ORGANIC GEOCHEMISTRY: CHALLENGES for the 21St CENTURY

Total Page:16

File Type:pdf, Size:1020Kb

ORGANIC GEOCHEMISTRY: CHALLENGES for the 21St CENTURY ORGANIC GEOCHEMISTRY: CHALLENGES FOR THE 21st CENTURY VOL. 2 Book of Abstracts of the Communications presented to the 22nd International Meeting on Organic Geochemistry Seville – Spain. September 12 -16, 2005 Editors: F.J. González-Vila, J.A. González-Pérez and G. Almendros Equipo de trabajo: Rocío González Vázquez Antonio Terán Rodíguez José Mª de la Rosa Arranz Maquetación: Rocío González Vázquez Fotomecánica e impresión: Akron Gráfica, Sevilla © 22nd IMOG, Sevilla 2005 Depósito legal: SE-61181-2005 I.S.B.N.: 84-689-3661-8 COMMITTEES INVOLVED IN THE ORGANIZATION OF THE 22 IMOG 2005 Chairman: Francisco J. GONZÁLEZ-VILA Vice-Chairman: José A. GONZÁLEZ-PÉREZ Consejo Superior de Investigaciones Científicas (CSIC) Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) Scientific Committee Francisco J. GONZÁLEZ-VILA (Chairman) IRNAS-CSIC, Spain Gonzalo ALMENDROS Claude LARGEAU CCMA-CSIC, Spain ENSC, France Pim van BERGEN José C. del RÍO SHELL Global Solutions, The Netherlands IRNAS-CSIC, Spain Jørgen A. BOJESEN-KOEFOED Jürgen RULLKÖTTER GEUS, Denmark ICBM, Germany Chris CORNFORD Stefan SCHOUTEN IGI, UK NIOZ, The Netherlands Gary ISAKSEN Eugenio VAZ dos SANTOS NETO EXXONMOBIL, USA PETROBRAS RD, Brazil Local Committee José Ramón de ANDRÉS IGME, Spain Mª Carmen DORRONSORO Mª Enriqueta ARIAS Universidad del País Vasco Universidad de Alcalá Antonio GUERRERO Tomasz BOSKI Universidad de Sevilla Universidad do Algarve, Faro, Portugal Juan LLAMAS Ignacio BRISSON ETSI Minas de Madrid Repsol YPF Albert PERMANYER Juan COTA Universidad de Barcelona Universidad de Sevilla EAOG Board Richard L. PATIENCE (Chairman) Sylvie DERENNE (Secretary) Ger W. van GRAAS (Treasurer) Walter MICHAELIS (Awards) Francisco J. GONZALEZ-VILA (Newsletter) C. Anthony LEWIS (Membership and Website) James MAXWELL – Co-opted (Editor-in-Chief of Organic Geochemistry) - 628 - Organic Geochemistry: Challenges for the 21st Century (Vol. 2) 22 IMOG seville, Spain 2005 22 IMOG SPONSORS Ministerio de Educación y Ciencia (MEC) Consejo Superior de Investigaciones Científicas (CSIC) Instituto Geológico y Minero de España (IGME) Universidad de Sevilla Junta de Andalucía Consejería de Innovación, Ciencia y Empresa Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA) Consejería de Turismo, Comercio y Deporte. Delegación Provincial de Cádiz Consorcio de Turismo de la Provincia de Sevilla. Turismo de Sevilla Patronato del Real Alcázar de Sevilla Repsol YPF Chevron Texaco Unocal 76 British Petroleum Shell Exxon Mobil Statoil Hydro Integrated Geochemical Interpretation Ltd. Humble Instruments & Services Inc. Baseline Resolution Inc. Vinci Technologies S.A. Thermo Electron Corp. Iberia Renfe Viajes el Corte Inglés Anorsur S.L. Cruzcampo - 629 - Organic Geochemistry: Challenges for the 21st Century (Vol. 2) 22 IMOG seville, Spain 2005 - 630 - Organic Geochemistry: Challenges for the 21st Century (Vol. 2) 22 IMOG seville, Spain 2005 CONTENT VOL-2 POSTER COMMUNICATIONS (Cont.) BIOGEOCHEMISTRY (Cont.) 645 ENVIRONMENTAL BIOGEOCHEMISTRY-1 (EB1) 647 PEB1-1. Exposure of marine organisms to polycyclic aromatic hydrocarbons (PAHs): use of PAH metabolites to track the impact of oil spills in relation to their toxicity. H. Budzinski, O. Mazéas, J. Tronczynski, Y. Desaunay, M. LeDu PEB1-2. Trace analysis of hydrocarbons in coral cores from Saudi Arabia. K. Burns, J. Lough, D. Barnes, D. Brinkman, A. Poulsen, S. Delean PEB1-3. Organic chlorinate pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in the Xijiang River, South China. H. Deng, J. Song, P. Peng PEB1-4. Oil spill bioremediation in Brazilian marine environment – A