Lattice Engineering Through Nanoparticle–DNA Frameworks

Total Page:16

File Type:pdf, Size:1020Kb

Lattice Engineering Through Nanoparticle–DNA Frameworks BNL-112667-2016-JA Lattice engineering through nanoparticle–DNA frameworks Ye Tian, Yugang Zhang, Tong Wang, Huolin L. Xin, Huilin Li and Oleg Gang Submitted to Nature Materials February 2016 Center for Functional Nanomaterials Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Basic Energy Sciences (SC-22) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE- SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Lattice engineering through nanoparticle–DNA frameworks Ye Tian1,Yugang Zhang1,Tong Wang2, Huolin L. Xin1, Huilin Li2,3 and Oleg Gang1* Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate dierent desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, dierent crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. This approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell. he progress in nanomaterial fabrication methods was for a powerful approach for 3D crystallization14,15,38, where phases can a long time motivated by the idea that self-assembly will be controlled by means of particle sizes, shapes, tailoring of DNA endow us with the ability to organize nanoparticles (NPs) shells23,33, and even in a dynamic manner by selective interaction T 39 in designed arrays. In reality, the particle characteristics have a triggering . Despite these significant advances, assembled phases profound effect on the assembled structure thus, a little room remain determined by particle details. Here, we propose a remains for structural design. Yet, it would be far more powerful conceptually different approach, in which we shift the problem of to have the ability to generate the different desired types of 3D lattice design from tailoring nanoscale particles, into forcing the lattice from the same particles. Such freedom of lattice engineering connection between isotropic particles by precisely engineered will permit the fabrication of targeted materials, with properties anisotropic linkages. Specifically, polyhedral 3D DNA origami40,41 that can be enhanced and manipulated by precise organization of frames, whose vertices connect DNA-encoded NPs (refs 42,43), functional components1–5. facilitate the establishment of local particle coordination that Colloids, often presented as a model of atomic systems, results in the formation of 3D ordered NP–DNA frameworks have revealed great insight into the fundamentals of crystal (Fig. 1). We demonstrate that the same kind of NPs can be formation6–9 and the role of particle nature10–12. Although an assembled into different types of lattice by employing appropriately extremely rich variety of lattices have been demonstrated12–15, the designed polyhedral frames. Moreover, the crystallographic type particular particle characteristics—such as sizes13,16,17, interactions, of the assembled lattice (framework) is correlated with the frame entropic and many-body effects18–21, and shape22–24—dominate geometry. Thus, our strategy potentially permits the deliberate lattice formation. These dependences are both natural and useful; engineering of the unit cell by controlling the shape of the particle- numerous investigations have detailed how particle characteristics connecting frames and does not require particle modifications. drive structure formation12,24–28. Whereas these studies uncovered This approach addresses the challenge articulated by Ned Seaman a great depth of physical insight, the goal of lattice `engineering' in his visionary work, more than three decades ago, that led to the remains elusive, owing to the complex dependences between the rise of the field of DNA nanotechnology44: how to create 3D lattices structural and energetic parameters of particles and lattices, and the that position guest species in a predetermined, regular manner. In necessity to tailor particles for each target lattice. this work, we designed45 five different DNA origami polyhedral Anisotropic interparticle interactions, induced by precise frames, including octahedron, cube, elongated square bipyramid arrangement of binding patches or by particle shaping, were (ESB), prism and triangular bipyramid (TBP) geometries, built considered as a means to simplify the lattice design. These using six-helix-bundle edges with lengths (depending on the particles have been extensively investigated for regulating phase frame shape) from 30 to 45 nm, as shown in Fig. 1 and detailed formation11,29,30, and diverse phases were predicted29. Several in Supplementary