liquid packaging board Master of Science Thesis MARIA GUNNARSSON SUPERVISOR: Gunnar Westman EXAMINER: Gunnar Westman Department of Chemical and Biological engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2012 Decreased wet strength in retorted liquid packaging board MARIA GUNNARSSON ©MARIA GUNNARSSON, 2012 Report no 2012:001 Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31-7721000 Cover: The Tetra Recart packaging. Department of Chemical and Biological Engineering Göteborg, Sweden 2012 Decreased wet strength in retorted liquid packaging board Maria Gunnarsson Department of Chemical and Biological Engineering Division of Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY ABSTRACT The Tetra Recart is a retortable food packaging, suitable for high viscous products, making it able to replace most food cans used for storage of food today. The packaging is built up by a paperboard, consisting of an unbleached bottom layer and a bleached top layer. Polymers and aluminium further cover the paperboard in order to protect the food against moisture and light, causing degradation. During the retorting process, the packaging develops a certain wet strength making it hard to disintegrate the pulp fibres in the board. The phenomenon of the developed wet strength is of high interest when inventing and developing new packaging materials. To investigate why and how the phenomenon occurs, a series of trials were made through production of laboratory sheets with subsequent disintegration.
    [Show full text]
  • A Guide to Packaging Material Flows and Terminology Pollution Is Nothing but the Resources We Are Not Harvesting
    A Guide to PAckAGinG MAteriAl Flows And terMinoloGy Pollution is nothing but the resources we are not harvesting. We allow them to disperse because we’ve been ignorant of their value. R. Buckminster Fuller A Guide to Packaging Material Flows and Terminology The work upon which this publication is based was funded, in whole, through grants awarded by the California Department of Conservation and GreenBlue through its Sustainable Packaging Coalition®. The statements and conclusions of this report are those of GreenBlue and not necessarily those of the Department of Conservation or its employees. The Department makes no warranties, express or implied, and assumes no liability for the information contained in the succeeding text. The Guide to Packaging Material Flows and Terminology is issued “as is” and with all faults. We give no express warranties, guarantees or conditions. You may have additional rights under local laws which this disclaimer cannot change. However, to the extent permitted under applicable laws, the Green Blue Institute makes no warranty of any kind, either express or implied, including but not limited to, any implied warranties of merchantability, fitness for a particular purpose or non–infringement. The Scrap Specifications Circular 2008 is © 2008 Institute of Scrap Recycling Industries, Inc. (ISRI), 1615 L Street, N.W., Suite 600, Washington, DC 20036, and portions were used by permission. ISRI’s Scrap Specifications Circular is subject to change; therefore, readers should contact ISRI or go to http://www.isri. org/specs to make certain they are reading the most recent version of the Scrap Specifications Circular. Closing the Loop: A Guide to Packaging Material Flows and Terminology Closing the Loop: A Guide to Packaging Material Flows and Terminology was developed by GreenBlue®, a nonprofit institute that works with the private sector to enable the positive redesign of industrial systems.
    [Show full text]
  • Simulation of Tree Stem Injury, Air Flow and Heat Dispersion in Forests for Prediction of Fire Effects
    SIMULATION OF TREE STEM INJURY, AIR FLOW AND HEAT DISPERSION IN FORESTS FOR PREDICTION OF FIRE EFFECTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Efthalia K. Chatziefstratiou, Dipl. Ing., M.S. Graduate Program in Environmental Sciences The Ohio State University 2015 Dissertation Committee: Gil Bohrer “Advisor” Matthew B. Dickinson Ethan Kubatko Gajan Sivandran Barbara Wyslouzil Copyright by Efthalia Chatziefstratiou 2015 Abstract This work presents two computational tools, Firestem2D and the fire module of Regional Atmospheric Modelling System (RAMS)-based Forest Large Eddy Simulation (RAFLES), which will help to make predictions of fire effects on trees and the atmosphere. FireStem2D is a software tool for predicting tree stem heating and injury in forest fires. It is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. The results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees are presented. A set of virtual sensitivity analysis experiments were also conducted to test the effects of unevenness of heating around the stem and with above ground height using data from two studies: a low-intensity surface fire and a more intense crown fire.