mesocosm simulation. E.S. de Souza, M.F. Coelho, J.A.Trigüis PEB1-5. Occurrence of polycylic aromatic hydrocarbons (PAHs) and organochlorine compounds in Iloilo River, Philippines. P. Gerrez, V. Tañeza, R.P. Philp PEB1-6. Environmental organic geochemistry of polycyclic aromatic hydrocarbons (PAHs) and Its environmental impact In coal from Huaibei coal field. L. Gui-Jian, X. Jian, Z. Hao- Yuan, W. Xinming PEB1-7. Monitoring river pollution by molecular characterization of the sedimentary organic matter using Gas Chromatography – Mass Spectrometry (GC-MS). L. Jeanneau, P. Faure, M. Ramelli, L. Mansuy-Huault PEB1-8. Organic pollutants of Merseyside inferred by SPOT data. S. Mukherjee, A. Mukherjee PEB1-9. Simultaneous photochemical abatement of hexavalent chromium and organic pollutants. P. Mytych, Z. Stasicka PEB1-10. The environmental effects of oil exploration and production in the East Shetland basin: composition and concentration of hydrocarbons in sediment samples collected in 2002 using a stratified random sampling design. M. Russell, L. Webster, P. Walsham, G. Packer, E.J. Dalgarno, A.D. McIntosh, C.F. Moffat PEB1-11. Research of oils biodegradation in soils and its intensification. O.V. Serebrennikova, L.D. Stakhina, E.V. Barabanova, N.Y. Andreeva, N.V. Sizova PEB1-12. Is Acid Troubling You? Studies of the Synthesis, Characterisation, Biodegradation and Toxicity of Naphthenic Acids. B.E. Smith, C.A. Lewis, S.J. Rowland PEB1-13. Characterization of dry deposition dusts on an urban balcony surface, Guangzhou. J. Song, P. Peng PEB1-14. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from New York/New Jersey Harbor complex. J. Song, B. Yan, L. Benedict, R. Bopp, T. Abrajano, D. Chaky - 627 - Organic Geochemistry: Challenges for the 21st Century (Vol. 2) 22 IMOG seville, Spain 2005 PEB1-15. 13C of volatile organic compounds (VOC’s) in air samples by thermal desorption GC-ir-MS. N. Turner, K. Grice, M. Ioppolo-Armanios, M. Jones, D. Dawson PEB1-16. The effects of oil exploration and production in the East Shetland Basin: composition and concentration of hydrocarbons in sediment samples collected in 1986, 1988, 1989 and 1994 – An historical perspective. P. Walsham, L. Webster, M. Russell, A.D. McIntosh, P.R. Mackie, C.F. Moffat PEB1-17. PAH spectrum in the Quaternary water sediments. I. Bojakowska PEB1-18. The development and application of a statistical sampling regime to map hydrocarbon distributions in marine sediment. A.S. Ahmed, L. Webster, I.M. Davies, M. Russell, P. Walsham, G. Parker, R.J. Fryer, C.F. Moffat, P. Pollard ENVIRONMENTAL BIOGEOCHEMISTRY-2 (EB2) 681 PEB2-1. Chlorinated pesticides in river sediments in Poland. I. Bojakowska PEB2-2. Distribution and spatial trends of PCBs in urban soils from six European cities. A. Cachada, L. Lopes, S. Rodrigues, A. Duarte PEB2-3. Bioremediation of a polluted hydrocarbons soil. B. Ceccanti, C. Garcia, G. Masciandaro, C. Macci, A. Carmignani, A. Filareto PEB2-4. The Prestige oil spill. Enhanced biodegradation of a heavy fuel oil under simulated conditions. S. Diez, J. Sabaté, M. Viñas, J.M. Bayona, A.M. Solanas, J. Albaigés PEB2-5. Fate of the spill of The Prestige oil tanker in the deep sea. S. Elordui-Zapatarietxe, A. Rosell-Melé, P. Masqué, J. Albaigés PEB2-6. Photolytic and microbiological degradation of the organic pollutants that originating from the petrochemical industry. N. Kuburovic, M. Todorovic, V. Raichevic, L. Jovanovic, O. Ecim, B. Lalevic, T. Sholevic PEB2-7. Compound-specific isotope analysis applied to MTBE biodegradation studies. T. Kuder, P. Philp, J. Wilson, J. Allen PEB2-8. Distribution patterns of atmospheric pollutants (PAH/PCN) accumulated on pine needles in the Cologne conurbation (Germany). E. Lehndorff, L. Schwark PEB2-9. Interaction modes between humic colloids and surfactant molecules as identified by octanol-water partitioning experiments with radiolabelled humic acid. H. Lippold, H. Kupsch PEB2-10. Sources of Polycyclic Aromatic Hydrocarbons (PAHs) in mussel tissues: a forensic study of hydrocarbon sources and biological exposure in the near-shore coastal waters of Avila Bay, California. R.I. Haddad PEB2-11. Potential sources of the polar fraction associated with groundwater TPH. R. Haddad, S.