Open Research Online Oro.Open.Ac.Uk

Total Page:16

File Type:pdf, Size:1020Kb

Open Research Online Oro.Open.Ac.Uk Open Research Online The Open University’s repository of research publications and other research outputs Space Weathering on Mercury: Laboratory Studies and Modelling Thesis How to cite: Bentley, Mark Stephen (2005). Space Weathering on Mercury: Laboratory Studies and Modelling. PhD thesis. The Open University. For guidance on citations see FAQs. c 2005 Mark Stephen Bentley Version: Version of Record Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Space Weathering on Mercury: Laboratory Studies and Modeiiing A thesis submitted for the degree of Doctor of Philosophy by Mark Stephen Bentley September, 2004 Planetary and Space Sciences Research Institute The Open University, U.K. ProQuest Number: C820960 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQ uest C820960 Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 Contents ii Contents C ontents .................................... ii List of figures ........................ v A bstract............................ viii Acknowledgments .............................................................................................................................x Chapter One - Regolith Evolution in the Solar System .............................................................1 1.1 Introduction........................................................................................................................1 1.2 W hy is regolith important? ....................... 6 1.3 Surface weathering agents .............................................................................................. 9 1.3.1 Meteorite bom bardm ent ................. 10 1.3.2 Ion sputtering ........................................................................................................ 14 1.3.3 Solar radiation effects ..................................................................... 19 1.3.4 Summary ................................................. 21 1.4 Regolith maturity indices .............................................................................................21 1.4.1 F erromagnetic resonance ............................................ 22 1.4.2 Magnetic susceptibility .......................................................................................24 1.4.3 Metallic/ferrous iron ratio .................................................................................. 25 1.4.4 Optical indices.. .....................................................................................................26 1.4.5 Other indices......................................................................................................... 28 1.5 Introduction to space w eathering ............................................................................... 29 1.5.1 Competing models o f space w eathering ......................................................... 29 1.5.2 The old paradigm versus the new ......................................................................31 1.5.3 Space weathering in the Solar System .............................................................34 1.6 Aims o f this w ork ...........................................................................................................36 1.7 Thesis roadm ap ................................................................................... .38 Chapter Two - Laboratory Simulations of Space Weathering on Mercury ........................ 40 2.1 Introduction ..................................................................................................................... 41 2.2 Simulating micrometeorite impacts ...........................................................................42 2.2.1 Requirements of an impact simulation technique ........................................ 42 2.2.2 Selection of an impact simulation technique ..................................................51 2.2.3 Pulsed laser simulation of hypervelocity impacts ..................... 55 2.2.4 Experimental configuration ................. 67 2.3 Simulating the surface environment of Mercury .................................................... 72 2.3.1 Pressure...................................................................................................................73 2.3.2 T emperature ...........................................................................................................76 2.3.3 Surface materials................................................................................................... 81 2.4 Experimental procedure .......................................................................................... 86 2.5 Conclusions ..................................................................................................................... 90 Contents iii Chapter Three - Analysis of artificially weathered regolith analogues ...............................92 3.1 Introduction .....................................................................................................................92 3.2 Initial experiments ......................................................................................................... 94 3.2.1 Visible observations .............................................................................................94 3.2.2 Initial magnetic susceptibility ........................................................................... 97 3.3 In search of metallic iron ............................................................................................108 3.3.1 Initial magnetic susceptibility ..........................................................................108 3.3.2 Mossbauer spectroscopy ...................................................................................109 3.3.3 Curie point determination .................................................................................109 3.3.4 Electron spin resonance spectroscopy. ....................................................... 117 3.4 Characterisation of metallic iron .............................................................................. 