    [Show full text]
  • Iqos: Evidence of Pyrolysis and Release of a Toxicant from Plastic
    iQOS: Evidence of Pyrolysis and Release of a Toxicant from Plastic Barbara Davis ([email protected]) a , Monique Williams ([email protected])a , and Prue Talbot ([email protected]) a a Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, United States Corresponding author: Prue Talbot Address: Department of Molecular, Cell and Systems Biology University of California Riverside, CA 92521 Email: [email protected] Telephone: 951-827-3768 FAX: 951-827-4286 Keywords: new tobacco products, heat-not-burn tobacco products, electronic nicotine delivery devices, ENDS, nicotine, quality control, pyrolysis, char Word Count: 3346 ABSTRACT Objective: To evaluate performance of the iQOS Heat-Not-Burn system as a function of cleaning and puffing topography, investigate the validity of manufacturer’s claims that this device does not burn tobacco, and determine if the polymer-film filter is potentially harmful. Methods: iQOS performance was evaluated using five running conditions incorporating two different cleaning protocols. Heatsticks were visually and stereomicroscopically inspected pre- and post- use to determine the extent of tobacco plug charring (from pyrolysis) and polymer-film filter melting, and to elucidate the effects of cleaning on charring. GC-MS headspace analysis was conducted on unused polymer-film filters to determine if potentially toxic chemicals are emitted from the filter during heating. Results: For all testing protocols, pressure drop decreased as puff number increased. Changes in testing protocols did not affect aerosol density. Charring due to pyrolysis (a form of organic matter thermochemical decomposition) was observed in the tobacco plug after use. When the manufacturers’ cleaning instructions were followed, both charring of the tobacco plug and melting of the polymer-film filter increased.
    [Show full text]
  • Staff Paper Series Number 206 : United States Wood-Based Industry: a Review of Structure and Organization
    UNITED STATES WOOD-BASED INDUSTRY: A REVIEW OF STRUCTURE AND ORGANIZATION by Paul V. Ellefson and Michael A. Kilgore January 2010 STAFF PAPER SERIES NUMBER 206 Department of Forest Resources College of Food, Agricultural and Natural Resources Sciences University of Minnesota St. Paul, MN 55108 For more information about the Department of Forest Resources and its teaching, research, and outreach programs, contact the Department at: Department of Forest Resources University of Minnesota 115 Green Hall 1530 N. Cleveland Avenue North St. Paul, MN 55108-6112 Ph: 612-624-3400 Fax: 612-625-5212 Email: [email protected] http://forestry.umn.edu/publications/staffpapers/index.html The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, martial status, disability, public assistance status, veteran status, or sexual orientation UNITED STATES WOOD-BASED INDUSTRY: A REVIEW OF STRUCTURE AND ORGANIZATION by Paul V. Ellefson and Michael A. Kilgorea January 2010 a Professors, Department of Forest Resources, University of Minnesota, St. Paul, MN. Research supported by Minnesota Agricultural Experim ent Station; Research and Developm ent-RPA Assessment Program, Forest Service, U.S. Departm ent of Agriculture, Washington, DC; and the Southern Research Station, Forest Service, U.S. Department of Agricultural, New Orleans, LA. Contents Page INTRODUCTION 1 TIMBER GROWING INDUSTRY 1 General Character
    [Show full text]
  • Heated Cigarettes: How States Can Avoid Getting Burned
    HEATED CIGARETTES: HOW STATES CAN AVOID GETTING BURNED 8/30/18 1 HEATED CIGARETTES HOW STATES CAN AVOID GETTING BURNED 8/30/18 2 THE PUBLIC HEALTH LAW CENTER 8/30/18 3 8/30/18 4 LEGAL TECHNICAL ASSISTANCE Legal Research Policy Development, Implementation, Defense Publications Trainings Direct Representation Lobby 8/30/18 5 HEATED CIGARETTES HOW STATES CAN AVOID GETTING BURNED • Presenters: – Kristy Marynak, MPP, Public Health Analyst, Centers for Disease Control and Prevention – Hudson Kingston, JD, LLM, Staff Attorney, Tobacco Control Legal Consortium at the Public Health Law Center 8/30/18 6 HEATED CIGARETTES HOW STATES CAN AVOID GETTING BURNED • Heated cigarettes on the global market • Distinguishing features 1. Heating at a temperature lower than conventional cigarettes that produce an inhalable aerosol • Heated Cigarettes: 450-700° F (generally) • Conventional cigarettes: 1250 – 1300 °F, • (max: 1500 °F) 2. Processed, commercial tobacco leaf is the nicotine source, flavor source, or both 8/30/18 7 HEATED CIGARETTES HOW STATES CAN AVOID GETTING BURNED Federal Regulation • Pre-Market Review • Modified Risk Tobacco Product Application • Vapeleaf 8/30/18 8 Heated Tobacco Products: Considerations for Public Health Policy and Practice KRISTY MARYNAK, MPP LEAD PUBLIC HEALTH ANALYST CDC OFFICE ON SMOKING AND HEALTH TOBACCO CONTROL LEGAL CONSORTIUM WEBINAR AUGUST 2018 8/30/18 9 What’s the public health importance of this topic? The landscape of tobacco products is continually changing By being proactive and anticipating new products, we can
    [Show full text]
  • Clarification Announcement
    The Stock Exchange of Hong Kong Limited takes no responsibility for the contents of this announcement, makes no representation as to its accuracy or completeness and expressly disclaims any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. * (Incorporated in Bermuda with limited liability) (Stock Code: 2689) CLARIFICATION ANNOUNCEMENT This announcement intends to clarify certain matters following the recent meetings of the Directors with investors and analysts of international research institutions regarding the Company’s progress in new products development and upstream expansion plan. In the recent meetings of the directors of the Company (the “Directors”) with investors and analysts of international research institutions, the Directors noted keen interests from the investors and analysts on the Company’s progress in new products development and upstream expansion plan. In this connection, the Directors wish to clarify the progress made by the Company in its development of new products and upstream expansion. Sichuan Factories In December 2007, the Company entered into agreements with three independent third parties (the “Vendors”) in Sichuan Province pursuant to which the Company agreed to acquire (the “Acquisition”) from the Vendors (i) Sichuan Qian Wei Baiya Paper Co. Ltd. (“Qian Wei”) and (ii) Sichuan Rui Song Paper Co. Ltd. (“Rui Song”). Qian Wei Pursuant to the sale and purchase agreements (the “Qian Wei Agreements”) for the acquisition of Qian Wei, the Vendors transferred their entire equity interests in Qian Wei to the Group free of consideration. Except for those items which the Group has expressly agreed to be responsible, the Vendors will be responsible for all debts and liabilities of Qian Wei prior to completion of the acquisition.