-T. Lu PEB2-12. Geochemical investigation of an offshore sewage sludge deposit, Barcelona, Catalonia, Spain. M.A. Kruge, A. Permanyer, J. Serra PEB2-13. Microbial biodegradation of potential PAH sources in sewage sludge. A. Regier, L. Mansuy-Huault, P. Faure, C. Leyval, T. Béguéristain - 628 - Organic Geochemistry: Challenges for the 21st Century (Vol. 2) 22 IMOG seville, Spain 2005 PEB2-14. Source apportionment of PAH in sewage sludge. A. Regier, L. Mansuy-Huault, P. Faure, E. Jardé PEB2-15. Organic composition of Seville aerosols. J. Reyes, B. Hermosín, C. Saiz-Jiménez PEB2-16. Limited bioaccessibility of polycyclic aromatic hydrocarbons leading to background soil pollution. R. Posada-Baquero, J.J. Ortega-Calvo PEB2-17. Aryl isoprenoids in oil fluid and underground waters from Minusinsk depression. Y.P. Turov, M.Y. Gooznjaeva, B.D. Vasiljev PEB2-18. Transformation of oil composition under natural factors. Y.P. Turov, M.Y. Gooznjaeva PEB2-19. Selecting aerobic bacteria from petroleum formation water of special biodegradation characteristics. S.P. Vasconcellos, V.M. Oliveira, K.C.M. Simioni, E.V. Santos Neto, A.J. Marsaioli PEB2-20. Drilling wastes management: case study in Southern Tunisia. H. Mejri, M. Saidi BIOMARKERS-1 (B1) 718 PB1-1. Tricyclic terpenoids from Paleozoic tasmanites: a question of evolution, site or taxa? S. Dutta, P. Greenwood, R. Brocke, C. Hartkopf-Fröder, R.G. Schaefer, H. Wilkes, U. Mann PB1-2. Estimating the number of endospores by determination of dipicolinic acid in sediments from the backbarrier tidal flat of Spiekeroog island. J. Fichtel, J. Köster, J. Rullkötter,
Recommended publications
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • Astrophysics in 2002
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2002 Permalink https://escholarship.org/uc/item/8rz4m3tt Journal Publications of the Astronomical Society of the Pacific, 115(807) ISSN 0004-6280 Authors Trimble, V Aschwanden, MJ Publication Date 2003 DOI 10.1086/374651 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Publications of the Astronomical Society of the Pacific, 115:514–591, 2003 May ᭧ 2003. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Invited Review Astrophysics in 2002 Virginia Trimble Department of Physics and Astronomy, University of California, Irvine, CA 92697; and Astronomy Department, University of Maryland, College Park, MD 20742; [email protected] and Markus J. Aschwanden Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Department L9-41, Building 252, 3251 Hanover Street, Palo Alto, CA 94304; [email protected] Received 2003 January 29; accepted 2003 January 29 ABSTRACT. This has been the Year of the Baryon. Some low temperature ones were seen at high redshift, some high temperature ones were seen at low redshift, and some cooling ones were (probably) reheated. Astronomers saw the back of the Sun (which is also made of baryons), a possible solution to the problem of ejection of material by Type II supernovae (in which neutrinos push out baryons), the production of R Coronae Borealis stars (previously-owned baryons), and perhaps found the missing satellite galaxies (whose failing is that they have no baryons). A few questions were left unanswered for next year, and an attempt is made to discuss these as well.