121 3.4.1 Frequency dependence of initial susceptibility ............................................122 3.4.2 Vibrating sample magnetometry .....................................................................128 3.5 The optical effects of weathering .............................................................................134 3.5.1 Reflectance measurements at the MSF ...................... 136 3.5.2 Reflectance measurements at RELAB...........................................................137 3.6 The temperature dependence of weathering ......................................................... 139 3.6.1 Initial magnetic susceptibility ..........................................................................140 3.6.2 Frequency dependence of initial susceptibility ............................................142 3.6.3 Reflectance spectra .............................................................................................143 3.6.4 Electron spin resonance spectra ...................................................................... 145 3.7 Regolith analogues vs. lunar soils ............................................................................146 3.8 Conclusions ...................................................................................................................147 Chapter Four - Modelling the surface environment on M ercury........................................151 4.1 Introduction ...................................................................................................................151 4.2 A planetary surface and sub-surface thermal model ............................................152 4.2.1 A review of Mercury thermal models ............................................................152 4.2.2 Theoretical overview ..........................................................................................154 4.2.3 Computational solution ..................................................................................... 159 4.2.4 Solar elevation on Mercury ...............................................................................161 4.2.5 Thermophysical parameters ............................................................................. 166 4.2.6 Application of the model ...................................................................................168 4.2.7 Implications for in situ instrumentation on Mercury ..................................176 4.2.8 Conclusions ................................................................................................... 183 4.3 Modelling the micrometeorite impact flux at Mercury .........................................184 4.3.1 An overview of micrometeorite distribution models ..................................185 4.3.2 The Divine
Recommended publications
  • ORGANIC GEOCHEMISTRY: CHALLENGES for the 21St CENTURY
    ORGANIC GEOCHEMISTRY: CHALLENGES FOR THE 21st CENTURY VOL. 2 Book of Abstracts of the Communications presented to the 22nd International Meeting on Organic Geochemistry Seville – Spain. September 12 -16, 2005 Editors: F.J. González-Vila, J.A. González-Pérez and G. Almendros Equipo de trabajo: Rocío González Vázquez Antonio Terán Rodíguez José Mª de la Rosa Arranz Maquetación: Rocío González Vázquez Fotomecánica e impresión: Akron Gráfica, Sevilla © 22nd IMOG, Sevilla 2005 Depósito legal: SE-61181-2005 I.S.B.N.: 84-689-3661-8 COMMITTEES INVOLVED IN THE ORGANIZATION OF THE 22 IMOG 2005 Chairman: Francisco J. GONZÁLEZ-VILA Vice-Chairman: José A. GONZÁLEZ-PÉREZ Consejo Superior de Investigaciones Científicas (CSIC) Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) Scientific Committee Francisco J. GONZÁLEZ-VILA (Chairman) IRNAS-CSIC, Spain Gonzalo ALMENDROS Claude LARGEAU CCMA-CSIC, Spain ENSC, France Pim van BERGEN José C. del RÍO SHELL Global Solutions, The Netherlands IRNAS-CSIC, Spain Jørgen A. BOJESEN-KOEFOED Jürgen RULLKÖTTER GEUS, Denmark ICBM, Germany Chris CORNFORD Stefan SCHOUTEN IGI, UK NIOZ, The Netherlands Gary ISAKSEN Eugenio VAZ dos SANTOS NETO EXXONMOBIL, USA PETROBRAS RD, Brazil Local Committee José Ramón de ANDRÉS IGME, Spain Mª Carmen DORRONSORO Mª Enriqueta ARIAS Universidad del País Vasco Universidad de Alcalá Antonio GUERRERO Tomasz BOSKI Universidad de Sevilla Universidad do Algarve, Faro, Portugal Juan LLAMAS Ignacio BRISSON ETSI Minas de Madrid Repsol YPF Albert PERMANYER Juan COTA Universidad de Barcelona Universidad de Sevilla EAOG Board Richard L. PATIENCE (Chairman) Sylvie DERENNE (Secretary) Ger W. van GRAAS (Treasurer) Walter MICHAELIS (Awards) Francisco J. GONZALEZ-VILA (Newsletter) C.
    [Show full text]
  • Astrophysics in 2002
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2002 Permalink https://escholarship.org/uc/item/8rz4m3tt Journal Publications of the Astronomical Society of the Pacific, 115(807) ISSN 0004-6280 Authors Trimble, V Aschwanden, MJ Publication Date 2003 DOI 10.1086/374651 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Publications of the Astronomical Society of the Pacific, 115:514–591, 2003 May ᭧ 2003. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Invited Review Astrophysics in 2002 Virginia Trimble Department of Physics and Astronomy, University of California, Irvine, CA 92697; and Astronomy Department, University of Maryland, College Park, MD 20742; [email protected] and Markus J. Aschwanden Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Department L9-41, Building 252, 3251 Hanover Street, Palo Alto, CA 94304; [email protected] Received 2003 January 29; accepted 2003 January 29 ABSTRACT. This has been the Year of the Baryon. Some low temperature ones were seen at high redshift, some high temperature ones were seen at low redshift, and some cooling ones were (probably) reheated. Astronomers saw the back of the Sun (which is also made of baryons), a possible solution to the problem of ejection of material by Type II supernovae (in which neutrinos push out baryons), the production of R Coronae Borealis stars (previously-owned baryons), and perhaps found the missing satellite galaxies (whose failing is that they have no baryons). A few questions were left unanswered for next year, and an attempt is made to discuss these as well.