Methods. Every bundle has one single-stranded recent studies exploited directional interactions to create particle DNA chain extending from each of its ends. This chain can further clusters and arrays13,31–34. However, such approaches require hybridize with complementary DNA, which coats NPs uniformly. ample efforts in fabrication of building blocks with sophisticated Thus, for all our designs, the number of strands linking a frame anisotropic interactions. High-fidelity and high-yield fabrication of vertex to an individual NP is equal to the number of edges at these elaborate particles remains challenging, particularly on the the given vertex. The designed DNA frames thus connect NPs at nanoscale32,35–37. Besides, the resultant lattices are still determined by their vertices, establishing the overall lattice topology based on the specific particle design. DNA-based methods have emerged as frame geometry. 1 * ARTICLES Frames Nanoparticle−DNA framework Nanoparticle Particle−frame Framework assembly formation + Figure 1 | Lattice assembly through NP–DNA frameworks. NPs (yellow ball) capped with oligonucleotides (blue curves) are mixed with polyhedral DNA frames (from top to bottom): cube, octahedron, elongated square bipyramid (ESB), prism, triangular bipyramid (TBP). The frames are designed to have complementary strands at the vertices for NP binding. An aggregation (framework formation) is expected when NPs and the correspondingly encoded polyhedral frames are allowed to mix and to hybridize. NP–DNA frameworks might exhibit an ordered lattice for optimized NP sizes, linking motif and annealing process. The crystallographic symmetry of the assembled lattice is controlled by the shape of the interparticle linking frames, but not by the NPs themselves. This strategy thus enables ‘engineering’ the lattice and its unit cell. Polyhedral frames as topological linkers NP–DNA framework assembly Assembly of polyhedral origami frames was carried out using We first discuss the assembly of a 3D lattice using an octahedral M13mp18 DNA and staple strands (1:10 ratio) in 1×TAE frame46. To prepare the assembled system, DNA octahedra and buffer with 12.5 mM Mg2C, annealed slowly from 90 ◦C to room NPs (10 nm core) were mixed at a ratio of 1:2. To explore the temperature (see Supplementary Information). Proper assembly role of particle–vertex linkages on the phase formation, we studied was confirmed using gel electrophoresis45 (Supplementary the assembly behaviour as a function of the length, d, of the Fig. 1), and negative-staining transmission electron microscopy DNA motifs connecting the frame vertices to the NP. Partially (Supplementary Fig. 3). Cryo-electron microscopy (EM) with complementary single-stranded (ss) DNA strands extend from 3D reconstruction, as described previously46, was also applied to the octahedra vertices and particles respectively—so-called `sticky visualize the assembled DNA frames (Supplementary Figs 4–7). ends’—providing attachment of NPs to frames. We regulate the We probed the ability of the frame to
Recommended publications
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • Putting the Icosahedron Into the Octahedron
    Forum Geometricorum Volume 17 (2017) 63–71. FORUM GEOM ISSN 1534-1178 Putting the Icosahedron into the Octahedron Paris Pamfilos Abstract. We compute the dimensions of a regular tetragonal pyramid, which allows a cut by a plane along a regular pentagon. In addition, we relate this construction to a simple construction of the icosahedron and make a conjecture on the impossibility to generalize such sections of regular pyramids. 1. Pentagonal sections The present discussion could be entitled Organizing calculations with Menelaos, and originates from a problem from the book of Sharygin [2, p. 147], in which it is required to construct a pentagonal section of a regular pyramid with quadrangular F J I D T L C K H E M a x A G B U V Figure 1. Pentagonal section of quadrangular pyramid basis. The basis of the pyramid is a square of side-length a and the pyramid is assumed to be regular, i.e. its apex F is located on the orthogonal at the center E of the square at a distance h = |EF| from it (See Figure 1). The exercise asks for the determination of the height h if we know that there is a section GHIJK of the pyramid by a plane which is a regular pentagon. The section is tacitly assumed to be symmetric with respect to the diagonal symmetry plane AF C of the pyramid and defined by a plane through the three points K, G, I. The first two, K and G, lying symmetric with respect to the diagonal AC of the square.