    [Show full text]
  • Tommune Toimum
    TOMMUNEUS009931118B2TOIMUM (12 ) United States Patent ( 10 ) Patent No. : US 9 , 931 , 118 B2 Shelton , IV et al. (45 ) Date of Patent: Apr. 3 , 2018 ( 54 ) REINFORCED BATTERY FOR A SURGICAL 770014 ( 2013 .01 ) ; H02J 770047 ( 2013. 01 ) ; INSTRUMENT A61B 2017 / 0003 (2013 . 01 ) ; A61B 2017/ 0046 (2013 .01 ) ; A61B 2017/ 00084 (2013 .01 ) ; A61B @(71 ) Applicant : Ethicon Endo - Surgery, LLC , 2017 /00115 ( 2013 . 01 ) ; Guaynabo , PR (US ) (Continued ) @( 72 ) Inventors : Frederick E . Shelton , IV . Hillsboro . (58 ) Field of Classification Search OH (US ) ; David C . Yates, West CPC .. HO1M 10 /613 ; H01M 10 /6235 ; A61B Chester , OH (US ); Jeffrey S . Swayze, 17 /068 ; A61B 17 / 1155 West Chester, OH (US ) ; Jason L . USPC . .. .. .. .. .. .. 227 / 175 . 1 , 176 . 1 , 19 Harris , Lebanon , OH (US ) ; Andrew T . See application file for complete search history. Beckman , Cincinnati, OH (US ) (56 ) References Cited (73 ) Assignee : Ethicon Endo - Surgery , LLC , Guaynabo , PR (US ) U . S . PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this 66 ,052 A 6 / 1867 Smith patent is extended or adjusted under 35 662 ,587 A 11 / 1900 Blake U . S . C . 154 (b ) by 388 days . (Continued ) (21 ) Appl. No. : 14/ 633 , 542 FOREIGN PATENT DOCUMENTS AU 2008207624 A1 3 /2009 ( 22 ) Filed : Feb . 27 , 2015 AU 2010214687 AL 9 / 2010 (65 ) Prior Publication Data (Continued ) US 2016 /0249908 A1 Sep . 1 , 2016 OTHER PUBLICATIONS (51 ) Int . Ci. Partial European Search Report for 16157574 . 1 , dated Jun . 3 , 2016 A61B 17 / 068 ( 2006 .01 ) ( 9 pages ) . A61B 17 / 072 ( 2006 . 01 ) (Continued ) (Continued ) (52 ) U . S . CI. Primary Examiner — Nathaniel Chukwurah CPC .