    [Show full text]
  • Obituary 1967
    OBITUARY INDEX 1967 You can search by clicking on the binoculars on the adobe toolbar or by Pressing Shift-Control-F Request Form LAST NAME FIRST NAME DATE PAGE # Abbate Barbara F. 6/6/1967 p.1 Abbott William W. 9/22/1967 p.30 Abel Dean 11/27/1967 p.24 Abel Francis E. 9/25/1967 p.24 Abel Francis E. 9/27/1967 p.10 Abel Frederick B. 11/11/1967 p.26 Abel John Hawk 12/7/1967 p.42 Abel John Hawk 12/11/1967 p.26 Abel William E. 7/10/1967 p.28 Abel William E. 7/12/1967 p.12 Aber George W. 3/14/1967 p.24 Abert Esther F. 7/26/1967 p.14 Abrams Laura R. Hoffman 8/14/1967 p.28 Abrams Laura R. Hoffman 8/17/1967 p.28 Abrams Pearl E. 10/19/1967 p.28 Abrams Pearl E. 10/20/1967 p.10 Achenbach Helen S. 11/6/1967 p.36 Achenbach Helen S. 11/8/1967 p.15 Ackerman Calvin 5/22/1967 p.34 Ackerman Calvin 5/25/1967 p.38 Ackerman Fritz 11/27/1967 p.24 Ackerman Harold 10/27/1967 p.26 Ackerman Harold 10/28/1967 p.26 Ackerman Hattie Mann 4/14/1967 p.21 Ackerman Hattie Mann 4/19/1967 p.14 Adamczyk Bennie 5/3/1967 p.14 Adamo Margaret M. 3/15/1967 p.15 Adamo Margaret M. 3/20/1967 p.28 Adams Anna 6/17/1967 p.22 Adams Anna 6/20/1967 p.17 Adams Harriet C.
    [Show full text]
  • Tommune Toimum
    TOMMUNEUS009931118B2TOIMUM (12 ) United States Patent ( 10 ) Patent No. : US 9 , 931 , 118 B2 Shelton , IV et al. (45 ) Date of Patent: Apr. 3 , 2018 ( 54 ) REINFORCED BATTERY FOR A SURGICAL 770014 ( 2013 .01 ) ; H02J 770047 ( 2013. 01 ) ; INSTRUMENT A61B 2017 / 0003 (2013 . 01 ) ; A61B 2017/ 0046 (2013 .01 ) ; A61B 2017/ 00084 (2013 .01 ) ; A61B @(71 ) Applicant : Ethicon Endo - Surgery, LLC , 2017 /00115 ( 2013 . 01 ) ; Guaynabo , PR (US ) (Continued ) @( 72 ) Inventors : Frederick E . Shelton , IV . Hillsboro . (58 ) Field of Classification Search OH (US ) ; David C . Yates, West CPC .. HO1M 10 /613 ; H01M 10 /6235 ; A61B Chester , OH (US ); Jeffrey S . Swayze, 17 /068 ; A61B 17 / 1155 West Chester, OH (US ) ; Jason L . USPC . .. .. .. .. .. .. 227 / 175 . 1 , 176 . 1 , 19 Harris , Lebanon , OH (US ) ; Andrew T . See application file for complete search history. Beckman , Cincinnati, OH (US ) (56 ) References Cited (73 ) Assignee : Ethicon Endo - Surgery , LLC , Guaynabo , PR (US ) U . S . PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this 66 ,052 A 6 / 1867 Smith patent is extended or adjusted under 35 662 ,587 A 11 / 1900 Blake U . S . C . 154 (b ) by 388 days . (Continued ) (21 ) Appl. No. : 14/ 633 , 542 FOREIGN PATENT DOCUMENTS AU 2008207624 A1 3 /2009 ( 22 ) Filed : Feb . 27 , 2015 AU 2010214687 AL 9 / 2010 (65 ) Prior Publication Data (Continued ) US 2016 /0249908 A1 Sep . 1 , 2016 OTHER PUBLICATIONS (51 ) Int . Ci. Partial European Search Report for 16157574 . 1 , dated Jun . 3 , 2016 A61B 17 / 068 ( 2006 .01 ) ( 9 pages ) . A61B 17 / 072 ( 2006 . 01 ) (Continued ) (Continued ) (52 ) U . S . CI. Primary Examiner — Nathaniel Chukwurah CPC .