    [Show full text]
  • Market Development Survey for Continuous Coal Charring Process
    Market development survey for continuous coal charring process by Robert A Lengemann A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by Robert A Lengemann (1957) Abstract: In recent years, work has been progressing on a new continuous charring process at Montana State College. This work has been sponsored by the Montana State College Engineering Experiment Station with the hope that this process will bolster Montana's lagging coal industry. The work has now reached the point of commercialization and a market for the char needs to be developed. Several tests have been run on the char produced from this char process. Anaconda Company used the char in their Sponge Iron Plant successfully. American Chrome Company has had the char tested and accepts it with the reservation that the sulfur content must be kept below 0.5%. Colorado Fuel and Iron Corporation has used char from this char process with some success. The char used in the Anaconda test and in the American Chrome test was derived from Red Lodge coal as this coal is being used in the first commercial plant at Red Lodge, Montana. Colorado Fuel and Iron Corporation furnished their own coal since this is the coal they intend to use, should they decide to build a char plant for their use. The estimated capacity of the Red Lodge plant is 2000 lb. of char per hour per retort. The by-product yield is 20 gallons per ton of coal.
    [Show full text]
  • Technical Project Lead (TPL) Review: MR0000059-MR0000061
    U.S. Food & Drug Administration f"~-,, 11 U.S. FOOD & DRUG 10903 New Hampshire Avenue ~,./- ADM I N I STRATI ON Silver Spring, MD 20993 www.fda.gov Scientific Review of Modified Risk Tobacco Product Application (MRTPA) Under Section 911(d) of the FD&C Act -Technical Project Lead SUBMISSION INFORMATION Applicant Philip Morris Product s S.A. Product Manufacturer Philip Morris Product s S.A. Submission Date November 18, 2016 I FDA Receipt Date I December 5, 2016 Purpose ~ Risk Modificat ion (91l (g)( l )) order ~ Exposure Modification (9ll(g)(2)) order Proposed Modified Risk Modified Risk Claim #1: Claims " AVAILABLE EVIDENCE TO DATE: • The IQOS system heats t obacco but does not burn it. • This significantly reduces the production of harmful and pot entially harmful chemica ls. • Scientific studies have shown that sw itching completely from conventional cigarettes t o the IQOS syst em can reduce the risks of tobacco-related diseases." Modified Risk Claim #2: " AVAILABLE EVIDENCE TO DATE: • Swit ching complet ely to IQOS present s less risk of harm than continuing t o smoke cigarett es." Modified Risk Claim #3: " AVAILABLE EVIDENCE TO DATE: • The IQOS system heats tobacco but does not burn it. • This significant ly reduces the production of harmful and pot entially harmful chemica ls. • Scientific studies have show n that switching completely from conventional cigarettes t o the IQOS syst em significantly reduces your body's exposure t o harmful or pot entially harmful chemicals." PROPOSED MODIFIED RISK TOBACCO PRODUCT (SINGLE PRODUCTS} MR0000059: Marlboro Heatsticks1 Product Category Cigarettes Product Sub-Category Non-Combusted Package Type Box Package Quantity 20 Heat sticks Characterizing Flavor None Length 45 mm Diameter 7.42 mm 1 M ay be sold individually or as a co-packaged product .