    [Show full text]
  • Cover No Spine
    2006 VOL 44, NO. 4 Special Issue: The Hans Christian Andersen Awards 2006 The Journal of IBBY,the International Board on Books for Young People Editors: Valerie Coghlan and Siobhán Parkinson Address for submissions and other editorial correspondence: [email protected] and [email protected] Bookbird’s editorial office is supported by the Church of Ireland College of Education, Dublin, Ireland. Editorial Review Board: Sandra Beckett (Canada), Nina Christensen (Denmark), Penni Cotton (UK), Hans-Heino Ewers (Germany), Jeffrey Garrett (USA), Elwyn Jenkins (South Africa),Ariko Kawabata (Japan), Kerry Mallan (Australia), Maria Nikolajeva (Sweden), Jean Perrot (France), Kimberley Reynolds (UK), Mary Shine Thompson (Ireland), Victor Watson (UK), Jochen Weber (Germany) Board of Bookbird, Inc.: Joan Glazer (USA), President; Ellis Vance (USA),Treasurer;Alida Cutts (USA), Secretary;Ann Lazim (UK); Elda Nogueira (Brazil) Cover image:The cover illustration is from Frau Meier, Die Amsel by Wolf Erlbruch, published by Peter Hammer Verlag,Wuppertal 1995 (see page 11) Production: Design and layout by Oldtown Design, Dublin ([email protected]) Proofread by Antoinette Walker Printed in Canada by Transcontinental Bookbird:A Journal of International Children’s Literature (ISSN 0006-7377) is a refereed journal published quarterly by IBBY,the International Board on Books for Young People, Nonnenweg 12 Postfach, CH-4003 Basel, Switzerland tel. +4161 272 29 17 fax: +4161 272 27 57 email: [email protected] <www.ibby.org>. Copyright © 2006 by Bookbird, Inc., an Indiana not-for-profit corporation. Reproduction of articles in Bookbird requires permission in writing from the editor. Items from Focus IBBY may be reprinted freely to disseminate the work of IBBY.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Nicole Kube Phd
    Leibniz-Institut für Meereswissenschaften The integration of microalgae photobioreactors in a recirculation system for low water discharge mariculture Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät an der Christian-Albrechts-Universität zu Kiel vorgelegt von Nicole Kube Kiel, 2006 Referentin: Prof. Dr. Karin Lochte Koreferent: Prof. Dr. Dr. h.c. Harald Rosenthal Tag der mündlichen Prüfung: Zum Druck genehmigt: Kiel, den Der Dekan Foreword The manuscripts included in this thesis are prepared for submission to peer- reviewed journals as listed below: Wecker B., Kube N., Bischoff A.A., Waller U. (2006). MARE – Marine Artificial Recirculated Ecosystem: feasibility and modelling of a novel integrated recirculation system. (manuscript) Kube N., Bischoff A.A., Wecker B., Waller U. Cultivation of microalgae using a continuous photobioreactor system based on dissolved nutrients of a recirculation system for low water discharge mariculture (manuscript) Kube N. And Rosenthal H. Ozonation and foam fractionation used for the removal of bacteria and parti- cles in a marine recirculation system for microalgae cultivation (manuscript) Kube N., Bischoff A.A., Blümel M., Wecker B., Waller U. MARE – Marine Artificial Recirulated Ecosystem II: Influence on the nitrogen cycle in a marine recirculation system with low water discharge by cultivat- ing detritivorous organisms and phototrophic microalgae. (manuscript) This thesis has been realised with the help of several collegues. The contributions in particular
    [Show full text]
  • Nutrient Control Design Manual: State of Technology Review Report,” Were
    United States Office of Research and EPA/600/R‐09/012 Environmental Protection Development January 2009 Agency Washington, DC 20460 Nutrient Control Design Manual State of Technology Review Report EPA/600/R‐09/012 January 2009 Nutrient Control Design Manual State of Technology Review Report by The Cadmus Group, Inc 57 Water Street Watertown, MA 02472 Scientific, Technical, Research, Engineering, and Modeling Support (STREAMS) Task Order 68 Contract No. EP‐C‐05‐058 George T. Moore, Task Order Manager United States Environmental Protection Agency Office of Research and Development / National Risk Management Research Laboratory 26 West Martin Luther King Drive, Mail Code 445 Cincinnati, Ohio, 45268 Notice This document was prepared by The Cadmus Group, Inc. (Cadmus) under EPA Contract No. EP‐C‐ 05‐058, Task Order 68. The Cadmus Team was lead by Patricia Hertzler and Laura Dufresne with Senior Advisors Clifford Randall, Emeritus Professor of Civil and Environmental Engineering at Virginia Tech and Director of the Occoquan Watershed Monitoring Program; James Barnard, Global Practice and Technology Leader at Black & Veatch; David Stensel, Professor of Civil and Environmental Engineering at the University of Washington; and Jeanette Brown, Executive Director of the Stamford Water Pollution Control Authority and Adjunct Professor of Environmental Engineering at Manhattan College. Disclaimer The views expressed in this document are those of the individual authors and do not necessarily, reflect the views and policies of the U.S. Environmental Protection Agency (EPA). Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document has been reviewed in accordance with EPA’s peer and administrative review policies and approved for publication.