    [Show full text]
  • Cover No Spine
    2006 VOL 44, NO. 4 Special Issue: The Hans Christian Andersen Awards 2006 The Journal of IBBY,the International Board on Books for Young People Editors: Valerie Coghlan and Siobhán Parkinson Address for submissions and other editorial correspondence: [email protected] and [email protected] Bookbird’s editorial office is supported by the Church of Ireland College of Education, Dublin, Ireland. Editorial Review Board: Sandra Beckett (Canada), Nina Christensen (Denmark), Penni Cotton (UK), Hans-Heino Ewers (Germany), Jeffrey Garrett (USA), Elwyn Jenkins (South Africa),Ariko Kawabata (Japan), Kerry Mallan (Australia), Maria Nikolajeva (Sweden), Jean Perrot (France), Kimberley Reynolds (UK), Mary Shine Thompson (Ireland), Victor Watson (UK), Jochen Weber (Germany) Board of Bookbird, Inc.: Joan Glazer (USA), President; Ellis Vance (USA),Treasurer;Alida Cutts (USA), Secretary;Ann Lazim (UK); Elda Nogueira (Brazil) Cover image:The cover illustration is from Frau Meier, Die Amsel by Wolf Erlbruch, published by Peter Hammer Verlag,Wuppertal 1995 (see page 11) Production: Design and layout by Oldtown Design, Dublin ([email protected]) Proofread by Antoinette Walker Printed in Canada by Transcontinental Bookbird:A Journal of International Children’s Literature (ISSN 0006-7377) is a refereed journal published quarterly by IBBY,the International Board on Books for Young People, Nonnenweg 12 Postfach, CH-4003 Basel, Switzerland tel. +4161 272 29 17 fax: +4161 272 27 57 email: [email protected] <www.ibby.org>. Copyright © 2006 by Bookbird, Inc., an Indiana not-for-profit corporation. Reproduction of articles in Bookbird requires permission in writing from the editor. Items from Focus IBBY may be reprinted freely to disseminate the work of IBBY.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Dr. Sean P. S. Gulick Research Professor, Institute for Geophysics
    Dr. Sean P. S. Gulick Research Professor, Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin 10100 Burnet Rd Bldg. 196 (R2200) Austin, Texas 78758-4445 Phone: 512-471-0483, Fax: 512-471-0999, E-mail: [email protected] Research Interests • Tectonic processes, tectonic-climate interactions and geohazards of convergent margins and transitional tectonic environments • Role of catastrophism in the geologic record including impact cratering, hurricanes, and tectonic events • Marine and planetary geophysical imaging at nested resolutions and ground truth through drilling, coring, logging, and sampling Employment Co-Director, Center for Planetary Systems Habitability, University of Texas at Austin Jan. 2020 – Present Research Professor, University of Texas at Austin Sept. 2015 - Present Research Associate Professor, University of Texas at Austin Jan. 2012 - Aug. 2015 Research Scientist, University of Texas Institute for Geophysics Aug. 2007 - Jan. 2012 Research Associate, University of Texas Institute for Geophysics Dec. 2001 - July 2007 Post-doctoral Fellow, University of Texas Institute for Geophysics June 1999 - Nov. 2001 Education Ph.D. in Geological Sciences, Lehigh University, Bethlehem, Pennsylvania 1999 Dissertation: “Seismic studies of the southern Cascadia subduction zone near the Mendocino triple junction,” Advisor: A. Meltzer, Committee: B. Carson, D. Anastasio, S. Clarke, Jr. (USGS), and J. Diebold (LDEO). Bachelor of Science in Geology, Minor in Marine Sciences, University of North 1993 Carolina, Chapel Hill, North Carolina, Advisor: Christine Powell. Field Experience Trinity RIver Paleochannel Project (TRIPP) Bureau of Ocean & Energy Mgmt. Aug., 2018 Chief Scientist, Gulf of Mexico, R/V Trident SISIE: South Island, New Zealand, Subduction Initiation Experiment Feb.-Mar., 2018 Co-Chief Scientist, New Zealand, R/V Marcus G.