    [Show full text]
  • Hexagonal Antiprism Tetragonal Bipyramid Dodecahedron
    Call List hexagonal antiprism tetragonal bipyramid dodecahedron hemisphere icosahedron cube triangular bipyramid sphere octahedron cone triangular prism pentagonal bipyramid torus cylinder square­based pyramid octagonal prism cuboid hexagonal prism pentagonal prism tetrahedron cube octahedron square antiprism ellipsoid pentagonal antiprism spheroid Created using www.BingoCardPrinter.com B I N G O hexagonal triangular square­based tetrahedron antiprism cube prism pyramid tetragonal triangular pentagonal octagonal cube bipyramid bipyramid bipyramid prism octahedron Free square dodecahedron sphere Space cuboid antiprism hexagonal hemisphere octahedron torus prism ellipsoid pentagonal pentagonal icosahedron cone cylinder prism antiprism Created using www.BingoCardPrinter.com B I N G O triangular pentagonal triangular hemisphere cube prism antiprism bipyramid pentagonal hexagonal tetragonal torus bipyramid prism bipyramid cone square Free hexagonal octagonal tetrahedron antiprism Space antiprism prism square­based dodecahedron ellipsoid cylinder octahedron pyramid pentagonal icosahedron sphere prism cuboid spheroid Created using www.BingoCardPrinter.com B I N G O cube hexagonal triangular icosahedron octahedron prism torus prism octagonal square dodecahedron hemisphere spheroid prism antiprism Free pentagonal octahedron square­based pyramid Space cube antiprism hexagonal pentagonal triangular cone antiprism cuboid bipyramid bipyramid tetragonal cylinder tetrahedron ellipsoid bipyramid sphere Created using www.BingoCardPrinter.com B I N G O
    [Show full text]
  • New Perspectives on Polyhedral Molecules and Their Crystal Structures Santiago Alvarez, Jorge Echeverria
    New Perspectives on Polyhedral Molecules and their Crystal Structures Santiago Alvarez, Jorge Echeverria To cite this version: Santiago Alvarez, Jorge Echeverria. New Perspectives on Polyhedral Molecules and their Crystal Structures. Journal of Physical Organic Chemistry, Wiley, 2010, 23 (11), pp.1080. 10.1002/poc.1735. hal-00589441 HAL Id: hal-00589441 https://hal.archives-ouvertes.fr/hal-00589441 Submitted on 29 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Physical Organic Chemistry New Perspectives on Polyhedral Molecules and their Crystal Structures For Peer Review Journal: Journal of Physical Organic Chemistry Manuscript ID: POC-09-0305.R1 Wiley - Manuscript type: Research Article Date Submitted by the 06-Apr-2010 Author: Complete List of Authors: Alvarez, Santiago; Universitat de Barcelona, Departament de Quimica Inorganica Echeverria, Jorge; Universitat de Barcelona, Departament de Quimica Inorganica continuous shape measures, stereochemistry, shape maps, Keywords: polyhedranes http://mc.manuscriptcentral.com/poc Page 1 of 20 Journal of Physical Organic Chemistry 1 2 3 4 5 6 7 8 9 10 New Perspectives on Polyhedral Molecules and their Crystal Structures 11 12 Santiago Alvarez, Jorge Echeverría 13 14 15 Departament de Química Inorgànica and Institut de Química Teòrica i Computacional, 16 Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain).
    [Show full text]
  • Making an Origami Sonobe Octahedron
    Making an Origami Sonobe Octahedron Now that you have made a Sonobe unit and a Sonobe cube, you are ready to constuct a more complicated polyhedron. (We highly recommend building a cube before attempting to construct other polyhedra.) This handout will show you how to assemble twelve units into a small triakis octahedron. You can find instructions for making some other polyhedra online. To make the triakis octahedron, you can use any colour combination you like. In this example we use twelve units in three colours (four units of each colour). 1. Fold twelve Sonobe units (see the Making an Origami Sonobe Unit handout for instructions). Make an extra fold in each Sonobe unit by placing the unit with the side containing the X facing up and folding along the dotted line shown in the leftmost image below. 2. Assemble three units (one of each colour) as described in Step 2 of the Making an Origami Sonobe Cube handout to create a single corner, or pyramid, with three flaps (below, left). We are going to make more pyramids using these three flaps. Each new pyramid will also contain all three colours. 3. To make a second pyramid of three colours, choose a flap. We chose the purple flap, so we will add one new pink unit and one new blue unit to our construction. To add the new pink unit, insert a flap of the pink unit into the pocket of the chosen purple unit (above, centre). To add the new blue unit, insert a flap of the blue unit into the pocket of the new pink unit (shown by the white arrow above).