    [Show full text]
  • Dr. Sean P. S. Gulick Research Professor, Institute for Geophysics
    Dr. Sean P. S. Gulick Research Professor, Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin 10100 Burnet Rd Bldg. 196 (R2200) Austin, Texas 78758-4445 Phone: 512-471-0483, Fax: 512-471-0999, E-mail: [email protected] Research Interests • Tectonic processes, tectonic-climate interactions and geohazards of convergent margins and transitional tectonic environments • Role of catastrophism in the geologic record including impact cratering, hurricanes, and tectonic events • Marine and planetary geophysical imaging at nested resolutions and ground truth through drilling, coring, logging, and sampling Employment Co-Director, Center for Planetary Systems Habitability, University of Texas at Austin Jan. 2020 – Present Research Professor, University of Texas at Austin Sept. 2015 - Present Research Associate Professor, University of Texas at Austin Jan. 2012 - Aug. 2015 Research Scientist, University of Texas Institute for Geophysics Aug. 2007 - Jan. 2012 Research Associate, University of Texas Institute for Geophysics Dec. 2001 - July 2007 Post-doctoral Fellow, University of Texas Institute for Geophysics June 1999 - Nov. 2001 Education Ph.D. in Geological Sciences, Lehigh University, Bethlehem, Pennsylvania 1999 Dissertation: “Seismic studies of the southern Cascadia subduction zone near the Mendocino triple junction,” Advisor: A. Meltzer, Committee: B. Carson, D. Anastasio, S. Clarke, Jr. (USGS), and J. Diebold (LDEO). Bachelor of Science in Geology, Minor in Marine Sciences, University of North 1993 Carolina, Chapel Hill, North Carolina, Advisor: Christine Powell. Field Experience Trinity RIver Paleochannel Project (TRIPP) Bureau of Ocean & Energy Mgmt. Aug., 2018 Chief Scientist, Gulf of Mexico, R/V Trident SISIE: South Island, New Zealand, Subduction Initiation Experiment Feb.-Mar., 2018 Co-Chief Scientist, New Zealand, R/V Marcus G.
    [Show full text]
  • Metagenomic Analysis Reveals Rapid Development of Soil Biota on Fresh Volcanic Ash Hokyung Song1, Dorsaf Kerfahi2, Koichi Takahashi3, Sophie L
    www.nature.com/scientificreports OPEN Metagenomic analysis reveals rapid development of soil biota on fresh volcanic ash Hokyung Song1, Dorsaf Kerfahi2, Koichi Takahashi3, Sophie L. Nixon1, Binu M. Tripathi4, Hyoki Kim5, Ryunosuke Tateno6* & Jonathan Adams7* Little is known of the earliest stages of soil biota development of volcanic ash, and how rapidly it can proceed. We investigated the potential for soil biota development during the frst 3 years, using outdoor mesocosms of sterile, freshly fallen volcanic ash from the Sakurajima volcano, Japan. Mesocosms were positioned in a range of climates across Japan and compared over 3 years, against the developed soils of surrounding natural ecosystems. DNA was extracted from mesocosms and community composition assessed using 16S rRNA gene sequences. Metagenome sequences were obtained using shotgun metagenome sequencing. While at 12 months there was insufcient DNA for sequencing, by 24 months and 36 months, the ash-soil metagenomes already showed a similar diversity of functional genes to the developed soils, with a similar range of functions. In a surprising contrast with our hypotheses, we found that the developing ash-soil community already showed a similar gene function diversity, phylum diversity and overall relative abundances of kingdoms of life when compared to developed forest soils. The ash mesocosms also did not show any increased relative abundance of genes associated with autotrophy (rbc, coxL), nor increased relative abundance of genes that are associated with acquisition of nutrients from abiotic sources (nifH). Although gene identities and taxonomic afnities in the developing ash-soils are to some extent distinct from the natural vegetation soils, it is surprising that so many of the key components of a soil community develop already by the 24-month stage.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING , SCIENCE AND MATHEMATICS School of Ocean and Earth Science The role of microbial populations in the cycling of iron and manganese from marine aggregates by Sergio Balzano Thesis for the degree of Doctor of Phylosophy June 2009 BIOTRACS Bio-transformations of trace elements in aquatic systems THIS THESIS WAS COMPLETED USING FRAMEWORK 6 FUNDING FROM THE EUROPEAN UNION. RESEARCH DG HUMAN RESOURCES AND MOBILITY PROJECT NO: 514262 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS SCHOOL OF OCEAN AND EARTH SCIENCES Doctor of philosophy THE ROLE OF MICROBIAL PROCESSES IN MARINE AGGREGATES ON THE CYCLING OF IRON AND MANGANESE By Sergio Balzano Marine aggregates play an important role in the cycling of carbon, nutrients and trace metals.