    [Show full text]
  • Insights Into the Recurrent Energetic Eruptions That Drive Awu Among the Deadliest Volcanoes on Earth
    Insights into the recurrent energetic eruptions that drive Awu among the deadliest volcanoes on earth Philipson Bani1, Kristianto2, Syegi Kunrat2, Devy Kamil Syahbana2 5 1- Laboratoire Magmas et Volcans, Université Blaise Pascal - CNRS -IRD, OPGC, Aubière, France. 2- Center for Volcanology and Geological Hazard Mitigation (CVGHM), Jl. Diponegoro No. 57, Bandung, Indonesia Correspondence to: Philipson Bani ([email protected]) 10 Abstract The little known Awu volcano (Sangihe island, Indonesia) is among the deadliest with a cumulative death toll of 11048. In less than 4 centuries, 18 eruptions were recorded, including two VEI-4 and three VEI-3 eruptions with worldwide impacts. The regional geodynamic setting is controlled by a divergent-double-subduction and an arc-arc collision. In that context, the slab stalls in the mantle, undergoes an increase of temperature and becomes prone to 15 melting, a process that sustained the magmatic supply. Awu also has the particularity to host alternatively and simultaneously a lava dome and a crater lake throughout its activity. The lava dome passively erupted through the crater lake and induced strong water evaporation from the crater. A conduit plug associated with this dome emplacement subsequently channeled the gas emission to the crater wall. However, with the lava dome cooling, the high annual rainfall eventually reconstituted the crater lake and created a hazardous situation on Awu. Indeed with a new magma 20 injection, rapid pressure buildup may pulverize the conduit plug and the lava dome, allowing lake water injection and subsequent explosive water-magma interaction. The past vigorous eruptions are likely induced by these phenomena, a possible scenario for the future events.
    [Show full text]
  • Downloaded from Brill.Com10/06/2021 12:07:02PM Via Free Access 332 Th E Dream of the North Science, Technology, Progress, Urbanity, Industry, and Even Perfectibility
    5. Th e Northern Heyday: 1830–1880 Tipping the Scales In Europe, the mid-nineteenth century witnessed a decisive change in the relative strength of North and South, confi rming a long-term trend that had been visible for a hundred years, and that had accelerated since the fall of Bonaparte. Great Britain was clearly the main driving force behind this development, but by no means the only one. Such key statistical indicators as population growth and GDP show an unquestionable strengthening in several of the northern nations. A comparison between, for instance, Britain, Germany and the Nordic countries, on the one hand, and France, Spain and Italy, on the other, shows that in 1830, the population of the former group was signifi cantly lower than that of the latter, i.e. 58 vs. 67 million.1 By 1880, the balance had shifted decisively in favour of the North, with 90 vs. 82 million. With regard to GDP, the trend is even more explicit. Available estimates from 1820 show that the above group of northern countries together had a GDP of approximately 67 billion dollars, as compared to 69 billion for the southern countries. In 1870, the GDP of the South had risen to 132 billion (a 91 percent increase), but that of the North to 187 billion (179 percent increase).2 During the 1830–1880 period, the Russian population similarly grew from 56 to 98 million, representing by far the biggest nation in the West, whereas the United States was rapidly climbing from only 13 to 50 million, and Canada from 1 to 4 million (“Population Statistics”, 2006).