    [Show full text]
  • Instructions for Plato's Solids
    Includes 195 precision START HERE! Plato’s Solids The Platonic Solids are named Zometool components, Instructions according to the number of faces 50 foam dual pieces, (F) they possess. For example, and detailed instructions You can build the five Platonic Solids, by Dr. Robert Fathauer “octahedron” means “8-faces.” The or polyhedra, and their duals. number of Faces (F), Edges (E) and Vertices (V) for each solid are shown A polyhedron is a solid whose faces are Why are there only 5 perfect 3D shapes? This secret was below. An edge is a line where two polygons. Only fiveconvex regular polyhe- closely guarded by ancient Greeks, and is the mathematical faces meet, and a vertex is a point dra exist (i.e., each face is the same type basis of nearly all natural and human-built structures. where three or more faces meet. of regular polygon—a triangle, square or Build all five of Plato’s solids in relation to their duals, and see pentagon—and there are the same num- Each Platonic Solid has another how they represent the 5 elements: ber of faces around every corner.) Platonic Solid as its dual. The dual • the Tetrahedron (4-faces) = fire of the tetrahedron (“4-faces”) is again If you put a point in the center of each face • the Cube (6-faces) = earth a tetrahedron; the dual of the cube is • the Octahedron (8-faces) = water of a polyhedron, and connect those points the octahedron (“8-faces”), and vice • the Icosahedron (20-faces) = air to their nearest neighbors, you get its dual.
    [Show full text]
  • [ENTRY POLYHEDRA] Authors: Oliver Knill: December 2000 Source: Translated Into This Format from Data Given In
    ENTRY POLYHEDRA [ENTRY POLYHEDRA] Authors: Oliver Knill: December 2000 Source: Translated into this format from data given in http://netlib.bell-labs.com/netlib tetrahedron The [tetrahedron] is a polyhedron with 4 vertices and 4 faces. The dual polyhedron is called tetrahedron. cube The [cube] is a polyhedron with 8 vertices and 6 faces. The dual polyhedron is called octahedron. hexahedron The [hexahedron] is a polyhedron with 8 vertices and 6 faces. The dual polyhedron is called octahedron. octahedron The [octahedron] is a polyhedron with 6 vertices and 8 faces. The dual polyhedron is called cube. dodecahedron The [dodecahedron] is a polyhedron with 20 vertices and 12 faces. The dual polyhedron is called icosahedron. icosahedron The [icosahedron] is a polyhedron with 12 vertices and 20 faces. The dual polyhedron is called dodecahedron. small stellated dodecahedron The [small stellated dodecahedron] is a polyhedron with 12 vertices and 12 faces. The dual polyhedron is called great dodecahedron. great dodecahedron The [great dodecahedron] is a polyhedron with 12 vertices and 12 faces. The dual polyhedron is called small stellated dodecahedron. great stellated dodecahedron The [great stellated dodecahedron] is a polyhedron with 20 vertices and 12 faces. The dual polyhedron is called great icosahedron. great icosahedron The [great icosahedron] is a polyhedron with 12 vertices and 20 faces. The dual polyhedron is called great stellated dodecahedron. truncated tetrahedron The [truncated tetrahedron] is a polyhedron with 12 vertices and 8 faces. The dual polyhedron is called triakis tetrahedron. cuboctahedron The [cuboctahedron] is a polyhedron with 12 vertices and 14 faces. The dual polyhedron is called rhombic dodecahedron.