    [Show full text]
  • Pyrolysis of Char Forming Solid Fuels: a Critical Review of the Mathematical Modelling Techniques
    Proceedings, 5th AOSFST, Newcastle, Australia, 2001 Editors: M.A. Delichatsios, B.Z. Dlugogorski and E.M. Kennedy PYROLYSIS OF CHAR FORMING SOLID FUELS: A CRITICAL REVIEW OF THE MATHEMATICAL MODELLING TECHNIQUES B. Moghtaderi Department of Chemical Engineering, The University of Newcastle AUSTRALIA ABSTRACT Recent advances in mathematical modelling and numerical analysis of the pyrolysis of char forming solid fuels have shed new light on the pyrolytic behaviour of these materials under fire conditions. A review of the pyrolysis models of charring solid fuels developed over the past 30 years is presented in the order of increasing complexity. The models can be broadly categorised into thermal and comprehensive type models. While thermal models predict the conversion of the virgin fuel into products based on a critical pyrolysis criterion and the energy balance, the comprehensive models describe the degradation of the fuel by a chemical kinetic scheme coupled with the conservation equations for the transport of heat and/or mass. A variety of kinetic schemes have been reported in the literature ranging from simple one-step global reactions to semi-global and multi-step reaction mechanisms. There has been much less uniformity in the description of the transport phenomena (i.e. heat and mass) in comprehensive models and different levels of approximation have been used. It is shown that the accuracy of pyrolysis models largely depends on the model parameters. If reliable data are not available, even the most advanced models give poor predictions. Keywords: Pyrolysis, charring solid fuels, mathematical modelling, fires. INTRODUCTION Pyrolysis of solid fuels plays an important role in both the ignition and growth stages of fires.
    [Show full text]
  • Packaging Tomorrow
    Packaging Tomorrow Modelling the Material Input for European Packaging in the 21st Century M.P. Hekkert L.A.J. Joosten E. Worrell 98001 Packaging Tomorrow Modeling the Material Input for European Packaging in the 21st Century M.P. Hekkert L.A.J. Joosten E. Worrell This work was funded by the National Research Programme on Global Air Pollution and Climate Change Department of Science Technology and Society Utrecht University Padualaan 14 NL- 3584 CH Utrecht The Netherlands Report No. 98001 ISBN 90-73958-39-3 March 1997 1 2 Contents 1 INTRODUCTION............................................................................................................................... 5 1.1 THE MATTER PROJECT................................................................................................................... 5 1.2 PACKAGING IN EUROPE.................................................................................................................. 5 1.3 AIM AND STRUCTURE OF THIS REPORT ........................................................................................... 6 2 AUTONOMOUS DEVELOPMENTS............................................................................................... 9 2.1 EUROPEAN POLICIES IN REDUCING PACKAGING MATERIAL. ........................................................... 9 2.2 AUTONOMOUS DEVELOPMENTS FOR THE MARKAL MODEL ....................................................... 10 3 COSTS AND ENERGY CALCULATIONS METHOD FOR PACKAGING OPTIONS.......... 11 3.1 INTRODUCTION ...........................................................................................................................
    [Show full text]
  • Life Cycle Assessment (LCA) of Food and Beverage Packaging
    POLITECNICO DI MILANO Scuola di Ingegneria Civile, Ambientale e Territoriale POLO TERRITORIALE DI COMO Master of Science in Environmental and Land Planning Engineering Life Cycle Assessment (LCA) of Food and Beverage Packaging Supervisor: Prof. Giovanni Lonati Assistant Supervisor: Ing. Lucia Rigamonti Master Graduation Thesis by: Cynthia Elgiene L. Latunussa Student Id. number: 723332 Academic Year 2010/11 POLITECNICO DI MILANO Scuola di Ingegneria Civile, Ambientale e Territoriale POLO TERRITORIALE DI COMO Corso di Laurea Specialistica in Ingegneria per l’Ambiente e il Territorio Life Cycle Assessment (LCA) of Food and Beverage Packaging Relatore : Prof. Giovanni Lonati Correlatore : Ing. Lucia Rigamonti Tesi di Laurea di: Cynthia Elgiene L. Latunussa matr. 723332 Anno Accademico 2010/11 ABSTRACT Food and beverage industry is tightly bound to packaging industry to enable the protection of products and to transport them safely to the consumers. Multi material packaging is one of the most common packaging type and is usually adopted to contain liquid products like milk, juice, and wine. Multi material packaging generates potential adverse impacts to the environment over its life cycle. In recent years, the major multi material packaging producers have been utilizing Life Cycle Assessment (LCA) as a tool to analyze the environmental performance of their packaging systems. In this work, twelve LCA studies on multi material packaging were reviewed to get a general picture of the current LCA practice in these systems. The common potential processes in multi material packaging were summarized. These include the extraction and production of raw materials, the production of packaging, the filling phase, the end-of-life, transportation.
    [Show full text]