    [Show full text]
  • Aquatic Microbial Ecology 55:1
    Vol. 55: 1–16, 2009 AQUATIC MICROBIAL ECOLOGY Printed April 2009 doi: 10.3354/ame01277 Aquat Microb Ecol Published online March 18, 2009 OPENPEN ACCESSCCESS FEATURE ARTICLE Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses Sami Taipale1, 2, Roger I. Jones2, Marja Tiirola2,* 1University of Washington, Civil and Environmental Engineering, Box 352700, 201 More Hall, Seattle, Washington 98195, USA 2Department of Biological and Environmental Science, PO Box 35, 40014 University of Jyväskylä, Finland ABSTRACT: Microbes play a particularly important role in the food web in lakes with high dissolved organic carbon content. The bacterial community of a polyhumic lake, Mekkojärvi, was studied using DNA techniques and phospholipid fatty acid (PLFA) analysis during the mid-summer period of water column strati- fication. According to the 16S rRNA gene clone libraries and length heterogeneity analysis (LH-PCR), heterotrophic bacteria dominated only in the oxic epilimnion, in which various Actinobacteria (mostly cluster acI-B) and Betaproteobacteria (especially Poly- nucleobacter subcluster PnecC) were common. Se- quences assigned to heterotrophic, methylotrophic, photoautotrophic, and chemoautotrophic genera were all abundant in the oxic-anoxic boundary layer. Methylobacter and Methylophilus were dominant Mekkojärvi, in southern Finland, is one of countless small, genera among methylotrophic bacteria. Sequences humic lakes around the boreal zone; inset: sampling the brown water rich in DOC. assigned to the photoautotrophic green sulfur bac- Photos: Sami Taipale terium Chlorobium sp. dominated in the anoxic water column, in which the microbial PLFA biomass was 6 times higher than in the oxic surface layer. All PLFA- profiles were dominated by 16 monounsaturated fatty INTRODUCTION acids typical of Gram-negative bacteria, whereas iso- and anteiso-branched PLFAs typical of Actinobacteria Microbial foodwebs of humic (dystrophic) lakes were present only in minor proportions.
    [Show full text]
  • 7.014 Lectures 16 &17: the Biosphere & Carbon and Energy Metabolism
    MIT Department of Biology 7.014 Introductory Biology, Spring 2005 7.014 Lectures 16 &17: The Biosphere & Carbon and Energy Metabolism Simplified Summary of Microbial Metabolism The metabolism of different types of organisms drives the biogeochemical cycles of the biosphere. Balanced oxidation and reduction reactions keep the system from “running down”. All living organisms can be ordered into two groups1, autotrophs and heterotrophs, according to what they use as their carbon source. Within these groups the metabolism of organisms can be further classified according to their source of energy and electrons. Autotrophs: Those organisms get their energy from light (photoautotrophs) or reduced inorganic compounds (chemoautotrophs), and their carbon from CO2 through one of the following processes: Photosynthesis (aerobic) — Light energy used to reduce CO2 to organic carbon using H2O as a source of electrons. O2 evolved from splitting H2O. (Plants, algae, cyanobacteria) Bacterial Photosynthesis (anaerobic) — Light energy used to reduce CO2 to organic carbon (same as photosynthesis). H2S is used as the electron donor instead of H2O. (e.g. purple sulfur bacteria) Chemosynthesis (aerobic) — Energy from the oxidation of inorganic molecules is used to reduce CO2 to organic carbon (bacteria only). -2 e.g. sulfur oxidizing bacteria H2S → S → SO4 + - • nitrifying bacteria NH4 → NO2 → NO3 iron oxidizing bacteria Fe+2 → Fe+3 methane oxidizing bacteria (methanotrophs) CH4 → CO2 Heterotrophs: These organisms get their energy and carbon from organic compounds (supplied by autotrophs through the food web) through one or more of the following processes: Aerobic Respiration (aerobic) ⎯ Oxidation of organic compounds to CO2 and H2O, yielding energy for biological work.
    [Show full text]