    [Show full text]
  • Crystal Chemical Relations in the Shchurovskyite Family: Synthesis and Crystal Structures of K2cu[Cu3o]2(PO4)4 and K2.35Cu0.825[Cu3o]2(PO4)4
    crystals Article Crystal Chemical Relations in the Shchurovskyite Family: Synthesis and Crystal Structures of K2Cu[Cu3O]2(PO4)4 and K2.35Cu0.825[Cu3O]2(PO4)4 Ilya V. Kornyakov 1,2 and Sergey V. Krivovichev 1,3,* 1 Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia; [email protected] 2 Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Kola Science Centre, Russian Academy of Science, Fesmana 14, 184209 Apatity, Russia 3 Nanomaterials Research Center, Federal Research Center–Kola Science Center, Russian Academy of Sciences, Fersmana Str. 14, 184209 Apatity, Russia * Correspondence: [email protected] Abstract: Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based Citation: Kornyakov, I.V.; structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, Krivovichev, S.V. Crystal Chemical whereas that of 2 is the most complex in the family.
    [Show full text]
  • Chapter 2 Figures and Shapes 2.1 Polyhedron in N-Dimension in Linear
    Chapter 2 Figures and Shapes 2.1 Polyhedron in n-dimension In linear programming we know about the simplex method which is so named because the feasible region can be decomposed into simplexes. A zero-dimensional simplex is a point, an 1D simplex is a straight line segment, a 2D simplex is a triangle, a 3D simplex is a tetrahedron. In general, a n-dimensional simplex has n+1 vertices not all contained in a (n-1)- dimensional hyperplane. Therefore simplex is the simplest building block in the space it belongs. An n-dimensional polyhedron can be constructed from simplexes with only possible common face as their intersections. Such a definition is a bit vague and such a figure need not be connected. Connected polyhedron is the prototype of a closed manifold. We may use vertices, edges and faces (hyperplanes) to define a polyhedron. A polyhedron is convex if all convex linear combinations of the vertices Vi are inside itself, i.e. i Vi is contained inside for all i 0 and all _ i i 1. i If a polyhedron is not convex, then the smallest convex set which contains it is called the convex hull of the polyhedron. Separating hyperplane Theorem For any given point outside a convex set, there exists a hyperplane with this given point on one side of it and the entire convex set on the other. Proof: Because the given point will be outside one of the supporting hyperplanes of the convex set. 2.2 Platonic Solids Known to Plato (about 500 B.C.) and explained in the Elements (Book XIII) of Euclid (about 300 B.C.), these solids are governed by the rules that the faces are the regular polygons of a single species and the corners (vertices) are all alike.
    [Show full text]
  • Polyhedral Volumes Visual Techniques
    Polyhedral Volumes Visual Techniques T. V. Raman & M. S. Krishnamoorthy Polyhedral Volumes – p.1/43 Locating coordinates of regular polyhedra. Using the cube to compute volumes. Volume of the dodecahedron. Volume of the icosahedron. Outline Identities of the golden ratio. Polyhedral Volumes – p.2/43 Using the cube to compute volumes. Volume of the dodecahedron. Volume of the icosahedron. Outline Identities of the golden ratio. Locating coordinates of regular polyhedra. Polyhedral Volumes – p.2/43 Volume of the dodecahedron. Volume of the icosahedron. Outline Identities of the golden ratio. Locating coordinates of regular polyhedra. Using the cube to compute volumes. Polyhedral Volumes – p.2/43 Volume of the icosahedron. Outline Identities of the golden ratio. Locating coordinates of regular polyhedra. Using the cube to compute volumes. Volume of the dodecahedron. Polyhedral Volumes – p.2/43 Outline Identities of the golden ratio. Locating coordinates of regular polyhedra. Using the cube to compute volumes. Volume of the dodecahedron. Volume of the icosahedron. Polyhedral Volumes – p.2/43 The Golden Ratio Polyhedral Volumes – p.3/43 The golden ratio and its scaling property. The scaling rule for areas and volumes. The Pythogorian theorem. Formula for pyramid volume. Basic Facts Dodecahedral/Icosahedral symmetry. Polyhedral Volumes – p.4/43 The scaling rule for areas and volumes. The Pythogorian theorem. Formula for pyramid volume. Basic Facts Dodecahedral/Icosahedral symmetry. The golden ratio and its scaling property. Polyhedral Volumes – p.4/43 The Pythogorian theorem. Formula for pyramid volume. Basic Facts Dodecahedral/Icosahedral symmetry. The golden ratio and its scaling property. The scaling rule for areas and volumes.