    [Show full text]
  • Pnas11741toc 3..8
    October 13, 2020 u vol. 117 u no. 41 From the Cover 25609 Evolutionary history of pteropods 25327 Burn markers from Chicxulub crater 25378 Rapid warming and reef fish mortality 25601 Air pollution and mortality burden 25722 CRISPR-based diagnostic test for malaria Contents THIS WEEK IN PNAS—This week’s research highlights Cover image: Pictured are several 25183 In This Issue species of pteropods. Using phylogenomic data and fossil evidence, — Katja T. C. A. Peijnenburg et al. INNER WORKINGS An over-the-shoulder look at scientists at work reconstructed the evolutionary history of 25186 Researchers peek into chromosomes’ 3D structure in unprecedented detail pteropods to evaluate the mollusks’ Amber Dance responses to past fluctuations in Earth’s carbon cycle. All major pteropod groups QNAS—Interviews with leading scientific researchers and newsmakers diverged in the Cretaceous, suggesting resilience to ensuing periods of 25190 QnAs with J. Michael Kosterlitz increased atmospheric carbon and Farooq Ahmed ocean acidification. However, it is unlikely that pteropods ever PROFILE—The life and work of NAS members experienced carbon release rates of the current magnitude. See the article by 25192 Profile of Subra Suresh Peijnenburg et al. on pages 25609– Sandeep Ravindran 25617. Image credit: Katja T. C. A. Peijnenburg and Erica Goetze. COMMENTARIES 25195 One model to rule them all in network science? Roger Guimera` See companion article on page 23393 in issue 38 of volume 117 25198 Cis-regulatory units of grass genomes identified by their DNA methylation Peng Liu and R. Keith Slotkin See companion article on page 23991 in issue 38 of volume 117 LETTERS 25200 Not all trauma is the same Qin Xiang Ng, Donovan Yutong Lim, and Kuan Tsee Chee 25201 Reply to Ng et al.: Not all trauma is the same, but lessons can be drawn from commonalities Ethan J.
    [Show full text]
  • TB1066 Current Stateof Knowledge and Research on Woodland
    June 2020 A Review of the Relationship Between Flow,Current Habitat, State and of Biota Knowledge in LOTIC and SystemsResearch and on Methods Woodland for Determining Caribou Instreamin Canada Low Requirements 9491066 Current State of Knowledge and Research on Woodland Caribou in Canada No 1066 June 2020 Prepared by Kevin A. Solarik, PhD NCASI Montreal, Quebec National Council for Air and Stream Improvement, Inc. Acknowledgments A great deal of thanks is owed to Dr. John Cook of NCASI for his considerable insight and the revisions he provided in improving earlier drafts of this report. Helpful comments on earlier drafts were also provided by Kirsten Vice, NCASI. For more information about this research, contact: Kevin A. Solarik, PhD Kirsten Vice NCASI NCASI Director of Forestry Research, Canada and Vice President, Sustainable Manufacturing and Northeastern/Northcentral US Canadian Operations 2000 McGill College Avenue, 6th Floor 2000 McGill College Avenue, 6th Floor Montreal, Quebec, H3A 3H3 Canada Montreal, Quebec, H3A 3H3 Canada (514) 907-3153 (514) 907-3145 [email protected] [email protected] To request printed copies of this report, contact NCASI at [email protected] or (352) 244-0900. Cite this report as: NCASI. 2020. Current state of knowledge and research on woodland caribou in Canada. Technical Bulletin No. 1066. Cary, NC: National Council for Air and Stream Improvement, Inc. Errata: September 2020 - Table 3.1 (page 34) and Table 5.2 (pages 55-57) were edited to correct omissions and typos in the data. © 2020 by the National Council for Air and Stream Improvement, Inc. EXECUTIVE SUMMARY • Caribou (Rangifer tarandus) is a species of deer that lives in the tundra, taiga, and forest habitats at high latitudes in the northern hemisphere, including areas of Russia and Scandinavia, the United States, and Canada.
    [Show full text]
  • Modeling and Mapping of the Structural Deformation of Large Impact Craters on the Moon and Mercury
    MODELING AND MAPPING OF THE STRUCTURAL DEFORMATION OF LARGE IMPACT CRATERS ON THE MOON AND MERCURY by JEFFREY A. BALCERSKI Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth, Environmental, and Planetary Sciences CASE WESTERN RESERVE UNIVERSITY August, 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Jeffrey A. Balcerski candidate for the degree of Doctor of Philosophy Committee Chair Steven A. Hauck, II James A. Van Orman Ralph P. Harvey Xiong Yu June 1, 2015 *we also certify that written approval has been obtained for any proprietary material contained therein ~ i ~ Dedicated to Marie, for her love, strength, and faith ~ ii ~ Table of Contents 1. Introduction ............................................................................................................1 2. Tilted Crater Floors as Records of Mercury’s Surface Deformation .....................4 2.1 Introduction ..............................................................................................5 2.2 Craters and Global Tilt Meters ................................................................8 2.3 Measurement Process...............................................................................12 2.3.1 Visual Pre-selection of Candidate Craters ................................13 2.3.2 Inspection and Inclusion/Exclusion of Altimetric Profiles .......14 2.3.3 Trend Fitting of Crater Floor Topography ................................16 2.4 Northern
    [Show full text]