    [Show full text]
  • Volume 75 (2019)
    Acta Cryst. (2019). B75, doi:10.1107/S2052520619010047 Supporting information Volume 75 (2019) Supporting information for article: Lanthanide coordination polymers based on designed bifunctional 2-(2,2′:6′,2″-terpyridin-4′-yl)benzenesulfonate ligand: syntheses, structural diversity and highly tunable emission Yi-Chen Hu, Chao Bai, Huai-Ming Hu, Chuan-Ti Li, Tian-Hua Zhang and Weisheng Liu Acta Cryst. (2019). B75, doi:10.1107/S2052520619010047 Supporting information, sup-1 Table S1 Continuous Shape Measures (CShMs) of the coordination geometry for Eu3+ ions in 1- Eu. Label Symmetry Shape 1-Eu EP-9 D9h Enneagon 33.439 OPY-9 C8v Octagonal pyramid 22.561 HBPY-9 D7h Heptagonal bipyramid 15.666 JTC-9 C3v Johnson triangular cupola J3 15.263 JCCU-9 C4v Capped cube J8 10.053 CCU-9 C4v Spherical-relaxed capped cube 9.010 JCSAPR-9 C4v Capped square antiprism J10 2.787 CSAPR-9 C4v Spherical capped square antiprism 1.930 JTCTPR-9 D3h Tricapped trigonal prism J51 3.621 TCTPR-9 D3h Spherical tricapped trigonal prism 2.612 JTDIC-9 C3v Tridiminished icosahedron J63 12.541 HH-9 C2v Hula-hoop 9.076 MFF-9 Cs Muffin 1.659 Acta Cryst. (2019). B75, doi:10.1107/S2052520619010047 Supporting information, sup-2 Table S2 Continuous Shape Measures (CShMs) of the coordination geometry for Ln3+ ions in 2- Er, 4-Tb, and 6-Eu. Label Symmetry Shape 2-Er 4-Tb 6-Eu Er1 Er2 OP-8 D8h Octagon 31.606 31.785 32.793 31.386 HPY-8 C7v Heptagonal pyramid 23.708 24.442 23.407 23.932 HBPY-8 D6h Hexagonal bipyramid 17.013 13.083 12.757 15.881 CU-8 Oh Cube 11.278 11.664 8.749 11.848
    [Show full text]
  • How Many Times Can the Volume of a Convex Polyhedron Be Increased By
    How many times can the volume of a convex polyhedron be increased by isometric deformations? Victor Alexandrov March 1, 2017 Abstract We prove that the answer to the question of the title is ‘as many times as you want.’ More precisely, given any constant c> 0, we construct two oblique triangular bipyramids, P and Q, such that P is convex, Q is nonconvex and intrinsically isometric to P , and vol Q > c·vol P > 0. Mathematics Subject Classification (2010): 52B10; 51M20; 52A15; 52B60; 52C25; 49Q10 Key words: Euclidean space, convex polyhedron, bipyramid, intrinsic metric, intrinsic isome- try, volume increasing deformation 1. Introduction. According to the classical theorem by A.L. Cauchy and A.D. Alexandrov, two compact boundary-free convex polyhedral surfaces in Euclidean 3-space are necessarily con- gruent as soon as they are isometric in their intrinsic metrics, see, e. g., [1]. Obviously, this is not true if at least one of the surfaces is nonconvex. In [4], the authors studied isometric immersions of polyhedral surfaces and, among other things, proved that there exists a compact boundary-free convex polyhedral surface allowing another isometric immersion which, being a nonconvex poly- hedral surface, encloses a larger volume than that enclosed by the original convex surface. This amazing existence theorem has gained new significance after the remarkable contribution of D.D. Bleecker, who explicitly built volume increasing isometric deformations of the surfaces of the Pla- tonic solids, see [3]. For example, he has shown that the surface of a regular tetrahedron can be isometrically deformed in such a way as to enlarge the enclosed volume by 37.7%.
    [Show full text]